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Abstract 

A modified F-expansion method to find the exact traveling wave solutions of  
two-component nonlinear partial differential equations (NLPDEs) is discussed. 
We use this method to construct many new solutions to the nonlinear Whitham-
Broer-Kaup system (1+1)-dimensional. The solutions obtained include Jacobi 
elliptic periodic wave solutions which exactly degenerate to the soliton solutions, 
triangular periodic wave solutions, exponential solutions and rational solutions 
under certain limitet conditions. In addition, some figures of partial solutions are 
provided for direct-viewing analysis. The method can also be extended to other 
types of nonlinear evolution equations in mathematical physics. 
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Introduction 

The discovery of the soliton, its remarkable 
properties and the incredible richness of structure are all 
included in its mathematical description. The story 
begins with the observation by John Scott Russell of 
"the great wave of translation". He states: 

“…Its height gradually diminished, and after a chase 
of one or two miles 1 lost it in the windings of the 
channel. Such, in the month of August 1834, was my 
first chance interview with that singular and beautiful 
phenomenon which I have called the Wave of 
Translation, a name which it now very generally bears 
[11]…” 

The appearance of solitary wave solutions in nature 
is quite common. Refereces can be made to Bell-shaped 

sech-solutions and kink-shaped tanh-solutions model 
wave phenomena in fluids, plasmas, elastic media, 
electrical circuits, optical fibers, chemical reactions, 
bio-genetics, etc. The travelling wave solutions of the 
Korteweg–de Vries (KdV) and Boussinesq equations, 
which describe water waves, are famous examples as 
well. 

In recent years, other methods have been developed, 
such as the Backlund transformation method [9], 
Darboux transformation [8], tanh method [10, 4], 
extended tanh function method [5], Exp-function 
method [3, 7], the generalized hyperbolic function [6], 

the variable separation method [10], (
ீᇲீ

) method [2] and 

the extended Jacobi elliptic function expansion 
method[1]. All the above-mentioned approaches are 
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based on the assumption that the solutions can be 
uniformly expressed in terms of some special ansatz. 
Therefore, the original partial differential equations 
(PDE’s) can be transformed into a set of algebraic 
equations through balancing the same order of the 
ansatz, which yields the explicit expressions of the 
waves. The difference between these methods is 
attributed to the different ansatz introduced. For 
example, in the tanh-coth method, the ansatz can be 
written in as combinations of tanh and coth functions, 
while in the Jacobi elliptic function expansion method, 
the ansatz can be expressed in the form of Jacobi elliptic 
functions. 

From our point of view, all these methods have some 
merits and demerits with respect to the problem 
considered and there is no unified method that can be 
used to deal with all types of NLPDEs. That is why 
anytime that an improvement is made in a particular 
method to allow it to recover some new solutions to the 
NLPDEs, it is always welcomed. The purpose of this 
paper is to apply a modified F-expansion method to 
coupled families of NLPDEs. 

The aim of this paper is organized as follows: In 
Section 2,at first, we briefly present the steps of the 
modified F-expansion method. In Section 3, by using 
the results obtained in Section 2, attempts are made to 
apply the method to solve the Whitham-Broer-Kaup 
system (1+1)-dimensional. 

 
1. Description of Method 
Consider a general nonlinear partial differential 

equation with independent variables ݔ = ,ݐ) ,ଵݔ ,ଶݔ … ,  in the ,ݑ ௠) and dependent variablesݔ
form: ܨ൫ݑ, ,௧ݑ ,௫భݑ ,௫మݑ … , ,௫೘ݑ ,௧௫భݑ ,௧௫మݑ … ,௧௫೘ݑ, ,௧௧ݑ ,௫భ௫భݑ ,௫మ௫మݑ … , …,௫೘௫೘ݑ ൯ = 0,  (1-1)        

                                        
where ݑ = ,ݔ)ݑ  is the solution of nonlinear PDE (ݐ

Eq.(1-1). Furthermore, the transformations which are 
used are as follows: ݔ)ݑଵ, ,ଶݔ … , ,௠ݔ (ݐ = ,(ߦ)ܷ ߦ = ݇ଵ(ݔଵ + ݇ଶݔଶ + ⋯+݇௠ݔ௠ −  (2-1)  .(ݐߣ

 
where ߣ and ݇௜ are constants. Using the chain rule, it 

can be found that:  డడ௧ (. ) = −݇ଵߣ డడక (. ),			 డడ௫భ (. ) = ݇ଵ డడక (. ),				 డడ୶మ (. ) =݇ଵ݇ଶ డడஞ (. ), ….  (1-3) 

