On Ideals Which Have the Weakly Insertion of Factors Property

E. Hashemi^{*}

Department of Mathematics, Shahrood University of Thechnology, Shahrood, P.O. Box 316-3619995161, Islamic Republic of Iran

Abstract

A one-sided ideal I of a ring R has the insertion of factors property (or simply, IFP) if $ab \in I$ implies $raRb \subseteq I$ for $a, b \in R$. We say a one-sided ideal I of R has the weakly IFP if for each $a, b, r \in R$, $ab \in I$ implies $(arb)^n \in I$, for some non-negative integer n. We give some examples of ideals which have the weakly IFP but have not the IFP. Connections between ideals of R which have the IFP and related ideals of some ring extensions are also shown.

Keywords: Insertion of factors property; (α, δ) – compatible ideals; α – rigid ideals; Ore extensions; Skew Laurent polynomials ring

0. Introduction

Throughout this paper R denotes an associative ring with identity. $R[x;\alpha,\delta]$ will stands for the Ore extension of R , where α is an endomorphism and δ an α – derivation of R , that is, δ is an additive map such that $\delta(ab) = \delta(a)b + \alpha(a)\delta(b)$ for all $a, b \in \mathbb{R}$. Recall from [14] that a one-sided ideal I of a ring Rhas the insertion of factors property (or simply, IFP) if $ab \in I$ implies $aRb \subset I$ for $a, b \in R$. (H.E. Bell [2] in 1973 introduced this notion for I = 0). Observe that every completely semiprime ideal I (*i.e.*, $a^2 \in I$ implies $a \in I$) of *R* has the IFP [14, Lemma 3.2(a)]. If I = 0 has the IFP, then we say R has the IFP. A ring R is called reduced if it has no non-zero nilpotent element. By [5], reduced rings have the IFP. If R has the IFP, then it is Abelian (i.e., all idempotents are central).

Recall that an ideal I of R is called α - ideal if

 $\alpha(I) \subseteq I$; *I* is called α - invariant if $\alpha^{-1}(I) = I$; *I* is called δ - ideal if $\delta(I) \subseteq I$; *I* is called (α, δ) - ideal if it is both α and δ - ideal.

According to Hong, Kawak and Rizvi [4], for an endomorphism α of a ring R, a α – ideal I is called to be α – rigid if $a\alpha(a) \in I$ implies $a \in I$ for $a \in R$. Hong, Kawak and Rizvi [4] studied connections between α – rigid ideals of R and related ideals of some ring extensions. Motivated by the above facts, for an endomorphism α of a ring R, we define α – compatible ideals in R which are a generalization of α – rigid ideals. For an ideal I, we say that I is compatible ideal if for each $a, b \in R$, $ab \in I \Leftrightarrow a\alpha(b) \in I$. Moreover, I is said to be δ – compatible ideal if for each $a, b \in R$, $ab \in I \Rightarrow a\delta(b) \in I$. If I is both α – compatible and δ – compatible, we say that I is a (α, δ) – compatible ideal. If I = 0 is (α, δ) – compatible ideal, we say that

^{*} Corresponding author, Tel.: +98(0273)3332012, Fax: +98(0273)3332012, E-mail: eb_hashemi@shahroodut.ac.ir

R is a compatible ring. The definition is quite natural, in the light of its similarity with the notion of α – rigid ideals, where in Proposition 2.2, we will show that *I* is a α – rigid ideal if and only if *I* is α – compatible ideal and completely semiprime.

In this paper, we will show that for each $n \ge 2$, there exists a non-zero ideal of the $n \times n$ upper triangular matrix ring over the ring of integers Z such that has not IFP. Connections between ideals of R which has the IFP and related ideals of some ring extensions are also shown. In section 2, we will show that: (1) If I is a (α, δ) – compatible ideal of R and has the IFP, then ideal $I[x;\alpha,\delta]$ of $R[x;\alpha,\delta]$ has the weakly IFP. (2) For a monomorphism α of R, if I is α – compatible ideal of *R* and has the IFP, then ideal $I[x, x^{-1}; \alpha]$ of skew Laurent polynomials ring $R[x, x^{-1}; \alpha]$ has the weakly IFP. As a corollary, we show that if R is (α, δ) - compatible ring and has the IFP, then $R[x;\alpha,\delta]$ has the weakly IFP. Also, for a monomorphism α of R, if R is α – compatible ring and has the IFP, then $R[x, x^{-1}; \alpha]$ has the weakly IFP.

In [13], Li Liang, Limin Wang and Zhongkui Liu show that if R is a α -compatible ring and has the IFP, then $R[x;\alpha]$ has the weakly IFP. For a ring R, we denote by $T_n(R)$ the n-by – n upper triangular matrix ring over R. Clearly

$$R_{n}(R) = \begin{cases} \begin{pmatrix} a & a_{12} & \cdots & a_{1n} \\ 0 & a & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a \end{pmatrix} | a, a_{ij} \in R \end{cases}$$

is a subring of $T_n(R)$.

