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Abstract 

This paper deals with continuous frames and continuous Riesz bases. We 

introduce continuous Riesz bases and give some equivalent conditions for a 

continuous frame to be a continuous Riesz basis. It is certainly possible for a 

continuous frame to have only one dual. Such a continuous frame is called a 

Riesz-type frame [13]. We show that a continuous frame is Riesz-type if and only 

if it is a continuous Riesz basis. Finally we find a measure with respect to which, a 

continuous wavelet frame is a continuous Riesz basis. 
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Introduction 

The study of frames and Riesz bases has been an 

active area of functional and harmonic analysis on the 

one hand, as well as physics, engineering, computer 

science, signal and image processing etc., on the other 

hand. Due to the wide variety of applications, there has 

been a great influx of researchers into the subject in 

different approaches, cf. [4, 5, 6, 7, 11, 22]. The notion 

of continuous frames was introduced by Kaiser in [17] 

(which was called generalized frames) and was 

developed by several authors [2, 3, 13, 16, 20] in 

different aspects. The strong motivation to study 

continuous frames is that the windowed Fourier 

transform and the continuous wavelet transform are 

both their special cases. The reader is referred to [1, 9, 

12, 14, 15] for a detailed account of windowed Fourier 

transform and wavelet transform. In [13] the authors 

have studied some properties of continuous frames. 

Also they have introduced and characterized a kind of 

continuous frame which possesses only one dual, called 

Riesz-type frame. In this paper we study continuous 

Riesz bases and continuous orthonormal bases as an 

extension of the discrete setting. We stress that the 

concepts and results contained in this paper have led to 

various important applications in frame and wavelet 

theory. Such a unified approach is useful, since it helps 

us obtain some equivalent conditions for a continuous 

frame to be a continuous Riesz basis. It is also 

beneficial to study continuous wavelet transform as an 

outstanding example of a continuous frame which is not 

in general a continuous Riesz basis. 

This paper is organized as follows. In this section we 

recall the basic definitions, fix the notation and obtain a 

few results which are needed in the forthcoming 

sections. In Section 2, we introduce the notion of 
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continuous Riesz basis with the aid of which, we give 

several equivalent conditions for a continuous frame to 

be a continuous Riesz basis. We then show that 

continuous Riesz bases are equivalent to Riesz type 

frames as defined in [13]. We shall further introduce 

and discuss continuous exact frames and prove that it is 

necessary for a continuous Riesz basis to be a 

continuous exact frame. In the last section, we define a 

continuous orthonormal basis and study its properties. 

As an application, we focus on continuous wavelet 

transform as a well known example of a continuous 

frame (continuous wavelet frame), which is not in 

general a continuous Riesz basis. Finally, we present a 

measure with respect to which, a continuous wavelet 

frame is a continuous Riesz basis. 

Throughout this paper we assume that ( , )  is a 

measure space and H  is a Hilbert space. A mapping 

:F H is called a continuous frame with respect to 

( , )  if F  is weakly measurable, i.e. , ( )f F    is 

a measurable function on   and there exist two 

constants , > 0A B  such that  

2 1/2( | , ( ) | ( )) ,A f f F d B f  


     (1) 

for every f H  [13]. 

The optimal constants A  and B  are called lower 

and upper frame bounds, respectively. A continuous 

frame F  is said to be tight if we can take =A B . If 

= =1A B  it is called a continuous Parseval frame. The 

mapping F  is called Bessel if the right inequality in (1) 

holds. 

Suppose that F  is a Bessel map with bound B  and 
2( )L   . Then ( ) ( ) ( )F d    

  defines an 

element of H . In fact, 

2: ( ) ; = ( ) ( ) ( ).T L T F d     


  H  (2) 

is a bounded linear operator, called the synthesis 

operator. It is surjective and bounded if and only if F  

is a continuous frame. The continuous frame operator is 

defined to be *:=S TT  and it is invertible as well as 

positive [13]. 

 

Definition 1.1. We denote by 2 ( , , )L  H  the set of all 

mappings :F H such that for all f H , the 

functions < , ( ) >w f F w  defined almost everywhere on 

 , belong to 2 ( )L  . We abbreviate 2( , , )L  H  to 
2( , )L  H  and we consider two elements of 2( , )L  H  

the same, when they are equal almost everywhere. So 

for 2, ( , )F G L  H  the equality =F G  means that for 

every f H , , ( ) = , ( )f F f G      for almost all 

 . 

