
Journal of Sciences, Islamic Republic of Iran 24(1): 81-85 (2013) http://jsciences.ut.ac.ir 
University of Tehran, ISSN 1016-1104 

81 

Local Field Correction Effect on Dicluster Stopping 

Power in a Strongly Coupled Two-Dimensional  

Electron Gas System 
 

T. Vazifehshenas* and S. Saberi-Pouya 

 
Department of Physics, Faculty of Sicences, University of Shahid Beheshti, Tehran, Islamic Republic of Iran 

 
Received: 1 March 2013 / Revised: 6 May 2013 / Accepted: 14 May 2013 

 

Abstract 

We calculate the stopping power for heavy-ion diclusters moving in a strongly 

coupled two-dimensional electron gas system by using the local field corrected 

dielectric function at finite temperature. We obtain a parameterized local field 

correction factor based on a relation between the thermal compressibility and 

exchange-correlation energy in two-dimension. The interpolated parameter is 

derived from the Monte-Carlo data for the exchange-correlation energy of a two-

dimensional electron gas system. We compare our results with those of previous 

calculations which used a local field factor that satisfied the compressibility sum 

rule in three-dimension. In general, the stopping power increases by taking into 

account the short-range interactions. In addition, it is found that the dicluster 

stopping power (in particular the uncorrelated part) obtained from our calculations 

is smaller than the previous work. 
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Introduction 

In recent years, the phenomena related to the 

interaction of particles (atoms, molecules, electrons, 

neutrons,…) with plasma and condensed matter systems 

have been attracted the attention of many scientists [1-

20]. Projectile ions moving through a dense target or 

near a solid surface may lose their energy mainly due to 

the interaction with the nucleus or electrons. Stopping 

power which is defined as the mean energy loss per unit 

path can be used to characterize these physical 

processes. The electronic stopping power for the single-

ion and cluster-ion projectiles passing through the three 

and two dimensional electron gas (3DEG and 2DEG) 

systems has been investigated by several authors [21-

26]. In a strongly coupled 2DEG, the stopping power of 

heavy-ion diclusters which composed of two point-like 

charges was theoretically studied by Ballester et al. [27]. 

They computed the polarizational stopping power from 

the imaginary part of the dielectric function for both fast 

and slow projectiles at zero and finite temperatures. In 

addition, they went beyond the random-phase-

approximation (RPA) and considered the effect of the 

exchange-correlation (XC) interaction which is 

expected to be important in the strongly coupled 

systems. In their work, the short range electron-electron 

interactions were included by introducing an 

interpolated expression for the static local field 
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correction (LFC) factor which satisfies the 

compressibility sum rule. They used an interpolation 

parameter which was determined from an equation 

relating the thermal compressibility to the XC energy 

per electron in a 3DEG [28]. However, their formula for 

the XC energy was derived from the Totsuji Monte-

Carlo results for a 2DEG system [29].We believe that 

the correct analytical expression for the LFC factor in a 

2DEG is obtained from a relation between the 2D (not 

3D) compressibility and the XC energy per electron. 

Here, we follow the method outlined in Ref. [27] but 

make use of the correct parameterized 2D LFC to 

calculate the electronic stopping power of a slow 

dicluster-ion in a 2DEG system at high temperatures. 

The outline of this paper is as follows. In section 2, 

we review the theory of the dicluster stopping power 

based on the dielectric function formalism. Also, the 

interpolation method that we use to obtain the 2D LFC 

factor is introduced in this section. Finally the results of 

our calculations are given in section 3 and discussed 

there. 

Materials and Methods 

1. Stopping Power Formalism 

We consider heavy-ion diclusters consisting of two 

point-like charges Z1e and Z2e moving with a velocity V 
randomly oriented in the plane of a 2DEG. with an 

inter-ion separation vector R. We suppose that the 

diclusters are randomly oriented in the plane of a 2DEG 

and moving with a velocity V. Because of heavy 

projectile approximation, we can assume the projectile 

trajectory to be a straight line. The corresponding 

surface charge distribution, σ, is given by [26]: 

  .

1 2( ) iZ e Z e e   k Rk  (1) 

where k  is a 2D wave vector. Using the linear-response 

dielectric theory, the dicluster stopping power is then 

obtained as [26]: 
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Here ( , )k   is the dynamic dielectric function of a 

2DEG system. 

The above expression for stopping power can be 

divided into two parts; uncorrelated and correlated 

parts: 
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The uncorrelated contribution which is independent 

of the inter-ion distance defined as: 
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 By taking the average over in-plane R  orientations 
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we can write the following expression for the correlated 

part: 
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where 0J  is the usual first-kind Bessel function. The 

dielectric function of a 2DEG system which includes the 

short range XC corrections is given by [30]: 
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Here 2( ) 2 /e k k , 0 ( , ) k  and ( )G k  are the 

2D Coulomb potential, non-interacting polarizability 

(Lindhard) function and static LFC factor, respectively. 

By defining 0 0 0i      , we get the following 

relation for the imaginary part of inverse dielectric 

function: 
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The RPA limit is recovered by setting ( ) 1H k . 

The Lindhard function in two-dimension [31] is 

obtained from: 
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where ( )n q  being the Fermi-Dirac distribution 

function, 2 2( ) 2q m q , m  is the electron mass and 


 
is an infinitesimal small positive number. After some 

algebra, one gets the following simple relation for the 

finite temperature Lindhard function: 

2

0

2 2
( , ) 1 2 ( )

2

U UF

B

k
Ue U i Ue

k T
   



    
  

k  (10) 

where 
0

2
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2 Bk T m , Fk  being the Fermi wave vector and Bk  

is the Boltzmann constant. 