1. Examples

For an ideal *I* of *R*, put $\sqrt{I} = \{a \in R \mid a^n \in I \text{ for some non-negative integers } n \ge 0\}$.

Definition 1.1. A one-sided ideal *I* of a ring *R* has the weakly insertion of factors property (or simply, weakly IFP) if $ab \in I$ implies $arb \in \sqrt{I}$ for each $r \in R$. If I = 0 has the weakly IFP, then we say *R* has the weakly IFP.

Clearly, if I has the IFP, then it has the weakly IFP. In the following we will see the converse is not true.

Example 1.2. Let

$$J = \left\{ \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{pmatrix} | a_{ij} \in 2pZ \right\}$$

where p is a prime number and Z is the set of integers. Then

$$\begin{pmatrix} p & p & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & p \end{pmatrix} = \begin{pmatrix} 0 & 0 & 4p \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in J ,$$

but

$$\begin{pmatrix} p & p & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & p \end{pmatrix} = \begin{pmatrix} 0 & 0 & 7p \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \notin J .$$

Hence J has not IFP, but J has the weakly IFP, by Corollary 1.12.

By a similar way as used in Example 1.2, we can construct numerous ideals of $T_n(Z)$ such that has weakly IFP but have not IFP, for $n \ge 2$.

Example 1.3. Let

$$J = \left\{ \begin{pmatrix} 0 & a_{12} & a_{13} & a_{14} \\ 0 & 0 & a_{23} & a_{24} \\ 0 & 0 & 0 & a_{34} \\ 0 & 0 & 0 & 0 \end{pmatrix} | a_{ij} \in 2pZ \right\}$$

be an ideal of $R_4(Z)$, where $p \neq 2$ is a prime number and Z is the set of integers. Then

but

Hence J has not IFP, but J has weakly IFP, by Corollary 1.6.

By a similar way as used in Example 1.3, we can construct numerous ideals of $R_n(Z)$ such that have weakly IFP but have not IFP, for $n \ge 4$.

Lemma 1.4. Let

$$J = \left\{ \begin{pmatrix} a & a_{12} & \cdots & a_{1n} \\ 0 & a & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a \end{pmatrix} | a \in I, a_{ij} \in I_{ij}, 1 \le i < j \le n \right\},\$$

where I, I_{ij} are ideals of R, such that $I \subseteq I_{ij} \subseteq I_{is}$ for $1 \le i < j \le s \le n$ and $I_{sj} \subseteq I_{ij}$ for $j = 3, \dots, n$, $2 \le i \le s \le n$. Then J is an ideal of $R_n(R)$.

Proof. It is clear.

In Propositions 1.5, 1.8 and Theorem 1.6, I and J are ideals that mentioned in Lemma 1.4.

Proposition 1.5. Let

$$A = \begin{pmatrix} a & a_{12} & \cdots & a_{1n} \\ 0 & a & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a \end{pmatrix} \in R_n(R)$$

such that $a^k \in I$ for a non-negative integer k. Then $A^{nk} \in J$.

Proof. We proceed by induction on n. Let n = 2. For a positive integer k, $A^{k} = \begin{pmatrix} a^{k} & b_{12} \\ 0 & a^{k} \end{pmatrix}$ and that $A^{2k} = \begin{pmatrix} a^{2k} & a^{k}b_{12} + b_{12}a^{k} \\ 0 & a^{2k} \end{pmatrix}$. Hence $A^{2k} \in J$, since $a^{2k}, a^{k}b_{12} + b_{12}a^{k} \in I$. Now, let $A = \begin{pmatrix} a & a_{12} & \cdots & a_{1n} \\ 0 & a & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & n \end{pmatrix} \in R_{n}(R)$

such that $a^k \in I$ for a non-negative integer k. Consider

$$A^{(n-1)k} = \begin{pmatrix} a^{(n-1)k} & b_{12} & \cdots & b_{1n} \\ 0 & a^{(n-1)k} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a^{(n-1)k} \end{pmatrix}$$

and

$$A^{k} = \begin{pmatrix} a^{k} & c_{12} & \cdots & c_{1n} \\ 0 & a^{k} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a^{k} \end{pmatrix}.$$

By the induction hypothesis all b_{ij} 's, except b_{1n} , are in

I. Let $x = a^k b_{1n} + c_{12} b_{2n} + \dots + c_{1n} a^{(n-1)k}$. Hence

$$A^{nk} = \begin{pmatrix} a^{nk} & y_{12} & \cdots & y_{1n-1} & x \\ 0 & a^{nk} & \cdots & y_{2n-1} & y_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & a^{nk} & y_{n-1n} \\ 0 & 0 & \cdots & 0 & a^{nk} \end{pmatrix} \in J,$$

since a^{nk} , x and all y_{ij} 's are in I.

