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Abstract 

In this paper, we prove the strong uniform consistency and asymptotic 

normality of the kernel density estimator proposed by Jones [12] for length-biased 

data.The approach is based on the invariance principle for the empirical processes 

proved by Horváth [10]. All simulations are drawn for different cases to 

demonstrate both, consistency and asymptotic normality and the method is 

illustrated by real automobile brake pads data. 
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Introduction 

Given a distribution function (d.f.) ,F  we say a 

random variable (r.v.) Y  has the length-biased 

distribution of F  if the d.f. of Y  is given by 

0

1
( ) = ( ), 0,

t

G t xdF x t


  (1.1) 

where 
0

= ( ),xdF x


  and   is assumed to be finite. 

In the case that F  has a density ,f  with respect to the 

Lebesgue measure, (1.1) can be written as 

0

1
( ) = ( ) ,

t

G t xf x dx
 

 

and hence the density of Y  is given by 

( )
( ) = , 0.

tf t
g t t


  

The phenomenon of length-bias was first tackled in 

the context of anatomy by Wicksell [26] as what he 

called the corpuscle problem. Length-biased sampling 

was later systematically studied by McFadden [15], 

Blumenthal [3], then by Cox [6], in the context of 

estimation of the distribution of fiber lengths in a fabric. 

Length-biased data arise in many practical situations, 

including econometrics, survival analysis, renewal 

processes, biomedicine and physics. For instance, if X  

represents the length of an item and the probability of 

this item selected in the sample is proportional to its 

length, then the distribution of the observed length is 

length-biased. In cross-sectional studies in survival 

analysis, e.g. often the probability of being selected, for 

a particular subject, is proportional to his/her survival 

time. Interesting applications of length-biased data can 

be found in Cox [6], Patil and Rao [18, 19],Chen, et. al 

[5], Colman [4], Huang and Qin [11] and Vardi [24]. 

The distribution function,G , is from a slightly 

different perspective, the distribution of the randomly 
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left truncated r.v.’s Y , in the stationary assumption. If 

the incidence rate of the event has not changed over 

time, a stationary assumption might reasonably describe 

the incidence of the event.This is equivalent to assume 

that the randomly left truncation induced by the 

sampling is uniform (Wang, [25]). 

Throughout this paper, we assume that G  is 

continuous on = [0, ), R  from which it follows that 

F  is also continuous. An elementary calculation shows 

that F  is determined uniquely by ,G  namely 

1

0
( ) = ( ), 0.

t

F t y dG y t    

Let 1, , nY Y  be a sample from .G  The empirical 

estimator of F can be written in the form of 

1

0
( ) = ( ),

t

n n nF t y dG y 

  (1.2) 

where 

1 1

0
= ( ).n ny dG y


 

  

nG  is an empirical estimator of G given by 

=1

1
( ) = ( ),

n

n i

i

G t I Y t
n

  

where ( )I A  denotes the indicator of the event A. 

The kernel estimator of a real univariate density 

function f introduced by Rosenblatt [20] is 

=1

1
( ) = ,

n
i

n

i n n

t X
f t K

nh h

 
 
 

  

where 1, , nX X  are independent observations from 

,f K  is a kernel function and nh  is a sequence of 

(positive) “bandwidths” tending to zero as .n   

Parzen [17] showed that under some mild smoothness 

conditions on K  (and f ), ( )nf t  is in any respect a 

consistent estimator of ( )f t  for each .t R  The weak 

and strong uniform consistency properties of nf  have 

been considered by several authors, including Nadaraya 

[16], Schuster [21] and Van Ryzin [23]. In these papers 

the condition placed on the bandwidth for the strong 

uniform consistency includes 
2exp( ) <ncnh   for 

all positive .c  Silverman [22] established the strong 

uniform consistency for nf f  using the strong 

approximation technique developed by Komlós, et al. 

