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Abstract 

In this paper, we apply the differential transform (DT) method for finding 

approximate solution of the system of linear and nonlinear Volterra integro-

differential equations with variable coefficients, especially of higher order. We 

also obtain an error bound for the approximate solution. Since, in this method the 

coefficients of Taylor series expansion of solution is obtained by a recurrence 

relation, thus we can use arbitrary number of Taylor series terms to obtain 

solutions with desired accuracy. Here we give some preliminary results of the 

differential transform and show that the DT method can be easily applied to a 

wide class of linear and nonlinear systems. Finally, the accuracy and simplicity of 

this method will be verified by solving some examples. 
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Introduction 

The DT method is an iterative procedure to obtain 

Taylor series solutions of differential and integral 

equations (see [1]). This method was first introduced by 

Zhou [2] in 1986 for solving linear and nonlinear initial 

value problems in electric analysis (see also [3]). 

Up to now, the differential transform method has 

been developed for solving various types of differential 

and integral equations. In [4,5], Ayaz presented 

extension of DT for solving system of differential 

equations and differential-algebraic equations. In [3] 

and [6] this method applied to partial differential 

equations and in [7] and [8] to the one dimensional 

Voltrra integral and integro-differential equations. Also 

in [9] the DT method has been developed for solving 

two dimensional Volterra integral equations. 

On the other hand, the Volterra integral and integro-

differential equation systems (such as system of model 

describing biological species living together) have many 

interesting applications in applied sciences ( for 

example see [10,11]). 

Although many methods available for solving the 

system of integral and integro-differential equations (for 

example see [12,15]), but DT method is simple and 

need not much computational works and we can solve 

systems by high accuracy. Recently, Biazar and Eslami 

developed the DT method for systems of Volterra 

integral equations of the second kind [16]. 

The subject of presented paper is to apply the DT 

method for solving system of linear and nonlinear 

Volterra integro-differential equations of the second 
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kind with variable coefficients. Here we consider a 

system of the form 
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 (1.1) 

with the supplementary conditions 

 
0( ) ,    1, , ,   0,1,..., 1,

i

j ij jy x c j m i m      (1.2) 

where 
(1) (1) (2) (2)

1 1{ ,..., , ,..., }j j mj j mjm max      and 
( )k

ij  

denotes the order of differential operator 
( )k

ijD  for 

1,2.i   We also assume that  0 ,   ,x x b  where 

0 ,x b R  are finite. Finally we assume that the 

problem (1.1)-(1.2) has a unique solution. 

Materials and Methods 

2.1. Some Results of the Differential Transform 

The basic definition of DT and fundamental 

theorems about it can be found in [1-8], however for 

convenience in this section we review the DT. 

Differential transform of order  n for the function ( )f x  

at 0  x is defined as (see [8]) 

 
 

0

1
,

!

n

n

x x

d f x
F n

n dx


 
  

  

 (2.1) 

and its inverse transform is defined as 

0

0

( ) ( )( ) .n

n

f x F n x x




   (2.2) 

The relations (2.1) and (2.2) imply that 

 

0

0

0

1
( ) ( ) ,

!

n

n

n
n

x x

d f x
f x x x

n dx






 
  

  
  (2.3) 

which is the Taylor series of function ( )f x . 

In the following theorem, we summarize some 

fundamental properties of the differential transform (see 

[8]). 

Theorem 2.1 Let   ( )F n , ( )U n  and ( )V n  be the 

differential transforms of the functions ( )f x , ( )u x  and 

( )v x  at 0 0x   respectively, then we have 

a. If   ,kf x x  then 

,( ) .n kF n 
 

b. If     ,f x sin ax b   then 

( ) ( ).
! 2

na n
F n sin b

n


 

 

c. If ( ) ( )f x cos ax b   then 

( ) ( ).
! 2

na n
F n cos b

n


 

 

d. If   ,axf x e  then 

( ) .
!

na
F n

n


 

e. If       ,f x u x v x   then 

( ) ( ) ( ).F n U n V n 
 

f. If     ,f x au x  then 

( ) ( ).F n aU n
 

g. If       ,f x u x v x  then 

0

( ) ( ) ( ). 
n

k

F n U k V n k


   □ 

We also recall the following theorems respectively 

from [3] and [8] to apply the DT for the differential and 

integral parts of (1.1). 