Theorem 1.6. Let I has the weakly IFP. Then J has the weakly IFP.

Proof. Let

$$A = \begin{pmatrix} a & a_{12} & \cdots & a_{1n} \\ 0 & a & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a \end{pmatrix}, B = \begin{pmatrix} b & b_{12} & \cdots & b_{1n} \\ 0 & b & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & b \end{pmatrix}$$

and

$$C = \begin{pmatrix} c & c_{12} & \cdots & c_{1n} \\ 0 & c & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & c \end{pmatrix} \in R_n(R)$$

such that $AB \in J$. Then $ab \in I$ and that $(acb)^k \in I$ for some non-negative integer k, since I has the weakly IFP. Thus $(ACB)^{nk} \in J$, by Proposition 1.5. Therefore J has the weakly IFP.

Corollary 1.7. Let *R* has the weakly IFP. Then $R_n(R)$ has the weakly IFP, for each $n \ge 2$.

Proof. It follows from Theorem 1.6.

Proposition 1.8. Let J has the weakly IFP. Then I has the weakly IFP.

Proof. It is clear.

Corollary 1.9. Let $R_n(R)$ has the weakly IFP, for some *n*. Then *R* has the weakly IFP.

Proof. It follows from Proposition 1.8.

Lemma 1.10. Let

$$J = \left\{ \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix} | a_{ij} \in I_{ij}, 1 \le i \le j \le n \right\},$$

where I_{ij} are ideals of R, such that $I_{ij} \subseteq I_{is}$ for $1 \le i \le j \le s \le n$ and $I_{sj} \subseteq I_{ij}$ for j = 1, ..., n, $1 \le i \le s \le n$. Then J is an ideal of $T_n(R)$.

Proof. It is clear.

In Propositions 1.11, 1.14 and Theorem 1.12, I_{ii} are ideals that mentioned in Lemma 1.10, for $1 \le i \le n$.

Proposition 1.11. Let

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix} \in T_n(R)$$

such that $a_{ii}^{k} \in I_{ii}$ for some non-negative integer k and i = 1, ..., n. Then $(A^{2k+1})^{n-1} \in J$.

Proof. We proceed by induction on n. For n = 2, let $A = \begin{pmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{pmatrix}$. Since $A^{2k+1} = \begin{pmatrix} a_{11}^{2k+1} & x \\ 0 & a_{11}^{2k+1} \end{pmatrix}$, where $x = \sum a_{11}^{i} a_{12} a_{22}^{j}$, i + j = 2k, $i, j \ge 0$, we have $A^{2k+1} \in J$. Now, assume $n \ge 3$ and $A \in T_n(R)$. Consider

$$(A^{2k+1})^{n-2} = \begin{pmatrix} a_{11}^{(2k+1)(n-2)} & b_{12} & \cdots & b_{1n} \\ 0 & a_{22}^{(2k+1)(n-2)} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn}^{(2k+1)(n-2)} \end{pmatrix}$$

and

$$A^{2k+1} = \begin{pmatrix} a_{11}^{2k+1} & c_{12} & \cdots & c_{1n} \\ 0 & a_{22}^{2k+1} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn}^{2k+1} \end{pmatrix}$$

By the induction hypothesis all b_{ij} 's, except b_{1n} , are in I. Hence (1,n)-entry of $(A^{2k+1})^{n-1}$ is $x = a_{11}^{(2k+1)}b_{1n} + c_{12}b_{12} + \dots + c_{1n-1}b_{n-1n} + c_{1n}a_{nn}^{(2k+1)(n-2)} \in I$, since $a_{11}^{(2k+1)}, a_{nn}^{(2k+1)}, b_{2n}, \dots, b_{n-1n} \in I$. Therefore $(A^{2k+1})^{n-1} \in J$.

Theorem 1.12. If each I_{ii} , $1 \le i \le n$ has the weakly IFP, then *J* has the weakly IFP.

Proof. It follows from Proposition 1.11.

Corollary 1.13. Let *R* has the weakly IFP. Then $T_n(R)$ has the weakly IFP for each $n \ge 2$.

Proof. It follows from Theorem 1.12.

Proposition 1.14. If *J* has the weakly IFP, then each I_{ii} , $1 \le i \le n$, has the weakly IFP.

Proof. It is clear.

Corollary 1.15. Let $T_n(R)$ has the weakly IFP for some $n \ge 2$. Then *R* has the weakly IFP.