 
At present, Eq.(1-3) is employed to change the 

nonlinear PDE Eq.(1-1) to nonlinear ordinary 
differential equation: 

,(ߦ)൫ܷܩ కܷ(ߦ), కܷక(ߦ), … ൯ = 0.   (1-4) 
 

According to the modified F-expansion method, it is 
assumed that the solution can be expressed in the form:  ܷ(ߦ) = ܽ଴ +෍ܽ௜ܨ௜(ߦ)ே

௜ୀଵ +෍ܾ௜ିܨ௜(ߦ)ே
௜ୀଵ 	(1 − 5) 

 
where	ܽ଴, ܽ௜and ܾ௜ are constants to be determined. (ߦ)ܨ satisfies Riccati equation: ܨᇱ(ߦ) = ܣ + (ߦ)ܨܤ +  (1-6)  .(ߦ)ଶܨܥ

 
whereܣ,  and C are constants to be determined. The ܤ

prime ′denotes ݀/݀ߦ. Integer ܰcan be determined by 
considering the homogeneous balance between the 
governing nonlinear term(s) and highest order 
derivatives of ܷ(ߦ) in Eq.(1-4). Given different values 
of ܣ,  can be obtained from Eq.(1-6) (see Table 1). To (ߦ)ܨ ,the different Riccati function solution ,ܥ andܤ
determine ܷ(ߦ) explicitly, we take the following steps: 

 
Step I. Substituting (1-5) along with (1-6) into 

Eq.(1-4) and collect coefficients of ܨ௜(ߦ) (݅ =−ܰ,… ,ܰ), then set each coefficient to zero. Equating 
each coefficient of ܨ௜(ߦ) to zero yields a system of 
algebraic equations for ܽ௜(݅ = ܰ,… ,1, 0), ܾ௜(݅ =1,… ,ܰ), ݇௜(݅ = 1,… ,݉) and ߣ. 

 
Step II. Solving the system of algebraic equations, 

probably with the aid of Mathematicaor Maple. ܽ௜ 
(݅ = ܰ,… ,1,0)	and ܾ௜ (݅ = ܰ,… ,1) can be expressed 
by ܣ,  .or the coefficients of ODE(1-4)) ܥ and ܤ
Substituting these results into (1-5), we can obtain the 
general form of travelling wave solutions to Eq.(1-4). 

 
Step III. Selecting ܣ, ,ܤ  from Table 1 (ߦ)ܨ and ܥ

and substituting them along with ܽ௜ (݅ = ܰ,… ,1,0) and ܾ௜ (݅ = ܰ,… ,1) into Eq.(1-5), a series of soliton-like 
solutions, trigonometric function solutions and rational 
solutions to Eq.(1-4) can be obtained. 

 
The modified F-expansion method is more effective 

in obtaining the soliton-like solution, trigonometric 
function solutions, exponential solutions and rational 
solutions of the nonlinear partial deferential equations. 
This method will yield more rich solutions types of the 
nonlinear partial deferential equations. It shows that the 
modified F-expansion method is more powerful in 
constructing exact solutions of NLPDEs.  

Relations between values of ܣ, ,ܤ  and ܥ
corresponding (ߦ)ܨ in Eq.(6) are listed in (Table 1). 
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Results 

2. Exact solutions to Whitham-Broer-Kaup 
coupled system of equation 

The Whitham-Broer-Kaup (WBK) equation is 
written in the form: ݑ௧ + ௫ݑݑ + ௫ݒ + ௫௫ݑߚ = ௧ݒ										,0 + ௫(ݑݒ) + ௫௫௫ݑߙ − ௫௫ݒߚ = 0. (2-7) 

 
where ߙ and ߚ are real constants. Due to the 

convective, dispersive and viscous effects [13], the 
WBK equation is a valuable model of long waves.When 
specific values are taken for the parameters ߙ	and ߚ, 
system (2-7) will be transformed into many important 
mathematical and physical equations. For example, 
when ߙ = 0, ߚ ≠ 0, Eq. (2-7) becomes a classical long 
wave equation describing shallow water with dispersive, 
whereas if ߙ = 1, ߚ = 0,	the system becomes a variant 
Boussinesq equation. Furthermore, many important 
models are extensions of the WBK equation, such as the 
generalized Broer-Kaup equation [12]. 