At finite temperature, it is common to define two 

characteristic quantities in the degenerate electron gas; 

the coupling parameter,  : 

2
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and the degeneracy parameter, D : 
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where a  and FE  are the Wigner-Seitz radius and Fermi 

energy, respectively. The strongly coupled regime is 

determined by value of   higher than unity. 

As it is mentioned in the previous section, we are 

interested in the case of high temperatures and slow 

diclusters i.e. the projectile velocity, v , is smaller than 

the Fermi velocity, Fv . Under these conditions, the 

uncorrelated and correlated parts of stopping power are 

given by [27]: 
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where 2 2 /D F Bk e k k T , 
22 / / 2 BR R mk T  and 

Ba  is the Bohr radius. The spatial correlation between 

two ions is taken into account in the expression for 

correlated stopping. The vicinage function,  , which is 

defined as the ratio of correlated to uncorrelated parts of 

stopping power 
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measures the interference effects on the energy loss of a 

cluster. 

2. Interpolated Expression for LFC 

In order to calculate the short range interactions 

effects on the stopping power, we introduce the 

interpolation method which we use to obtain the correct 

2D LFC factor,
 

2 ( )DG k . Following the work of [27], 

we consider the below parameterized expression for the 

LFC factor 
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This relation reproduces the asymptotic behavior of 

the LFC at both short and long wavelengths. The 

interpolation parameter, 
2DA , can be determined via the 

compressibility sum rule [28] 

2 01
(1 )

2

T

D

T
A




 


 (17) 

where 0 1/T

Bnk T   and T  is the finite temperature 

compressibility of the interacting electron gas system. 

Here, we make use of the correct relation between T  

and the XC energy per electron, xcE , for a 2DEG 

system [28]: 
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And from it, the correct expression for 2DA  can be 

obtained as follows: 
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Using the Totsuji Monte-Carlo data for 2D XC 

energy per electron [29] 

1 4( ) ( 1.12 0.71 0.38)xc BE k T       (20) 

which is valid for 2 50   , we are able to calculate 

the correct parameterized 2D LFC factor. 
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Results and Discussions 

We are ready to perform the numerical calculations 

on the dicluster stopping power for a strongly coupled 

2DEG system at low velocities and finite temperatures. 

We assume that the dicluster consists of two identical 

ions 1 2Z Z  which are separated by a distance R . 

First, we plot the correct static 2D LFC, 
2DG , for 

two different values of coupling parameter, 2   and 

10 , in Fig. 1. For comparison, we also show the 

interpolated LFC factor proposed in Ref. [27] which we 

refer to as 
BG  in our figures. 

As this figure shows, although the values of 
2DG  are 

up to 10% smaller than those of 
BG , the change of 

coupling parameter has a small effect on both LFC 

factors. 

In Fig. 2, we display the ratio of the local field 

corrected to the RPA stopping power of a dicluster-ion 

projectile as a function of   for two different values of 

the degeneracy parameter, D . Again we compare our 

results (based on the 
2DG ) with those obtained from the 

Ref. [27]. According to this figure, the inclusion of the 

short range interactions in the calculations enhances the 

stopping power and this effect become more important 

at large coupling parameter and high degeneracy 

parameter. Also, it can be observed that the stopping 

power calculated via 
BG  is greater than those 

computed using 
2DG  as expected from the results of 

Fig. 1. 

We compare the vicinage functions,  , calculated 

within three different approaches, 
2DG , 

BG  and 

0G   (RPA) in a 2DEG system for 2   and 

0.01D   in Fig. 3. As shown in this figure, the  

 

 

 

Figure 1. Two different interpolated static LFC of the 2DEG 

as functions of k/kF for two distinct values of  

coupling parameter, Γ=2 and 10. 

 

Figure 2. The ratio of local field corrected (both G2D and GB) 

to RPA stopping powers of a dicluster in a 2DEG system with 

R=1nm and for two different values of degeneracy  

parameter, D=0.01 and 0.02. 

 

 

 

Figure 3. The vicinage function of a dicluster-ion moving in a 

2DEG as a function of inter-ion distance R calculated within 

three different static LFC factors, G2D, GB and  

G=0 (RPA) with R=1nm and for D=0.01. 

 

 

 

Figure 4. The ratio of the correlated (uncorrelated) part of 

stopping obtained from G2D, (-dw/dx)2D, to the corresponding 

one calculated from GB, (-dw/dx)B, as functions of coupling 

parameter, Γ, with R=1nm and for D=0.01. 
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vicinage function increases by considering the XC 

interaction between electrons. Furthermore, the 

difference between the 
2DG  and 

BG  results is small. 

In order to discover which part of the dicluster 

stopping power, the correlated contribution or 

uncorrelated one, is more sensitive to the change of LFC 

factor, we display the ratio of the correlated 

(uncorrelated) stopping obtained from the 
2DG  

calculations,  
2D

dw dx , to the corresponding one 

given by 
BG ,  

B
dw dx , in Fig. 4. As this figure 

indicates, the uncorrelated part of stopping power is 

more affected by the LFC expression than the 

uncorrelated one, specially for small coupling 

parameters. 

In conclusion, we investigate the effect of a 

parameterized static LFC factor which satisfies the 

compressibility sum rule in two-dimension on the 

dicluster stopping power in a 2DEG system at high 

temperatures. The interpolation parameter is derived 

from the Monte-Carlo data. We make a comparison 

with the results of Ref. [27] which is based on a formula 

for the 3DEG compressibility. We find that the stopping 

power increases by including the LFC factor in the 

dielectric function, although this enhancement is smaller 

when the correct 2D LFC is used. 
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