2. Extensions of Ideals Which Have the IFP

In this section α is an endomorphism and δ an α -derivation of R. For an ideal I, we say that I is a α -compatible ideal if for each $a, b \in R$, $ab \in I \Leftrightarrow a\alpha(b) \in I$. Moreover, I is said to be δ -compatible ideal if for each $a, b \in R$, $ab \in I \Rightarrow a\delta(b) \in I$. If I is both α -compatible and δ -compatible, we say that I is a (α, δ) -compatible ideal. If I = 0 is both (α, δ) -compatible ideal, we say that R is a (α, δ) -compatible ring.

In [5, Example 2], the authors show that there exists a non-zero ideal I of a ring R such that has IFP but ideal I[x] of R[x] has not IFP. We will show that if I has the IFP then I[x] has the weakly IFP. More generally, we will show that: (1) If I is a (α, δ) – compatible ideal of R and has the IFP, then ideal $I[x;\alpha,\delta]$ of $R[x;\alpha,\delta]$ has the weakly IFP. (2) For a monomorphism α of R, if I is α -compatible ideal of R and has the IFP, then ideal $I[x,x^{-1};\alpha]$ of skew Laurent polynomials ring $R[x,x^{-1};\alpha]$ has the weakly IFP.

For non-empty subsets A, B of R and $r \in R$, put $AB = \{ab \mid a \in A, b \in B\}, A^0 = \{1\}$ and $rA = \{ra \mid a \in A\}.$

The following proposition extends [3, Lemma 2.1].

Proposition 2.1. Let *I* be a (α, δ) – compatible ideal of *R* and $a, b \in R$.

(i) If $ab \in I$, then $a\alpha^{n}(b) \in I$, $\alpha^{n}(a)b \in I$ for each positive integer n. Conversely, if $a\alpha^{k}(b) \in I$ or $\alpha^{k}(a)b \in I$ for some positive integer k, then $ab \in I$.

(ii) If $ab \in I$, then $\alpha^m(a)\delta^n(b), \delta^n(a)\alpha^m(b) \in I$ for each non-negative integers m, n.

Proof. (i) If $ab \in I$, then $\alpha^n(a)\alpha^n(b) \in I$, since I is α -ideal. Hence $\alpha^n(a)b \in I$, since I is α -compatible. Conversely, let $\alpha^k(a)b \in I$. Then $\alpha^k(a)\alpha^k(b) \in I$, since I is α -compatible. Hence $\alpha^k(ab) \in I$ and that $ab \in I$, since I is α -compatible.

(ii) It is enough to show that $\delta(a)\alpha(b) \in I$. If $ab \in I$, then by (i) and δ – compatibility of I, $\alpha(a)\delta(b) \in I$. Hence $\delta(a)b = \delta(ab) - \alpha(a)\delta(b) \in I$. Thus $\delta(a)b \in I$ and that $\delta(a)\alpha(b) \in I$, since I is α – compatible.

Proposition 2.2. Let *R* be a ring, *I* be an ideal of *R* and $\alpha: R \to R$ be an endomorphism of *R*. Then the following conditions are equivalent:

(1) I is a α - rigid ideal of R;

(2) *I* is α – compatible, semiprime and has the IFP;

(3) I is α – compatible and completely semiprime.

If δ is a α – derivation of R, then the following are equivalent:

(4) I is a α - rigid δ - ideal of R;

(5) *I* is (α, δ) – compatible, semiprime and has the IFP;

(6) *I* is (α, δ) – compatible and completely semiprime.

Proof. (1) \Rightarrow (2). It follows from [4, Propositions 2.2 and 2.4].

 $(2) \Rightarrow (1)$. Let $a\alpha(a) \in I$. Then $a^2 \in I$, since I is α -compatible. Hence $aRa \subseteq I$, since I has the IFP. Thus $a \in I$, since I is semiprime. Similarly we can prove $(1) \Rightarrow (3)$.

 $(4) \Rightarrow (6)$. By $(1) \Rightarrow (3)$, *I* is α – compatible and completely semiprime. We show that $a\alpha(b) \in I$, when $ab \in I$. If $ab \in I$, then $\delta(ab) = \delta(a)b + \alpha(a)\delta(b)$ $\in \delta(I) \subseteq I$. Thus $(\alpha(a)\delta(b))^2 = \delta(ab)\alpha(a)\delta(b)$ $-\delta(a)b\alpha(a)\delta(b) \in I$, because $\delta(ab), b\alpha(a) \in I$. Since *I* is completely semiprime, we have $\alpha(a)\delta(b) \in I$ and so $a\delta(b) \in I$, by Proposition 2.1.

 $(6) \Rightarrow (4)$ and $(4) \Rightarrow (5)$ are clear.

Note that there exists a ring *R* for which every nonzero proper ideals are α - compatible. For example, consider the ring $R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$, where *F* is a field, and the endomorphism α of *R* is defined by $\alpha(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}) = \begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix}$ for $a, b, c \in F$.