By using the transformation: ݔ)ݑ, (ݐ = ,ݔ)ݒ    ,(ߦ)ܷ (ݐ = ߦ and  ,(ߦ)ܸ = ݔ +    .ݐߣ
(2-8) 

 
where ߣ is arbitrary constant, and substituting Eq.(2-

8) with Eq.(2-7), there will be a change as follows: 

ߣ కܷ(ߦ) + (ߦ)ܷ కܷ(ߦ) + కܸ(ߦ) + ߚ కܷక(ߦ) = ߣ									,0 కܸ(ߦ) + ൫ܷ(ߦ)ܸ(ߦ)൯క + ߙ కܷకక(ߦ) − ߚ కܸక(ߦ) = 0.                             
(2-9) 

 
where by integrating the first equation of the Eq.(2-

9)  with respect to ߦ, it can be found that: ܸ(ߦ) = ܿଵ − ଵଶ (ܷଶ(ߦ) + (ߦ)ܷߣ2 + ߚ2 కܷ(ߦ)). (2-10) 

 
where ܿଵ is an integral constant. Substituting Eq.(2-

10)  with the second equation of the second Eq.(2-9) 
results in:   (2ܿଵ − (ଶߣ2 కܷ(ߦ) − (ߦ)ܷߣ6 కܷ(ߦ) − 3ܷଶ(ߦ) కܷ(ߦ) ߙ)2+ + (ଶߚ కܷకక(ߦ) = 0. (2-11) 

 
Integrating Eq.(2-11) once yields: (2ܿଵ − (ߦ)ܷ(ଶߣ2 − (ߦ)ଶܷߣ3 − ܷଷ(ߦ) + ߙ)2 (ଶߚ+ కܷక(ߦ) − ܿଶ = 0. (2-12) 
 

where ܿଶ is an integral constant. Considering the 
homogeneous balance between ܷଷ and కܷక in (2-12), 
we suppose that the solution to ordinary differential 
equation (2-12) can be expressed by ܷ(ߦ) = ܽ଴ + ܽଵ(ߦ)ܨ + ܾଵିܨଵ(ߦ). (2-13) 

 
Where ܽ଴, ܽଵand ܾଵare constants to be determined. 

Substituting (2-13) with Eq.(2-12), and using (1-6), the 

Table 1. Relations between values of A, B, C and corresponding F(ξ) in Eq.(6) 
Values of ۯ, ۰, ۱ ۴(૆) ۯ = ૙, ۰ = ૚, ۱ = −૚ 12 + 12 tanh(12 ξ) ۯ = ૙, ۰ = −૚, ۱ = ૚ 12 − 12 coth(12 ξ) ۯ = ૚૛ , ۰ = ૙, ۱ = −૚૛ 

coth(ξ) ± csch(ξ) , tanh(ξ) ± i	sech(ξ) 
ۯ = ૚, ۰ = ૙, ۱ = −૚ tanh(ξ), coth(ξ) 
ۯ = ૚૛ ,۰ = ૙, ۱ = ૚૛ 

sec(ξ) + tan(ξ) , csc(ξ) − cot	(ξ) 
ۯ = −૚૛ ,۰ = ૙, ۱ = −૚૛ 

sec(ξ) − tan(ξ) , csc(ξ) + cot	(ξ) 
ۯ = ૚(−૚), ۰ = ૙, ۱ = ૚(−૚) tan(ξ) (cot(ξ)) 

ۯ = ૙, ۰ = ૙, ۱ ≠ ૙ − ଵେஞା஗(η is anarbitrary constant) 