A Bessel mapping :F H is called  -complete 

if 

2{ ( )} := { ( ) ( ) ( ); ( )}cspan F F d L      


   

is dense in H . 

It is easily seen that a mapping :F H is Bessel 

if and only if for all f H , 
2| , ( ) | <f F d 


   . It 

is worthwhile to mention that if :F H is  -

complete, then { ( )}F    is a complete subset of H . 

The converse is also true when 0 < ({ }) <    for all 

 , since { ( )} { ( )}w wspan F w cspan F w  . 

The following proposition establishes an equivalent 

condition for a Bessel mapping F  to be  -complete. 

 

Proposition 1.2. Let 2( , )F L  H  be a Bessel mpping. 

The following are equivalent: 

(i) F  is  -complete. 

(ii) If f H  so that , ( ) = 0f F    for almost all 

 , then = 0f . 

 

Proof. ( ) ( )i ii . Assume that f H  and , ( )f F  

= 0 , for almost all  . Then 

, ( ) ( ) ( ) = ( ) , ( ) ( ) 0f F d f F d         
 

      , 

for all 2( )L   . Therefore, { ( )}f cspan F    

which implies that = 0f . 

( ) ( )ii i . Let f H  such that 

, ( ) ( ) ( )f F d    


  = 0  for all 2( )L   . Taking 

2= , (.) ( )f F L      we get 

0 = ( ) ( ) ( ),F d f    


 
 

   

2= | , ( ) | ( ),f F d  

 

 

which shows that , ( ) = 0f F    for almost all  . 

Hence = 0.f  □ 

Continuous Riesz Bases 

In this section we define a continuous Riesz basis in 

a Hilbert space H  and obtain some equivalent 

conditions for a continuous frame to be a continuous 

Riesz basis. 
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Definition 2.1. Let ( , )  be a measure space. A 

mapping 2 ( , )F L  H  is called a continuous Riesz 

basis for H  with respect to ( , ) , if { ( )}F    is  -

complete and there are two positive numbers A  and B  

such that  

2 1/2

1

1

2 1/2

1

( | ( ) | ( ))

( ) ( ) ( )

( | ( ) | ( )) ,

A d

F d

B d

   

    

   

















 (3) 

for every 2 ( )L    and measurable subset 1  of   

with 1( ) <   . The integral is taken in the weak 

sense and the constants A  and B  are called Riesz 

basis bounds.  

Note that in the discrete case, where     and   

is the counting measure on  , a continuous Riesz basis 

is actually a Riesz basis. To obtain an equivalent 

condition for a continuous Riesz basis first we need to 

extend the notion of  -independence to the continuous 

case. 

 

Definition 2.2. A Bessel mapping 2 ( , )F L  H  is said 

to be 2L -independent if ( ) ( ) ( ) = 0F d    
  for 

2 ( , )L   , implies that = 0  almost everywhere. 

We can now give a characterization of a continuous 

Riesz basis, expressed in terms of 2L -independence. 

 

Theorem 2.3. Let H  be a Hilbert space, ( , )  a 

measure space. A continuous frame 2 ( , )F L  H  is a 

continuous Riesz basis for H  if and only if F  is  -

complete and 2L -independent.  

 

Proof. Suppose that F  is a  -completeand 2L -

independent continuous frame with bounds A , B . For 
2 ( )L    and a measurable subset 1  of   with 

finite measure, put 
1

= ( ) ( ) ( )f F d    
 . We have 

1

1

( ) ( ) ( ) ( )

= , ( ) ( ) ( ),

F d

f S F F d

      

   







 




 

where S  isthe continuous frame operator of F . 

Therefore, 

1

1
( ) ( )= , ( ) ( a ).f S F lmost all      

      

Moreover,  

1 1 1/2 1,B f S f f A f       

and  

1 1

1

, = , ( ) ( ) ( )S f f f S F d     


     

                
1

1

= ( ) , ( ) ( )f S F d    


   

                
2

1

= | ( ) | ( ).d   
  

Thus, F  is a continuous Riesz basis for H  with 

bounds ,A B . 