Lemma 2.3. Let *I* be a (α, δ) -compatible ideal of *R* and has the IFP. If $(ab)^k \in I$, for some $k \ge 0$, then $(a\alpha(b))^k, (a\delta(b))^k \in I$.

Proof. Since *I* is α - compatible and $(ab)^k = (ab)\cdots(ab) \in I$, we have $a\alpha(b)\alpha(ab\cdots ab) = a\alpha(bab\cdots ab) \in I$. Hence $a\alpha(b)\alpha(ab\cdots ab) \in I$, since *I* is α - compatible. Now, $a\alpha(b)a\alpha(b\cdots ab) \in I$ and that $a\alpha(b)a\alpha(b)\alpha(ab\cdots ab) \in I$. Continuing this procedure yields $(a\alpha(b))^k \in I$. Since *I* is δ - compatible and $(ab)^k = (ab)\cdots(ab) \in I$, we have $a\delta(bab\cdots ab) = a\delta(b)(ab\cdots ab) + a\alpha(b)\delta(ab\cdots ab) \in I$. Since $a\alpha(b)(ab\cdots ab) \in I$ and *I* is δ - compatible, we have $a\alpha(b)\delta(ab\cdots ab) \in I$ and *I* is δ - compatible, we have $a\alpha(b)\delta(ab\cdots ab) \in I$. Thus $a\delta(b)(ab\cdots ab) \in I$.

Lemma 2.4. If *I* is a (α, δ) – compatible ideal of *R*, then $I[x;\alpha,\delta]$ is an ideal of $R[x;\alpha,\delta]$.

Proof. It follows from Lemma 2.3.

Lemma 2.5. Let *I* be an ideal of *R* and has the IFP. Then \sqrt{I} is an ideal of *R* and has the IFP. **Proof.** Let $a, b \in \sqrt{I}$. So $a^n, b^m \in I$ for some m, n ≥ 0 . Hence $(a+b)^{m+n+1} = \sum (a^{i_1}b^{j_1})\cdots(a^{i_{m+n+1}}b^{j_{m+n+1}})$, such that $i_k + j_k = 1$, $0 \leq i_k \leq 1$, $0 \leq j_k \leq 1$. It can be easily checked that a more than n or b more than min $(a^{i_1}b^{j_1})\cdots(a^{i_{m+n+1}}b^{j_{m+n+1}})$. Since $a^n, b^m \in I$ and I has the IFP, we have $(a^{i_1}b^{j_1})\cdots(a^{i_{m+n+1}}b^{j_{m+n+1}}) \in I$. Therefore $(a+b)^{m+n+1} \in I$ and $(a+b) \in \sqrt{I}$. Clearly \sqrt{I} has the IFP.

Lemma 2.6. Let *I* be a (α, δ) -compatible ideal of *R* and has the IFP. Then \sqrt{I} is a (α, δ) -compatible ideal of *R*.

Proof. It follows from Lemmas 2.3, 2.5.

Remark. Given α and δ as above and integers $0 \le i \le j$ and $a \in R$, let us write f_i^{j} for the set of all "words" in α and δ in which there are *i* factors of α and j-i factors of δ . For instance, $f_j^{j}(a) = \{\alpha^{j}(a)\}, f_0^{j}(a) = \{\delta^{j}(a)\}$ and $f_{j-1}^{j} = \{\alpha^{j-1}\delta(a), \alpha^{j-2}\delta\alpha(a), \dots, \delta\alpha^{j-1}(a)\}$.

Lemma 2.7. Let *I* be a (α, δ) -compatible ideal of *R* and has the IFP. Let $f(x) = a_0 + \dots + a_n x^n$, $g(x) = b_0 + \dots + b_m x^n \in R[x; \alpha, \delta]$ with $f(x)g(x) \in I[x; \alpha, \delta]$. Then $a_i b_j \in \sqrt{I}$ for each i, j.