[13] for the ordinary empirical process. Bhattacharyya, 

et al. [2] proposed the following estimator for length-

biased data 1, , nY Y  

*

=1

1
( ) = .

n
n i

n

i n n

t Y
f t K

t nh h

  
 
 

  (1.3) 

Where ( )K   is asymmetric kernel function and 

{ , 1}nh n   is a sequence of positive bandwidths 

satisfying 0nh   and nnh   as n  , which 

controls the degree of smoothness of the estimator. 

They proved consistency and asymptotic normality for 
*.nf  Jones [12] proposed the following estimator 

=1

1
( ) = ,

n
n i

n

in i n

t Y
f t K

nh Y h

  
 
 

  (1.4) 

which has various advantages with respect to (1.3). It is 

a probability density function, it is particularly better 

behaved near zero, it has better asymptotic mean 

integrated squred error properties and it is more readily 

extendable to related problems such as density 

derivative estimation. 

An interesting overview of nonparametric 

contributions to the literature on estimating problems 

when the observations are taken from weighted 

distributions can be found in Cristóbal and Alcalá [7]. 

The asymptotic results on sharp minimax density 

estimation for length-biased data were derived by 

Efromovich [8]. By using rejection sampling 

techniques, Guillamónet, et al. [9] gave an alternative 

estimator for the density function f. Ajami, et al. [1] also 

estimated the bandwidth parameter according to a 

Bayesian approach. They proved the strong consistency 

of the estimator (1.4) by applying Bayesian length-

biased and compared Bayesian and the cross validated 

least square for estimate of the length-biased together 

via some simulation studies. 

By equation (1.2),  it is easy to see that 

1
( ) = ( ).n n

n n

t u
f t K dF u

h h

 
 
 

  (1.5) 

This paper tries to study the strong uniform 

consistency as well asasymptotic normality of the kernel 

density estimator proposed by Jones [12]. Our 

approach,first of all, is applying a strong approximation 

technique to establish the strong uniform consistency 

and asymptotic normality of ,n nf f  where 

0

1
( ) = ( ).n

n n

t s
f t K dF s

h h
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Now, for the sake of simplicity, the assumptions 

used in this paper are as follows. 

Assumptions 

1. The kernel function K  is symmetric, of bounded 

variation on ( 1,1) . In addition , ( ) = 0K t  if ( 1,1)t    

and satisfies the following conditions: 

1

1
( ) = 1,K t dt

  

1

1
( ) = 0,tK t dt

  

1
2

1
( ) = 0,t K t dt m


  

1

1
| ( ) |= < .KdK t V


  

2. := inf[ : ( ) 1] <t F t    

3. 
2 1/

0
( ) < ,ru G u du


   for some > 2r . 

4. ( ) = ( )  0.f t O t as t   

This paper is organized as follows. In the next 

section, we recall some important and useful results in 

the length-biased model and prove a necessary modulus 

of continuity of the Gaussian process for proving the 

main results. In the main results section, we provide 

some asymptotic behaviors of the suggested estimator 

of kernel density estimator (1.5). Some simulations are 

drawn to grant further support of our theoretical results 

regarding to the consistency as well as the asymptotic 

normality. Besides there are some results illustrated by 

the real data in the application section. Finally, the 

proofs of the main results are postponed to in the proofs 

section, where some auxiliary results are also proved. 

Preliminaries 

Strong approximation for ( ) = [ ( ) ( )]n nt n F t F t   

will be derived from the well-known approximations of 

the empirical process 

( ) = [ ( ) ( )], 0.n nt n G t G t t    

Without loss of generality, we can assume that our 

probability space ( , , )P A  is so rich that the 

approximation 

1

22

0

| ( ) ( , ) |= (log ) . .,sup n
t

t k t n O n n a s




 
  

 
 

of Komlós, et al. [13] holds, where ( , )k t n  is a two 

parameter Gaussian process with zero mean and 

covariance function 

1/2[ ( , ) ( , )] = ( ) ( )[ ( )

( ) ( )] ( = min( , )).