For the converse, assume that F  is a continuous 

Riesz basis. Obviously, F  is an 2L -independent 

continuous frame. Using (3), for 2 ( )L    and f H , 

we get  

| ( ) ( ), ( ) |

=| ( ) ( ) ( ), |

F f d

F d f

    

    





 

 




 

     ( ) ( ) ( )F d    


   

     
2
.B f   

It turns out that 2, ( ) ( )f F L     satisfies  

2 1/2( | , ( ) | ( )) .f F d B f  

    

By the above argument, the synthesis operator T  

defined as in (2), is a bounded linear operator. T  is also 

one-to-one and onto because of the 2L -independence 

and  -completeness of F . Hence T  is invertible and 

for all f H  we can write 

4 1 * 2=| , |f T f T f   

        
2 21 * .T f T f  

Therefore, using 1 1T A  , we get 

1

2 2( | , ( ) | ( )) .A f f F d  


    □ 

Here we define the dual of a continuous frame. 
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Definition 2.4. Let :F H be a Bessel mapping. A 

Bessel mapping 1 :F H  is called a dual for F  if  

1= , ( ) ( ) ( ) ( ).f f F F d f   

   H  (4) 

One may easily see that for every continuous frame 

:F H with frame operator S ,  

1=f SS f
 

    
1= , ( ) ( ) ( ),f S F F d   


   

where f H . Thus, F  has at least one dual frame, 

namely 
1S F

. It is certainly possible for a continuous 

frame to have only one dual. This type of frames, which 

is called Riesz-type frame, has been introduced by J. P. 

Gabardo and D. Han in [13]. Riesz-type frames are 

actually frames for which the adjoint of the synthesis 

operator is onto. In fact: 

 

Proposition 2.5. [13] Let F  be a ( , )  frame. Then 

F  is a Riesz-type frame if and only if 
* 2( ) = ( )Range T L  .  

Using Proposition 2.5, we show that continuous 

Riesz bases and Riesz-type continuous frames are the 

same. 

 

Theorem 2.6. Let :F H be a continuous frame. 

Then F  is a continuous Riesz basis if and only if F  is 

a Riesz-type continuous frame.  

 

Proof. Let :F H be a continuous Riesz basis with 

duals 1F  and 2F . Then for all f H  we have  

1 2, ( ) ( ) ( ) ( ) = 0,f F F F d    

    

which shows that 

1 2, ( ) = , ( ) ( a ).f F f F lmost all          

Hence, 1 2=F F  in 2 ( , )L  H . 

For the converse, let F  be a Riesz-type continuous 

frame. If 2 ( )L    such that ( ) ( ) ( ) = 0F d    
 , 

then obviously by Proposition 2.5 

*ker( ) = ( ( )) {0}.T Range T    

Hence = 0  almost everywhere. Now Theorem 2.3 

implies that F  is a continuous Riesz basis. □ 

We will now present a further equivalent condition 

for a mapping F  to be a continuous Riesz basis. 

 

Proposition 2.7. A mapping 2 ( , )F L  H  is a 

continuous Riesz basis for H  if and only if F  is  -

complete and the mapping  

2 2: ( , ) ( , )

( ) ( ), (.) ( )

U L L

F F d     


   


  

H H
 

defines a bounded invertible operator. 

 

Proof. Assume that F  is a continuous Riesz basis with 

bounds A  and B . Then the synthesis operator T  

satisfies T B . Putting * 2= : ( , )U T T L  H

2 ( , )L  H  we have 
2U B . U  is also injective. 

Indeed, the following calculations:  

0 ( )U   

   *= ( ( ))T T    

   = , ( )T F    

   = ( ) ( ), ( ) ( ),F F d     


   

  for almost all   

together with 2L -independence of F  implies that 

= 0 . Moreover, U  is onto by Theorems 2.6. The 

converse holds trivially.  

In the sequel we study continuous Riesz bases with 

regard to the exactness property. First we define a 

continuous exact frame and present two auxiliary 

results. 

 

Definition 2.8. A continuous frame :F H is called 

exact if for every measurable subset 1   with 

10 < ( ) <   , the mapping 1: \F   H  is not a 

continuous frame for H . 

The proof of the following lemma which we omit, is 

similar to the discrete case [8, Proposition 5.3.6]. 