Proof. Note that $f(x)g(x) = \sum_{i=0}^{n} \sum_{j=0}^{m} (a_{i}x^{i})(b_{j}x^{j})$. Then $a_n \alpha^n(b_m) \in I$, since it is the leading coefficient of f(x)g(x). Hence $a_n b_m \in I$, since I is α compatible. Thus $a_n f_i^{j}(b_m) \subseteq I$, for each $0 \le i \le j$, by Proposition 2.1. Since the coefficient of x^{m+n-1} is $a_n \alpha^n (b_{m-1}) + a_{n-1} \alpha^{n-1} (b_m) + a_n \delta(\alpha^{n-1} (b_m)) \in I$ and $a_n \delta(\alpha^{n-1}(b_m)) \in I$, we have $a_n \alpha^n(b_{m-1}) + a_{n-1} \alpha^{n-1}(b_m)$ $\in I$. Hence $a_n \alpha^n (b_{m-1}) b_m + a_{n-1} \alpha^{n-1} (b_m) b_m \in I$ and that $a_{n-1}\alpha^{n-1}(b_m)b_m \in \sqrt{I}$, since $a_n\alpha^n(b_{m-1})b_m \in \sqrt{I}$. Thus $a_{n-1}b_m \in \sqrt{I}$, by Lemmas 2.5 and 2.6, and that $a_n b_{m-1} \in \sqrt{I}$. Consequently, $a_{n-1} f_i^{j}(b_m) \cup a_n f_i^{j}(b_{m-1})$ $\subseteq \sqrt{I}$, for each $0 \le i \le j$. Coefficient of x^{m+n-2} is $a_n \alpha^n (b_{m-2}) + a_{n-1} \alpha^{n-1} (b_{m-1}) + a_{n-2} \alpha^{n-2} (b_m) + t$, where t is a sum of elements of $\bigcup_{0 \le i \le j} [a_n f_i^{j}(b_m) \cup a_{n-1} f_i^{j}(b_m) \cup a_n f_i^{j}(b_{m-1})].$ By a similar way as above, we can show that $a_n b_{m-2}, a_{n-1} b_{m-1}, a_{n-2} b_m \in \sqrt{I}$. Continuing this process, we can prove $a_i b_j \in \sqrt{I}$ for each i, j.

Lemma 2.8. Let *I* be a (α, δ) – compatible ideal of and has the IFP. Let $f(x) = a_0 + \dots + a_n x^n \in R[x; \alpha, \delta]$. If $a_0, \dots, a_n \in \sqrt{I}$, then $f(x) \in \sqrt{I[x; \alpha, \delta]}$.

Proof. Suppose that $a_i^{m_i} \in I$, for $i = 0, \dots, n$. Let $k = m_0 + \dots + m_n + 1$. Then $(f(x))^k = \sum (a_0^{i_{01}}(a_1x)^{i_{11}} \cdots (a_nx^n)^{i_{n1}}) \cdots (a_0^{i_{0k}}(a_1x)^{i_{1k}} \cdots (a_nx^n)^{i_{nk}}),$ $i_{0r} + \dots + i_{nr} = 1$, $r = 1, \dots k$, $0 \le i_{rs} \le 1$. Each coefficient of $(a_0^{i_{01}}(a_1x)^{i_{11}} \cdots (a_nx^n)^{i_{n1}}) \cdots (a_0^{i_{0k}}(a_1x)^{i_{1k}})$ $\cdots (a_nx^n)^{i_{nk}})$ is a sum of such elements $\gamma \in ((f_{r_{01}}^{s_{01}}(a_0))^{i_{01}} \cdots (f_{r_{n1}}^{s_{n1}}(a_n))^{i_{n1}}) \cdots ((f_{r_{0k}}^{s_{0k}}(a_0))^{i_{0k}} \cdots (f_{r_{nk}}^{s_{nk}}(a_n))^{i_{nk}})$. It can be easily checked that there exists $a_k \in \{a_0, \dots, a_n\}$ such that $i_{r_1} + \dots + i_{r_k} \ge m_r$. Since $a_t^{m_r} \in I$ and I has the IFP and is (α, δ) – compatible, we have $\gamma \in I$. Thus each coefficient of $(f(x))^k$

Theorem 2.9. Let *I* be a (α, δ) -compatible ideal of *R* and has the IFP. Then $I[x;\alpha,\delta]$ has the weakly IFP.

Proof. Let $f(x) = \sum_{i=0}^{m} a_i x^i$, $g(x) = \sum_{j=0}^{n} b_j x^j \in R[x;\alpha,\delta]$ such that $f(x)g(x) \in I[x;\alpha,\delta]$ and let $h(x) = \sum_{s=0}^{k} c_s x^s \in R[x;\alpha,\delta]$ be any element. By Lemma 2.7, $a_i b_j \in \sqrt{I}$ for each i, j. Hence $a_i f_p^{-q}(c_s) f_r^{-i}(b_j) \subseteq \sqrt{I}$ for each i, j, $0 \le p \le q$, $0 \le r \le t$, by Lemma 2.5 and Proposition 2.1. Note that each coefficient of f(x)h(x)g(x) is a sum of such elements $\gamma \in \bigcup_{0 \le p \le q} \bigcup_{0 \le r \le t} a_i f_p^{-q}(c_s) f_r^{-i}(b_j)$. Thus $f(x)h(x)h(x) \in \sqrt{I[x;\alpha,\delta]}$ by Lemma 2.8. This means that $I[x;\alpha,\delta]$ has the weakly IFP.

Corollary 2.10. Let *R* be a (α, δ) – compatible ring and has the IFP. Then $R[x; \alpha, \delta]$ has the weakly IFP.

Corollary 2.11. ([13], Theorem 3.1) Let *R* be a α – compatible ring and has the IFP. Then $R[x;\alpha]$ has the weakly IFP.