Theorem 2.2 Let ( )F n , ( )U n  and ( )V n  be the 

differential transforms of the functions ( )f x , ( )u x  and 

( )v x  in 0 0x   respectively, then we have 

a. If 
( )

( ) ,     1,2,
r

r

d u x
f x r

dx
   then 

( ) ( 1)( 2) ( ) ( )F n n n n r U n r    
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b. If  
   

,
du x dv x

f x
dx dx

  then 

0

( ) ( 1)( 1) ( 1) ( 1). 
n

k

F n k n k U k V n k


        □ 

Theorem 2.3 Assume that ( )U n , ( )V n , ( )H n  and 

( )G n  are the differential transforms of the functions 

( )u x , ( )v x , ( )h x  and ( )g x  respectively, then we 

have 

a. If 

0

( ) ( ) ( )
x

x

g x u t v t dt  , then 

1

0

1
( ) ( ) ( 1),     

1,2, ,     (0) 0.

n

k

G n U k V n k
n

n G





  

  


 (2.4) 

b. If 

0

( ) ( ) ( )
x

x

g x h x u t dt  , then 

1

0

( 1)
( ) ( ) ,        

( )

1,2, ,     (0) 0.   

n

k

U n k
G n H k

n k

n G





 




  


 (2.5) 

2.2. Error Bound 

In this section, we obtain an error bound for the 

approximate solution. To this end, we define the error 

function of the i -th component of ( )y x  as 

      ,  i i iNe x y x y x   (3.1) 

where ( )iy x  and ( )iNy x  are the i -th components of 

the exact and approximate solutions of system (1.1), 

respectively. 

Then the error bound is given by the following 

theorem. 

 

Theorem 3.1 For the error function ( )ie x  defined by 

(3.1) we have 

     
 

1| |
,    

1 !

1,2,..., ,

N

i
i i iN

M x
e x y x y x

N

i m



  




 (3.2) 

where iM  is a nonnegative constants such that 

( 1) ( ) ,     1,2,...,N

i iy x M i m    (3.3) 

proof. From Taylor expansion of ( )iy x  around 0,x   

we have 

( ) ( 1)
1

0

(0) ( )
( ) ,    

! ( 1)!

1,2,...,

k NN
k Ni i i

i

k

y y
y x x x

k N

i m






 





 

where  0, ,i x   hence 

( 1)
1( )

( ) ( ) ,     1,2,...,
( 1)!

N
Ni i

i iN

y
y x y x x i m

N


  


 

and using (3.3) completes the proof.  

 

Corollary 3.2 With the conditions of theorem 3.1 we 

have 

lim ( ) ( ),     1,2,...,  iN i
N

y x y x i m


   □ 

 

Corollary 3.3 From the above theorem and structure of 

the differential transform method, it is clear that if the 

solution ( ),  1,2,...,iy x i m  of equation (1.1) is a 

polynomial of degree n , then every approximate 

solution obtained by differential transform method of 

degree N  with N n  will be exact, because in this 

case we have 0,   1,2,..., .    iM i m   

Results 

In this section, we give some examples to clarify 

accuracy of the presented method. For solving the 

problem (1.1) – (1.2) by conditions (1.2) by DT method, 

we use theorems 2.1, 2.2 and 2.3 to obtain m  

recurrence relations for 1 2( ), ( ), ( )mY n Y n Y n  

(differential transforms of the unknown functions 

1 2( ), ( ), , ( )my x y x y x  respectively) and solve them 

to obtain the unknown values 1 2( ), ( ), ( )mY n Y n Y n . 