 

Lemma 2.9. Let :F H be a continuous frame and 

f H . If f  has a representation =f

( ) ( ) ( )F d    
  for some 2 ( )L   , then  

2 1 2

1 2

= | , ( ) | ( )

| ( ) , ( ) | ( )

f S F d

f S F d

   

    









 

   




 

where S  is the continuous frame operator of F . 
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Proposition 2.10. Let :F H  be a continuous frame 

with the continuous frame operator S. Also, let 1  be a 

measurable subset of   such that 10 < ( ) <    and 

1

= ( ) ( )f F d  
 . If 1

1
= , (.)f S F 

   , then 

1: \F   H  is not a continuous frame for H . 

 

Proof. By the frame decomposition, 

1

1

( ) ( ) = = , ( ) ( ) ( ).F d f f S F F d      

 
    

So Lemma 2.9 yields,  

1 2

1

1 2

1

( ) = | , ( ) | ( )

| ( ) , ( ) | ( ).

f S F d

f S F d

   

    










  

   




 

Now if 1

1
= , (.)f S F 

   , then 

1 2

\
1

| , ( ) | ( )f S F d  

 
  = 0 . Hence by 

Proposition 1.2 1: \F   H  is not  -complete. □ 

We now give a necessary condition for a continuous 

frame to be a continuous Riesz basis via exactness. 

 

Proposition 2.11. A continuous Riesz basis in a Hilbert 

space is a continuous exact frame.  

 

Proof. Let :F H be a continuous Riesz basis and 

1   be a measurable subset with positive measure. 

Then 
1

( ) ( ) 0F d  


 . By the completeness of F , 

there exists 2

0 1( \ )L     such that  

0
\

1 1

( ) ( ) = ( ) ( ) ( ).F d F d       
     

Now 2L -independence implies that 0 = 0 . There-

fore, 
1

( ) ( ) = 0F d  
 , which is a contradiction. □ 

We conjecture whether the converse of Proposition 

2.11 is true or not. 

Results and Discusion 

In this section, we present some examples to 

illustrate how our results can be applied. Continuous 

wavelet and Gabor frames, which play an important role 

in many applications are continuous frames (cf. [1, 12, 

14, 17]). Our aim is to find a particular measure with 

respect to which, this continuous frame is also a 

continuous Riesz basis. To this end, we define an 

orthonormal basis. We begin with the following lemma 

whose proof is obvious. 

 

Lemma 3.1. For a mapping 2 ( , )F L  H  the following 

statements are equivalent: 

( )i  For all f H , = , ( ) ( ) ( )f f F F d   

  . 

( )ii  For all f H , 
2 2= | , ( ) | ( )f f F d  


  . 

( )iii  For all 1 2,f f H, 1 2, =f f 

1 2, ( ) ( ), ( )f F F f d   

   . 

 

Definition 3.2. A continuous orthonormal basis for H  

with respect to ( , )  is a continuous Parseval frame 

F  for which  

2

2
( ) ( ) ( ) = ( ( )).F d L      


   

One may easily see that if F  is a 

continuousParseval frame for H , then H  can be 

embedded isometrically in 2 ( , )L   with the mapping 
2 ( ); , (.) .L f f F   H  In the next Proposition, we 

show that the above embedding is onto provided that F  

is a continuous orthonormal basis. 

 

Proposition 3.3. If there exists a continuous 

orthonormal basis for H  with respect to ( , ) , then 

H  is isometrically isomorphic to 2 ( , )L  .  

 

Proof. Suppose that F  is a continuous orthonormal 

basis for H  with respect to ( , ) . Define 
2: ( )L  H  by ff  , where  

( ) = , ( ) ( a ).f f F lmost all         

Clearly,   is an isometry and if 2 ( )L   , then by 

taking = ( ) ( ) ( )f F d    
  we have  

2 2

2
= | ( ) , ( ) | ( )f f F d     


     

                

2

2

= (| ( ) | , ( ) ( )

, ( ) ( ) | , ( ) | ) ( )

f F

f F f F d

    

     


 

     


 

                
2 2

2
= f  = 0,  

which shows that = f  . 

 

Corollary 3.4. If F  is a continuous orthonormal basis 
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for H  with respect to ( , ) H , then for all f H  there 

exists a unique 2 ( )L    for which =f

( ) ( ) ( )F d    
 .  

In the remainder of this section we assume that G  is 

a locally compact group equipped with a left Haar 

measure d . 

 

Example 3.5. Let ( , ) H  be an irreducible 

representation on a locally compact group G  and 

 H  be an admissible (wavelet) vector, i.e.  