E k x n k y m mn m n G x y

G x G y a b a b

  

 
 

Using ( , )k t n , Horváth [10] defined the process 

( , )B t n  to approximate n , such that 

1 1

0 0
( , ) = ( , ) ( ) ( , ).

t

B t n y dk y n F t y dk y n 


    

It is easy to check that { ( , ),0 < , 1}B t n t n    is a 

Gaussian process with zero mean and covariance 

function 

1/2

[ ( , ) ( , )]

( ) ( )[ ( )

( ) ( ) ( ) ( ) ( ) ( ) ],

E B x n B y m

mn m n x y

F x y F y x F x F y



  

  

  

 (2.1) 

where 

2 2

0
( ) = ( ),

t

t y dG y  

  

and 

2 2

0
= ( ) = ( ).lim

t

t y dG y  





  

Let { ( , ), , 0}W u v u v   denoting a two-parameter 

Wiener process. By (2.1) the following representation 

holds 

1/2{ ( , ), 0, 1}={ ( ( ), )

( ) ( , ), 0, 1},

n B t n t n W t n

F t W n t n





 

  

D

 (2.2) 

where 
D

 denotes an equal in distribution. 

 

Theorem 1. (Horváth, [10]) Suppose the Assumption 

(3) is satisfied. On a suitably enlarged probability space, 

there exists a two-parameter mean zero Gaussian 

process { ( , ),0 < , 1}B t n t n    with covariance (2.1), 

such that 

0 <

| ( ) ( , ) |= ( ) . .,sup n
t

t B t n O n a s 

 

  

for any 0 < < 1/ 2 1/ r  , and some > 2r .  

To study the strong consistency of ,nf  we have also 

need to study the modulus of continuity of the 

approximating process ( , ).B u n  In the following 
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lemma, we prove the global modulus of continuity of 

the Gaussian process ( , ).B u n  

 

Lemma 1. Let { }nh  be a sequence of positive 

bandwidth for which 0nh   as n  . Suppose the 

Assumption (4)  holds. Then, we have 

 1

0 1 1

| ( , ) ( , )|= log . .sup sup n n n
t u

B t uh n B t n O h h a s




    

   

 

Proof. Since 

 

( , )
;0 < , 1 =

( );0 < , 1 ,n

W x n
x n

n

W x x n

 
   

 

  

D

 (2.3) 

where ( )nW x  is a sequence of standard Wiener 

processes. According to (2.2), it is enough to show that, 

 

0 1 1

1

| ( ( )) ( ( )) |sup sup

= log . .,

n n n
t u

n n

W t uh W t

O h h a s



 
    



 

 (2.4) 

and 

0 1 1

( , )
| ( ) ( ) || |sup sup

= ( ) . .

n
t u

n

W n
F t uh F t

n

O h a s





    

 
 (2.5) 

Let [0, ]t   and 
0

= ( ).supf t
M f t

 
 By the 

boundedness of f  on [0, ] , it follows for the Mean 

Value Theorem that | ( ) ( ) | .n f nF t uh F t M h    So, we 

have (2.5).  

To prove (2.4),  first note that 

( )
2 2

( )

( )
1

( )

( ) ( ) = ( )

= ( ).

t t uh
n

n
t t uh

n

t t uh
n

t t uh
n

t uh t y dG y

y dF y

  



 


 

 


 

  



 

By Assumption (4), for [ 1,1]u    

| ( ) ( ) | ,n nt uh t Ch     

where C is a positive constant. Moreover, 

0 1 1

| ( ( )) ( ( )) |sup sup n n n
t u

W t uh W t


 
    

    

 1

0 0

| ( ) ( )|= log . .,sup sup n n n n
x y Ch

n

W x y W x O h h a s




   

   

where the last equality is proved along the line of the 

equation (2.4)  of Zhang [27]. So, we obtain (2.4).  

Now, by (2.3), (2.4)  and (2.5),  we get the result.  