Finally we use the truncated form 

0

0

( ) ( )( ) ,      1,2, , .
N

n

i i

n

y x Y n x x i m


     (4.1) 

to get approximations. 

All computations were done by programming in 

Maple software. 

3.1. Numerical Examples 

Example 1. As the first example consider the following 

linear system of [15]: 
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1 1 2

1

2

1 2

3

1 2

1

2 ( ) (3 ( ) (2 1) ( ))

( ) 2 ( )

(2( ) ( ) ( )) 2

x

x

xy x ty t x y t dt

x x

xy x xy x

x t y t ty t dt x






  




 






    






 (4.2) 

With the exact solutions 1( ) 1y x x   and 

2 ( )y x x  . 

The method of [15] transforms the system of integral 

equations to a system of algebraic equations with the 

help of Taylor series. Then the solution of the algebraic 

system yields the Taylor coefficients. For more details 

one can see [15]. 

Now to solve the system (4.2), firstly, we convert it 

to the following form: 

1

2

1 2

0

1 2

1 2

0

3 2

2( 1) ( )

(3( 1) ( ) (2 1) ( ))

( 1) ( ) 2( 1) ( )

(2( 2) ( ) ( 1) ( ))

2 6 6 2

t

t

t u t

s u s t u s ds t t

t u t t u t

t s u s s u s ds

t t t





     



  



    



    





 (4.3) 

where ( ) ( 1),    1,2i iu t y t i   . 

Applying DT method on the both sides of (4.3) 

yields : 
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,3 ,2 ,1 ,0  2 6 6 2 n n n n         (4.4) 

For 1,2,...  .n   

On the other hand, if we set 0t   in (4.3), we 

obtain: 

1 2(0) 0,        (0) 1U U 
 

For simplifying the system (4.4) we consider two 

cases 1n   and 2.n   For 1n   we have 

 
   

 
 

1 1

1 2 2

2 1 1 1 1 1  
  

1 2 1 3 1 1

U U

U U U

      
 

       
, 

And for n 2  we obtain 

 

   

   

 

   

 
 

 
 

1

1 2

1 2 ,2

2

1 1

2 1

1 3 1
2 1 1

2

3 2
2 2

1

1 4
1 1  

2

2 2 11
2 1 2

1

n

U n

U n U n
n n

U n U n
n n

U n

U n U n
n

n
U n U n

n n n





  
      
  

 

      



   

     
 


  

      
 

 (4.5) 

2 ,3 ,2

1
( 2) 2 6  n nU n

n
 


    


 

Finally solving the above system yields 

1 2( ) 0,      ( ) 0,     2,3,...U n U n n  
 

or equivalently 

1 2( ) ,      ( ) 1u t t u t t  
 

and so 

1 2( ) 1,      ( )y t t y t t   
 

which are the exact solutions of (4.2). Note that this 

result confirms the corollary 3.3. 

Also note that the above solutions are in complete 

agreement with [15], however as mentioned previously 

the DT method transforms the system of integral or 

integro-differential equations to recurrence relations 

which are solvable more simple than of a system of 

algebraic equations which done in [15]. 

 

Example 2. Consider the nonlinear system of integral 
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equations of the form 

2 (4) (4)

1 2

'' ''

1 2

0

2 3

(4) (4)

1 2

'''

1 2

0

3

( ) ( )

( ) ( )

1 1
   

3 3

( ) ( )

( ) ( )

1 1
(1 )

3 3

x

x

x y x y x

costy t y t dt

x sinx cosx cos x

y x sinxy x

sinty t y t dt

sinx cosx cos x

 


 




   


 


 




   






 (4.6) 

with the conditions 

' '' '''

1 1 1 1

' '' '''

2 2 2 2

(0) 0,   (0) 2,   (0) 0,   (0) 1

(0) 1,   (0) 0,   (0) 1,   (0) 0

y y y y

y y y y

     


    

 (4.7) 

which has the exact solutions 1( )y x x sinx   and 

2 ( )y x cosx . 