Recall that for a ring *R* with an injective ring endomorphism $\alpha: R \to R$, $R[x;\alpha]$ is the Ore extension of *R*. The set $\{x^i\}_{i\geq 0}$ is easily seen to be a left Ore subset of $R[x;\alpha]$, so that one can localize $R[x;\alpha]$ and form the skew Laurent polynomials ring $R[x,x^{-1};\alpha]$. Elements of $R[x,x^{-1};\alpha]$ are finite sum of elements of the form $x^{-j}rx^i$ where $r \in R$ and i, jare non-negative integers. Multiplication is subject to $xr = \alpha(r)x$ and $rx^{-1} = x^{-1}\alpha(r)$ for all $r \in R$.

Now we consider D.A. Jordan's construction of the ring $A(R,\alpha)$ (See [8], for more details). Let $A(R,\alpha)$ or A be the subset $\{x^{-i}rx^i \mid r \in R, i \ge 0\}$ of the skew Laurent polynomials ring $R[x, x^{-1}; \alpha]$. For each $j \ge 0$, $x^{-i}rx^{i} = x^{-(i+j)}rx^{(i+j)}$. It follows that the set of all such elements forms a subring of $R[x, x^{-1}; \alpha]$ with $x^{-i}rx^{i} + x^{-j}sx^{j} = x^{-(i+j)}(\alpha^{j}(r) + \alpha^{i}(s))x^{(i+j)}$ and $(x^{-i}rx^{i})(x^{-j}sx^{j}) = x^{-(i+j)}\alpha^{j}(r)\alpha^{i}(s)x^{(i+j)}$ for r,s $\in R$ and $i, j \ge 0$. Note that α is actually an automorphism of $A(R,\alpha)$. We have $R[x,x^{-1};\alpha]$ $\cong A[x, x^{-1}; \alpha]$, by way of an isomorphism which maps $x^{-i}rx^{j}$ to $\alpha^{-i}(r)x^{j-i}$. For an α - ideal I of R, put $\Delta(I) = \bigcup_{i>0} x^{-i} I x^i$. Hence $\Delta(I)$ is α - ideal of A. The constructions $I \to \Delta(I)$, $J \to J \cap R$ are inverses, so there is an order-preserving bijection between the sets of α - invariant ideals of R and α - invariant ideals of A. For an ideal I of R, put $J_i = \{r \in R \mid x^{-i} r x^i \in J\}$ for $i \ge 0$.

Theorem 2.12. Let α be a monomorphism of a ring R.

(i) If *I* is a α - compatible ideal of *R* and has the (weakly) IFP, then $\Delta(I)$ is a α - compatible ideal of *A* and has the (weakly) IFP.

(ii) If *J* is a α – compatible ideal of *A* and has the (weakly) IFP, then $J = \Delta(J_0)$ and J_0 is a α – compatible ideal of *R* and has the (weakly) IFP.

Proof. (i) Let *I* be a α -compatible ideal of *R*. Hence $\Delta(I)$ is an ideal of *A*. Now, let $(x^{-i}rx^i)(x^{-j}sx^j) \in \Delta(I)$. Hence $x^{-(i+j)}\alpha^j(r)\alpha^i(s)x^{(i+j)}$ $\in \Delta(I)$ and that $\alpha^{j}(r)\alpha^{i}(s) \in I$. Thus $\alpha^{j}(r)\alpha^{i+1}(s) \in I$, since I is α -compatible. Consequently $(x^{-i}rx^{i})\alpha(x^{-j}sx^{j}) \in \Delta(I)$. Therefore $\Delta(I)$ is α -compatible. Now, assume $(x^{-i}rx^{i})(x^{-j}sx^{j}) \in \Delta(I)$. Then $\alpha^{j}(r)\alpha^{i}(s) \in I$. Hence $\alpha^{j+t}(r)\alpha^{i+t}(s) \in I$ for each $t \ge 0$. Since I has the weakly IFP, so for each $a \in R$ and each $t \ge 0$, there exists n > 0 such that $(\alpha^{j+t}(r)\alpha^{i+t}(a)\alpha^{i+t}(s))^{n} \in I$. Therefore $((x^{-i}rx^{i})(x^{-i}ax^{t})(x^{-j}sx^{j}))^{n} \in \Delta(I)$. Consequently $\Delta(I)$ has the weakly IFP.

(ii) Let $r \in J_0$. Then $\alpha^n(r) \in J_0$ for each $n \ge 0$. Hence $\alpha^n(x^{-n}rx^n) = r \in J$ for each $n \ge 0$. Thus $x^{-n}rx^n \in J$, since J is α -compatible. Therefore $\Delta(J_0) \subseteq J_0$. Now, let $x^{-m}rx^m \in J$. Then $\alpha^m(x^{-m}rx^m) \in J$ and that $r \in J$, since J is α -compatible. Thus $J \subseteq \Delta(J_0)$. Consequently, $J = \Delta(J_0)$. Clearly J_0 has the weakly IFP.