Results 

1- Strong Uniform Consistency 

In the following theorem, we prove strong uniform 

consistency of .nf  

 

Theorem 2. Let nh  be a sequence of positive 

bandwidths tending to zero as .n   Assumptions 

(1) - (4)  hold and 

1

2

log
0 ,

n

n
as n

n h


   (3.1) 

for any 0 < < 1/ 2 1/ r  , and some > 2r . Then 

0

| ( ) ( ) |= 0 . .suplim n
n t

f t f t a s
  

  

 

Proof. See Section 4.  

 

Remark 1. If the bandwidth nh  is chosen to be 

~nh n    with > 0  and 
1

0 < < ,
2

   then 

condition (3.1) is satisfied. 

2- Asymptotic Normality 

In the following theorem, we study the asymptotic 

normality of .nf  

 

Theorem 3. Suppose f  is continuous at (0, ]t   and 

Assumptions (1)-(3) are fulfilled. Let 0nh   and 

2

nn h   as ,n   for any 
1 1

0 < < ,
2 r

   for 

some > 2.r  

Then for 
(0, ]t 

 

2[ ( ) ( )] (0, ( )) ,n n nnh f t f t N t as n  
D

 

where 

1
2 2

1

( )
( ) = ( ) .

f t
t K u du

t




  (3.2) 

Proof. See Section 4.  
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Corollary 1. In addition to the conditions in Theorem 3, 

if f has a bounded derivative in a neighborhood of t and 
3 0nnh   as ,n   then 

2[ ( ) ( )] (0, ( ))n nnh f t f t N t 
D

 (3.3) 

 

Proof. Suppose | ( ) | tf s M   for any s in a 

neighborhood of t, where tM  is a constant depending 

only on t Applying the Mean Value Theorem with 

(min( , ),max( , ))n n nt t h u t t h u     gives 

( ) ( )nnnh f t f t  

     
1

1
= ( )[ ( ) ( )]n nnh K u f t h u f t du


   

     
1

1
= ( )[ ( )( )]n n nnh K u f h u du


   

     
1

3/2

1
| ( ) | 0,t nM nh uK u du


   (3.4) 

as .n   Combining (3.4) and Theorem 3 completes 

the proof.  

 

Corollary 2. Using Corollary 1, it is possible to 

construct confidence interval for ( ).f t  A plug-in 

estimate 

1
2 2

1

( )
( ) := ( )n n

n

f t
t K u du

t




  

of the asymptotic variance 2( )t  can be easily obtained 

using (1.4). This estimator is consistent and yields a 

confidence interval of asymptotic level 1   for ( )f t  

namely, 

1 1
2 2

( ) ( )
[ ( ) , ( ) ],n n

n n

n n

t t
f t z f t z

nh nh
 

 

 
   (3.5) 

where 
1

2

z 


 denotes the (1 )
2


 -quantile of a standard 

normal distribution. 

 

Corollary 3. In addition to the conditions in Theorem 3, 

if f  satisfies 

| ( ) ( ) | | |tf t h f t C h     

for any h  in a neighborhood of 0, where [0,1]  and 

tC  depends only on t and if 1 2 0nnh    as ,n   

then we get 

2[ ( ) ( )] (0, ( )),n nnh f t f t N t 
D

 

where 2( )t  is given by (3.2). 

 

Proof. As ,n   

| ( ) ( ) |nnnh f t f t  

     
1

1
= ( )[ ( ) ( )]n nnh K u f t h u f t du


   

     
1

1 2

1
| ( ) | 0.t nC nh uK u du


   

It is completed The proof.  

 

Remark 2. The following corollary is the same as 

Proposition 5 of Guillamón, et al. [9]. They used 

assumption 2( ) <E Y    which is slightly weaker than 

Assumption (3). 

 

Corollary 4. In addition to the conditions in Theorem 3, 

if 
1

>
10

  and f  is twice continuously differentiable in 

a neighborhood of t and the bandwidth nh  satisfies 
1/5= ( )nh O n   as ,n   then, we have 

2 2

( ( ) ( )

1
( ) ) (0, ( )) ,

2

n n

n

nh f t f t

h f t m N t n



  
D

 

where m is given in Assumptions (1). 