By applying DT on the both sides of (4.6), we obtain 

2

1

( 4)

1

( 1)( 2)( 3)( 4)

1
1 2 3 4

! 2

( 4)

1

( 1)( 2)( 3)( 4)

1
5 6 7 4    

! 2

Y n

n n n n

n
S S S cos S

n

Y n

n n n n

n
S S sin S S

n










   


         








   


        

 (4.8) 

for 1,2, .n   

Where 

,2

0

1

1 ( 1)( 2)

( 3)( 4) ( 4)

n

k

k

S n k n k

n k n k Y n k
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2 ( 1)( 2)( )

! 2

( 1) ( 2) ( 1)

n n k

k l

k
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n k l Y l Y n k l
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3
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n
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k

n k
S sin
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4
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2 2 2

n n k

k l

S
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k l n k l
cos cos cos
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1
5 ( 1)( 2)
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( 3)( 4) ( 4)

n

k

k
S sin n k n k

k

n k n k Y n k





    

     


 

1 1

0 0

1 2

1 1
6 ( 1)( 2)

! 2

( 3) ( 3) ( 1)

n n k

k l

k
S sin l l

n k

l Y l Y n k l

  

 

  

    

 
 

0

1 ( )
7

!( )! 2 2

n

k

k n k
S sin cos

k n k

 









 

and by conditions (4.7), we have 

1 1 1 1

1
(0) 0,     (1) 2,     (2) 0,     (3)

6
Y Y Y Y    

 

2 2 2 2

1
(0) 1,     (1) 0,     (2) ,     (3) 0

2
Y Y Y Y    

 

also by substituting 0x   in the equations of system 

(4.6) we obtain 

1 2

1
(4) 0,        (4)

24
Y Y 

 

In this example we solve (4.8) for the cases 12N   

and   16N  . 

For 12,N   we obtain the approximate solutions as 

3 5

1,

7 9 11

1 1
( ) 2

3! 5!

1 1 1

7! 9! 11!

Ny x x x x

x x x

  

  

 

  2 4 6

2,

8 10 12

1 1 1
1

2! 4! 6!

1 1 1
,

8! 10! 12!

Ny x x x x

x x x

   

  

 

each of these is a truncated Taylor’s series of the 

corresponding exact solution, which is a approximation 

of ( )iy x . 

For case 16,N   we have 
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3 5 7

1

9 11 13 15

1 1 1
( ) 2

3! 5! 7!

1 1 1 1

9! 11! 13! 15!

Ny x x x x x

x x x x

   

   

 

2 4 6 8

2

10 12 14 16

1 1 1 1
( ) 1

2! 4! 6! 8!

1 1 1 1

10! 12! 14! 16!

Ny x x x x x

x x x x

    

   

 

Table 1 shows the absolute errors at the some points. 

As we mentioned before, since in DT method the 

solution obtained is by a recurrence relation, we can 

obtain solution with local arbitrary accuracy. Table 2 

shows the absolute errors in some points away from 
0x  . 

Example 3. We consider in this example a system of 

integro-differential equations as 

(4) (4)

1 2

''' ''

1 2

0

(4) (4)

1 2

'' '''

1 2

0

( ) ( 1) ( )

( ) ( ) ( 1)

( ) ( ) ( )

( ) ( ) 1

x

x

x

x

x

x

e y x sinx y x

sinty t y t dt sinx e cosx

cosx y x e y x

costy t y t dt e cosx sinx





  


    


 


    






 (4.9) 

with supplementary conditions 

' '' '''

1 1 1 1

' '' '''

2 2 2 2

(0) (0) (0) (0) 1     

(0) (0) (0) (0) 1

y y y y

y y y y

    


     

 (4.10) 

and exact solutions 1( ) xy x e  and 2 ( ) xy x e  . 