Note that if I is a α - ideal of R, then $I[x, x^{-1}; \alpha]$ is an ideal of the skew Laurent polynomials ring $R[x, x^{-1}; \alpha]$. By a similar way as in the proof of Lemmas 2.7, 2.8 and Theorem 2.9 one can prove the following results.

Lemma 2.13. Let *I* be a α – compatible ideal of *R* and has the IFP. Let α be an automorphism of *R*. Let $f(x) = a_r x^r + \dots + a_n x^n$, $g(x) = b_s x^s + \dots + b_m x^m \in R[x, x^{-1}; \alpha]$ with $f(x)g(x) \in I[x, x^{-1}; \alpha]$. Then $a_i b_j \in \sqrt{I}$ for each i, j.

Lemma 2.14. Let *I* be a α – compatible ideal of *R* and has the IFP. Let α be an automorphism of *R*. Let $f(x) = a_r x^r + \dots + a_n x^n \in R[x, x^{-1}; \alpha]$. If $a_r, \dots, a_n \in \sqrt{I}$, then $f(x) \in \sqrt{I[x, x^{-1}; \alpha]}$.

Proposition 2.15. Let *I* be a α – compatible ideal of *R* and has the IFP. Let α be an automorphism of *R*. Then $I[x, x^{-1}; \alpha]$ has the weakly IFP.

Theorem 2.16. Let *I* be a α – compatible ideal of *R* and has the IFP. Let α be a monomorphism of *R*. Then $I[x, x^{-1}; \alpha]$ has the weakly IFP.

Proof. Since *I* is α – compatible and has the IFP, so $\Delta(I)$ is α – compatible and has the IFP, by Theorem

2.12. Since $I[x, x^{-1}; \alpha] \cong \Delta(I)[x, x^{-1}; \alpha], R[x, x^{-1}; \alpha]$

 $\cong A[x, x^{-1}; \alpha]$ and α is an automorphism of A, the result follows from Proposition 2.15.

Corollary 2.17. Let *R* be a α – compatible ring and has the IFP. Let α be a monomorphism of a ring *R*. Then the skew Laurent polynomials ring $R[x, x^{-1}; \alpha]$ has the weakly IFP.

Proof. It follows from Theorem 2.16.

Corollary 2.18. If *R* has the IFP, then Laurent polynomials ring $R[x, x^{-1}]$ has the weakly IFP.

Acknowledgements

The author thanks the referee for his/her helpful suggestions. This research is supported by the Shahrood University of Technology.

References

- 1. Anderson D.D. and Camillo V. Armendariz rings and Gaussian rings. *Comm. Algebra*, **26**(7): 2265-2275 (1998).
- 2. Bell H. E. Near-Rings in which each element is a power of itself. *Bull. Australian Math. Soc.*, **2**: 363-368 (1973).
- Hashemi E. and Moussavi A. Polynomial extensions of quasi-Baer rings. *Acta Math. Hungar.*, **107**(3): 207-224 (2005).
- 4. Hong C.Y., Kwak T.K., and Rizvi S.T. Rigid Ideals and

Radicals of Ore Extensions. *Algebra Colloq.*, **12**(3): 399-412 (2005).

- Hong C.Y., Kim N.Y., Kwak T.K., and Lee Y. Extensions of zip rings. J. Pure Appl. Algebra, 195: 231-242 (2005).
- Huh C., Lee Y., and Smoktunowicz A. Armendariz rings and semicommutative rings. *Comm. Algebra*, **30**(2): 751-761 (2002).
- Huh C., Kim H.K., and Lee Y. P.P.-rings and generalized P.P.-rings. J. Pure Appl. Algebra, 167: 37-52 (2002).
- 8. Jordan D.A. Bijective extension of injective ring endomorphisms. *J. London Math. Soc.*, **35**(2): 435-488 (1982).
- 9. Kim N.K. and Lee Y. Armendariz rings and reduced rings. J. Algebra, 223: 477-488 (2000).
- Kim N.K. and Lee Y. Extensions of reversible rings. J. Pure Appl. Algebra, 185: 207-223 (2003).
- Krempa J. Some examples of reduced rings. Algebra Collog., 3(4): 289-300 (1996).
- Krempa J. and Neiwieczerzal D. Rings in which annihilators are ideal and their application to semigroup ring. Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys., 25: 851-856 (1977).
- 13. Liang L., Wang L., and Liu Z. On a generalization of semicommutative rings, to appear in Taiwanese Journal of Mathematics.
- Mason G. Reflexive ideals. Comm. Algebra, 9: 1709-1724 (1981).
- 15. Passman D.S. *The Algebraic Structure of Group Rings*. Wiley, New York (1977).