 

Proof. Applying a two-term Taylor expansion gives, as 
,n   

21
( ) ( ) ( )

2
nn nnh f t f t h f t m   

     
1

5/2 2

1

1
= ( ) ( ) ( )

2
n nnh u K u f du f t m


   

     
1

5/2 2

1

1
= ( )[ ( ) ( )]

2
n nnh u K u f du f t du


   

     
1

5/2 2

1

1
| ( ) || ( ) ( ) |

2
n nnh u K u f du f t du


    

     0,  (3.6) 

where (min( , ),max( , )).n n nt t h u t t h u     The proof 

is complete by combining (3.6) and Theorem 3. 



Vol. 24  No. 1  Winter 2013 Ajami et al. J. Sci. I. R. Iran 

60 

Application 

This section has two parts: The first part shows the 

behavior of the Jones’ estimator for strong consistency 

and asymptotic normality and the second one deals with 

kernel density estimator and confidence bound for the 

real data. 

1- Simulation 

Having illustrated the behavior of the proposed 

method, here we present the results of a preliminary 

small-sample simulation study, especially those of 

Monte Carlo method. 

In order to check the consistency of the Jones’ 

estimator (1.4), first the graphs of unbiased density 

function f and the Jones’ estimator are demonstrated in 

the same figure. Besides, it is supposed that the data are 

emanated from an unbiased model with underlying 

Gamma density function ( ) , 0,tf t t e t 
 
thus the 

length-biased density is 2( ) / 2, 0.tg t t e t   The 

estimator of   is taken to be 1 1

1

ˆ = ( ) .
n

n i

i

n Y  



  

Obviously, the density ( )f t  satisfies the assumption (4) 

.For this simulation study, a sample of size 100 is taken. 

The Epanechnikov kernel function 

2

( 1,1)

3
( ) (1 ) ( ), 0,

4
K t t I t t    (4.1) 

is used to construct a density estimator. It should be 

noticed that applied the Epanechnikov kernel (4.1) 

satisfies the assumption (1). Bandwidth parameter is 

chosen based on the least square cross validation 

method discussed in [1]. According to the Figure 1, the 

Jones’ estimator can estimate the density function ( )f   

properly. 

Now we consider the asymptotic normality property. 

Following this purpose, corresponding histogram and 

Q-Q-normal plots are illustrated. Besides by applying 

simulation and nonparametric Kolmogorov-Smirnov 

test we show that 
[ ( ) ( )]

( )

n nnh f t f t

t



 

at 2t   has 

asymptotically standard Normal distribution, where 

1
2 2

1

( )
( ) = ( ) .

f t
t K u du

t




  Farther more, assume the 

data emanating from the length-biased model, with 

underlying Gamma density function 
2( ) / 2, 0,tg t t e t   

and sample size n=100. 

Bandwidth parameter is 
2

5 ,nh n


  which satisfies the 

conditions of Theorem 3 and Corollary 1. The kernel 

(4.1) is also used. According to the histograms and Q-

Q-normal plots, we trivially notice that 

[ (2) (2)]

(2)

n nnh f f




 has asymptotically standard 

Normal disribution. Furthermore Kolmogorov-Smirnov 

test gives the respective p-values (0.318) which suggests 

not to reject the Normality distribution. 

2- Real Data 

According to the length-biased lifetime data of 98 

automobile brake pads (in 1000-km units) [13], the 

unbiased density function f (.) is estimated. By 

employing (3.3), construct a 95% asymptotic confidence 

band for the true density defined as (3.5). The proposed 

estimator (1.4) can be applied to this data set with n=98. 

The applied bandwidth is achieved by a subjective 

selection method and the Epanechnikov kernel function 

defined in (4.1) is employed. Figure 3 reports the 

estimate and associated 95% confidence bands for the 

true density (3.5) and it proposes that the density of 

unbiased population may be generated from a Gamma 

distribution function. 