Using similar methods to those used in of previous 

examples, we obtain 

1

1( 4) 2( 4)

1

( 1)( 2)( 3)( 4)

1
1 2 3 4
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( 4) 2( 4)

1

( 1)( 2)( 3)( 4)

1
5 6 7 8   
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S S S S cos

n
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n n n n

n
S S S S sin

n
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for 1,2, .n   
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Table 1. Numerical results of example 2 for N=12, 16 

 N = 12  N = 16 

x Abs.Err.y1 Abs.Err.y2  Abs.Err.y1 Abs.Err.y2 

0.2 1.3000e−19 1.0000e−20  0 1.0000e−20 

0.4 1.0769e−15 3.0780e−17  1.0000e−20 1.0000e−20 

0.6 2.0938e−13 8.9755e−15  5.0000e−19 1.0000e−20 

0.8 8.8017e−12 5.0314e−13  6.3100e−17 2.8100e−18 

1.0 1.5983e−10 1.1423e−11  2.8032e−15 1.5578e−16 

1.2 1.7065e−09 1.4640e−10  6.2114e−14 4.1426e−15 

1.4 1.2628e−08 1.2643e−09  8.5236e−13 6.6333e−14 

1.6 7.1450e−08 8.1781e−09  8.2362e−12 7.3265e−13 

1.8 3.2930e−07 4.2420e−08  6.0878e−11 6.0936e−12 

2.0 1.2909e−06 1.8484e−07  3.6423e−10 4.0518e−11 

 

 
Table 2. Numerical results of example 2 for N=40 

x Abs.Err.y1 Abs.Err.y2 

6.00 2.3500e−18 3.3000e −19 

7.00 1.2970e−15 2.1643e−16 

8.00 3.0697e−13 5.8562e−14 

9.00 3.8053e−11 8.1703e−12 

10.0 2.8318e−09 6.7586e−10 
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1

2

1
6 ( 1)( 2)

!

( 3)( 4) ( 4)

n

k

S n k n k
k

n k n k Y n k



    

     


 

1 1

0 0

1 2

1 1
7 ( 1)( 2)( )

! 2

( 1)( 2) ( 2) ( 2)

n n k

k l

k
S cos l l n k l

n k

n k l n k l Y l Y n k l

  

 

    

         


 

0

1
8

!( )! 2

n

k

k
S cos

k n k









 

and from supplementary conditions we have 

1 1 1 1

1 1
(0) 1,     (1) 1,     (2) ,     (3)

2 6
Y Y Y Y   

 

2 2 2 2

1 1
(0) 1,     (1) 1,     (2) ,     (3)

2 6
Y Y Y Y     

 

also by substituting 0x   in the equations of system 

(4.9) we obtain 

1 2

1
(4) (4) .

24
Y Y 

 

Solving recurrence system (7) for 20N  , we 

conclude that the approximate solutions is of the form 

2 3 20

1

1 1 1
( ) 1

2! 3! 20!
y x x x x x     

 

2 3 20

2

1 1 1
( ) 1

2! 3! 20!
y x x x x x     

 

which is the truncated Taylor’s series of the exact 

solutions. 

And for    30N  we have 

2 3 30

1

1 1 1
( ) 1

2! 3! 30!
y x x x x x     

 

2 3 30

2

1 1 1
( ) 1

2! 3! 30!
y x x x x x     

 

Table 3 shows the absolute errors for this example. 

Example 4. We consider the following nonlinear 

system of [12] 
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( ) ( )
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with supplementary conditions 

1(0) 1y 
 

2 (0) 1y 
 

with the exact solution 1( )
sinx

y x
x

  and 

2

2
( )

2
y x

x



. 