2

2

1
:= |< , ( ) >| ( ) < .

G
C g d g    


  

Then the mapping  

2

1

2

: ( ),

( )( ) = < , ( ) > ( , ),

W L G

W f g C f g f g G



   




 

H

H

 

is called a continuous wavelet transform on G . It is a 

linear isometry onto its range; i.e.  

1 2

2 2

2

|< , ( ) >| ( )

= = ( ).

G
C f g d g

W f f f





  





H

 

Namely, { ( ) }g Gg    is a continuous tight frame with 

bound C  with respect to the measure space ( , )G  . 

For a more general statement of this fact and further 

details see [1, Chapter 8]. In this case W  is the adjoint 

of synthesis operator. Combining Proposition 2.5 and 

Theorem 2.6 with the fact that W  is not onto in general 

(cf. [1]), we conclude that { ( ) }g Gg    is not a 

continuous Riesz basis. 

In the rest, we assume that G  is a locally compact 

abelian group with the dual group Ĝ . The Fourier 

transform is defined by  

ˆ( ) = ( ) ( ) ( ),
G

f f x x d x    

for 1( )f L G . Thanks to the Plancherel Theorem [10], 

the Fourier transform from 1 2( ) ( )L G L G  uniquely 

extends to an isometric isomorphism from 2 ( )L G  onto 

2 ˆ( )L G . For a more detailed exposition of locally 

compact abelian groups the reader is referred to [10]. 

 

Example 3.6. (i) Let G  be a locally compact abelian 

group. If G  is compact, then Ĝ  is a continuous 

orthonormal basis for 2 ( )L G  [10]. 

(ii) Let G  be a second countable locally compact 

abelian group. By a uniform lattice we mean a discrete 

and cocompact subgroup of G  (cf. [18, 19, 21]). Fix a 

uniform lattice K  in G . A fundamental domain for K  

is a Borel subset S  of G  such that every x G  can 

be uniquely written in the form =x sk  where s S  

and k K . The existence of a fundamental domain for 

K  is guaranteed by [19, Lemma 2]. Let 2= ( )L SH  

and ˆ= G . Define 2: ( )F L S  by ( )( ) =F s

( ) ( )Ss s  , for each Ĝ . It is obvious that 

ˆ, ( ) = ( )f F f   , for each f H  and Ĝ . Hence, 

by the Plancherel theorem, F  is a continuous Parseval 

frame. However, *T , is not onto and Proposition 2.5 

implies that F  is not a Riesz-type frame. By Theorem 

2.6 F  is not a continuous Riesz basis. Now we want to 

establish a measure with respect to which, F  is a 

continuous Riesz basis. Consider the dual group Ĝ  of 

G  and the uniform lattice = K   in Ĝ  [18, 21]. 

Take = nn  
 , where   is a fixed element in Ĝ  

and b  is the Dirac measure at the point b G . Then F 

is also a continuous Parseval frame with respect to  . 

Indeed,  

2
2 2ˆ| , ( ) | ( ) = | ( ) |

n

f F d f n   




    

 
2

ˆ

ˆ= | ( ) | ( )
G

f d   
2

2
= .f  

Furthermore, F is a continuous Riesz basis with  

respect to  . To see this, by Theorem 2.3 it is  

enough to show F  is 2L -independent. Assume that 

( ) ( ) ( )aF d    
 = 0  for some 2 ( )L S , then by 

using the compactness of S we have 

2

0 = ( ) ( ) ( )F d     
  

   = ( ) ( ) ( ), ( ) ( ) ( )F d F d          
 

    

   = ( ) ( ), ( ) ( )
n m

n F n m F m     
 

    

   = ( ) ( ) ,S S

n m

n m n m     
 

   

   
2= | ( ) |

n

n 



2

2
= .  
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The above calculations indicate that not only F  is a 

continuous Riesz basis but also it is a continuous 

orthonormal basis. We can summarize it as follows: 

 

Proposition 3.7. Let G  be a locally compact abelian 

group with a uniform lattice K  and fundamental 

domain S . Then for any Ĝ   the mapping 
2ˆ: ( , ) ( )F G L S   defined by ( )( ) = ( ) ( )SF s s s    

is a continuous orthonormal basis for 2 ( )L S , where 

ˆ( / )
= nn G K  

 . 
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