Proofs 

In order to make the proof easier, we need some 

auxiliary results and notations. The first result gives a 

uniform consistency of .nnf f  

 

Lemma 2. Assuming the same conditions as in 

Theorem 2, we have 

0

| ( ) ( ) |= 0 . .suplim nn
n t

f t f t a s
  

  

Proof. By equation (1.5) and according to Theorem 1, 

there exists a Gaussian process ( , )B t n  such that, for 

large n and [0, )t   , we have 

0

1
( ) ( ) = ( )n n n

nn

t x
f t f t x dK

hnh

  

   
 

  

1

1

1

1

1
= ( , ) ( ) . .

1
[ ( , ) ( , )] ( ) . .

n

n n

n

n n

n
B t uh n dK u O a s

nh nh

n
B t uh n B t n dK u O a s

nh nh
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Now Lemma 1, and (3.1)  complete the proof.  

 

Proof of Theorem 2. Since f  is continuous on [0, ],  

f  is uniformly continuous on [0, ],  hence by the 

dominated convergence theorem, it can be shown that 

0

| ( ) ( ) |= 0.suplim n
n t

f t f t
  

  

Therefore, Theorem 2 is a straightforward 

consequence of Lemma 2 and the equality 

= .n n n nf f f f f f      

To prove the Theorem 3, first we introduce some 

further notations. Let { ( ), 0}W t t   be a standard 

Wiener process and 

1

1

1
( ) = ( ( ), ) ( )n n

n

A t W t uh n dK u
nh




  

1

1

1
( ) = [ ( ) ( )] ( , ) ( )n n

n

B t F t uh F t W n dK u
nh




    

0

1
( ) = ( ) ( )n

nn

t u
C t K u dW u

hh


  
 

 
  

Proof of Theorem 3. By equation (1.2) and according 

to Theorem 1, there exists a Gaussian process ( , )B t n  

such that, for large n and (0, ]t  , we have 

0

1

1

[ ( ) ( )]

1
= [ ( ) ( )]

1
( ) ( )

n n n

n

nn

n

n n

nh f t f t

t x
n F x F x dK

hh

n
B t uh dK u O

h h











 
   

 

 
    

 
 





 (4.1)

 

By (2.2), for each n, 

1

1

1
( , ) ( ) ( ) ( ).

D

n n n

n

B t uh n dK u A t B t
h 

    

To prove the theorem, it is enough to show that 
1

2( ) = ( )n p nB t O h  and 
2( ) (0, ( )),nA t N t

D

 then 

applying of Slutsky’s Theorem completes the proof. 

Since f is continuous at t, f is bounded in a 

neighborhood of t, i.e., there exists a constant tM  such 

that ( ( ))n tf u M   uniformly for u in ( 1,1).  Hence, 

| ( ) | | ( , ) | /n n t KB t h M V W n n  

and 

2
| ( ) | ,n n t KE B t h M V




  (4.3) 

 

 

Figure 1. Unbiased density function (solid line)  

and Jones’ estimator (dashed line). 

 

 

 

Figure 2. Histogram and Normal Q-Q plots for simulation 

data from Length-biased sampling of gamma distribution. 

 

 

 

Figure 3. Kernel density estimator and confidence bounds  

for the lifetime of automobile brake pads. 
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which implies that for each fixed 0t   

1

2( ) = ( ).n p nB t O h  

Now, let 

1
2 2

1
( ) = ( ( )) = ( ) ( ) .n n nt Var C t K u t h u du 


   

By the continuity of f at tit can be shown that 

2lim ( ( )) = ( ).n
n

Var C t t


 (4.4) 

Since ( )nC t  is a normal random variable with mean 

0 and variance 2( )n t , it follows from (4.4)  and 

Slutsky’s Theorem that 

2( ) (0, ( )).nC t N t
D

 (4.5) 

Furthermore, since ( )= ( )n nA t C t
D

 for each n, (4.5) 

implies that 

2( ) (0, ( )).nA t N t
D

 (4.6) 

Combining (4.1), (4.2), (4.3), and (4.6) completes the 

proof of Theorem 3.  
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