By the same way of previous examples for 

1,2, , 1n N   we have 
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where 1 F  and 2F  denote the differential transforms of 

1f  and 2f  respectively. And from supplementary 

conditions condition 

1 2(0) 1,     (0) 1Y Y 
 

Also by substituting 0x   in the second equation of 

system (4.11) we obtain 

   2 21   0Y F  

In this example since the second solution is singular 
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in 2x  , we solved the recursive equations (4.12) for 

high numbers 150 N   and 200N  . Table 4 shows 

the absolute errors in points 

 
 

Table 3. Numerical results of example 3 

 N = 20  N = 30 

x Abs.Err.y1 Abs.Err.y2  Abs.Err.y1 Abs.Err.y2 

1.00 1.0000e−19 2.0000e−20  1.0000e−19 0 

1.50 1.0480e−16 9.1390e−17  1.0000e−19 2.0000e−20 

2.00 4.5133e−14 3.7615e−14  1.0000e−19 3.0000e−20 

2.50 5.0174e−12 3.9944e−12  2.0000e−18 5.0000e−21 

3.00 2.3682e−10 1.8006e−10  1.0000e−18 6.4000e−20 

3.50 6.1899e−09 4.4937e−09  1.1000e−17 8.1340e−18 

4.00 1.0400e−07 7.2762e−08  6.4100e−16 4.9840e−16 

4.50 1.2803e−06 8.4671e−07  2.5120e−14 1.8933e−14 

5.00 1.2036e−05 7.5931e−06  6.7049e−13 4.8950e−13 

 
 

Table 4. Numerical results of example 4 

 N = 150  N = 200 

x Abs.Err.y1 Abs.Err.y2  Abs.Err.y1 Abs.Err.y2 

0 0 0  0 0 

0.2 3.0000e−20 1.0000e−19  1.3000e−29 1.0000e−29 

0.4 3.0000e−20 1.0000e−19  3.0000e−30 2.0000e−30 

0.6 6.0000e−20 2.0000e−19  2.0000e−30 2.0000e−29 

0.8 1.0000e−20 1.0000e−19  7.0000e−30 1.0000e−29 

1.0 5.0000e−20 1.0000e−19  7.0000e−30 1.0000e−29 

1.2 1.0000e−20 1.3000e−19  2.0000e−30 1.3000e−29 

1.4 5.0000e−20 1.0000e−19  5.0000e−30 3.0000e−29 

1.6 1.4000e−19 1.1629e−14  1.3000e−29 1.6598e−19 

1.7 3.0000e−20 1.4661e−10  1.6000e−29 4.3362e−14 

1.8 7.0000e−20 1.2320e−06  2.1000e−29 6.3496e−09 

1.9 4.0000e−20 8.6555e−03  1.0000e−30 6.6600e−04 

 
 

Table 5. Numerical results of example 4 ([12]) 

x Abs.Err.y1 Abs.Err.y2 

0.0 0 0 

0.2 1.8423e−26 1.1111e−16 

0.4 1.2070e−21 8.1920e−12 

0.6 7.9231e−19 6.1495e−9 

0.8 7.8988e−17 7.1583e−7 

1.0 2.8033e−15 3.0518e−5 

 0,1 ,     6,7, ,19x i i    

for 150N  , Digits=20 and 200N  , Digits 30  

respectively. 

As mentioned above, this example was chosen from 

[12], where the problem has been solved by the Tau 

method. In the Tau method [17], we replace the 

differential and integral parts of the problem by their 

matrix representation and then convert it to 

corresponding system of linear algebraic equations. In a 

similar manner, we convert supplementary conditions to 

a linear algebraic system of equations. Finally by 

combining these two linear systems of algebraic 

equations, we obtain a system of linear algebraic 

equations and solve it to obtain an approximate solution 

of the problem. For more details about Tau method see 

[12], [17] and [18]. 

For comparing we report the results of [12] in Table 

5. 

Comparing the results of Tables 4 and 5 shows the 

high accuracy of the DT method. Also, it is worthy to 

note that, the results in [12] (Table 5) were reported up 

to 1,x   while the results of Table 4 (DT method) are 

reported up to 1.9.x   

3.2. Conclusion 

In this work, the differential transform method has 

been applied for system of nonlinear Volterra integro-

differential equations with variable coefficients. For 

illustration purpose, some examples have been solved 

by presented method. As the results of examples show, 

the method has high accuracy. Also this method has a 

simple structure, so it can be applied to solve applied 

problems in applied sciences. 
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