,ܜܖ܉ܜܛܖܗ܋	ܡ܉ܚ܉ܜܑ܊ܚ܉	ܛܑ	ۯ ۰ = ૙, ۱ = ૙ Aξۯ	ܛܑ	ܡ܉ܚ܉ܜܑ܊ܚ܉	ܜܖ܉ܜܛܖܗ܋, ۰ ≠ ૙, ۱ = ૙ exp(Bξ) − AB  
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left-hand side of Eq.(2-13) can be converted into a finite 
series in ܨ௝(ߦ)(݆ = −3,… ,3). Equating each coefficient 
of ܨ௝(ߦ) to zero yields a system of algebraic equations 
for ܽ଴, ܽଵ, ܾଵ, ܿଵand ܿଶ: 

ଷܨ  ∶ 	−ܽଵଷ + 4ܽଵܥଶ(ߙ + (ଶߚ = ଶܨ ,0 ∶ ଵଶܽߣ3−	 − 3ܽ଴ܽଵଶ + 6ܽଵߙ)ܥܤ + (ଶߚ = ଵܨ ,0 ∶ 	2(ܿଵ − ଶ)ܽଵߣ − 6ܽ଴ܽଵߣ − 3(ܽଵܾଵ + ܽ଴ଶ)ܽଵ +2ܽଵ(ߙ + ଶܤ)(ଶߚ + (ܥܣ2 = ଴ܨ ,0 ∶ 	2(ܿଵ − ଶ)ܽ଴ߣ − 2ܽଵܾଵ)ߣ3 + ܽ଴ଶ)− (ܽ଴ଷ + 6ܽ଴ܽଵܾଵ) + ߙ)2 + (ଶߚ × × ଵܾܥܤ) + (ଵܽܤܣ − ܿଶ = ଵିܨ (2-14) ,0 ∶ 2(ܿଵ − ଶ)ܾଵߣ − 6ܽ଴ܾଵߣ − 3(ܽଵܾଵ + ܽ଴ଶ)ܾଵ ߙ)2+ + ଶܤ)(ଶߚ + ଵܾ(ܣ2 = ଶିܨ ,0 ∶ 	−3(ܽ଴ + ଵଶܾ(ߣ + ߙ)ଵܾܤܣ6 + (ଶߚ = ଷିܨ ,0 ∶ 	−ܾଵଷ + ߙ)ଶܾଵܣ4 + (ଶߚ = 0.        
          

Solving the algebraic equations (2-14) using Maple, 
the following solutions will be obtained: 

Case I: ܽ଴ = ߙඥܤ + ଶߚ − ,ߣ ܽଵ = ߙඥܥ2 + ,ଶߚ ܾଵ =0, ܿଵ = (ଵଶ ଶܤ − ߙ)(ܥܣ2 + (ଶߚ − ଵଶ ଶ, ܿଶߣ = ଶܤ)ߣ2 + ߙ)(ܥܣ2 + (ଶߚ + ߣଶ൫4ߣ ߙඥܤ6− + ଶ൯ߚ −  ଴ଶ.  (2-15)ܽߣ3
 

Case II: ܽ଴ = ߙඥܤ + ଶߚ − 1, ܽଵ = 0, ܾଵ ߙඥܣ2= + ,	ଶߚ ܿଵ = (ଵଶ ଶܤ − ߙ)(ܥܣ2 + (ଶߚ − ଵଶ ଶ, ܿଶߣ = ଶܤ)ߣ2 + ߙ)(ܥܣ2 + (ଶߚ + ߣଶ൫4ߣ ߙඥܤ6− + ଶ൯ߚ −  ଴ଶ. (2-16)ܽߣ3
 

Case III: ܽ଴ = ߙඥܤ + ଶߚ − ,ߣ ܽଵ = ߙඥܣ2 + ,ଶߚ ܾଵ ߙඥܥ2= + ,ଶߚ ܿଵ = ቀଵଶܤଶ − ቁܥܣ2 ߙ)  	× + (ଶߚ − ଵଶ ܿଶ		ଶ,ߣ = ଶܤ)ߣ2 + ߙ)(ܥܣ2 + (ଶߚ ߣଶ൫4ߣ+ − ߙඥܤ6 + ଶ൯ߚ −  ଴ଶ.  (2-17)ܽߣ3
 

Substituting (2-15), (2-16) and (2-17) with Eq.(2-
13), from Table 1, we may obtain many soliton-like 
solutions, trigonometric function solutions, exponential 
solutions and rational solutions to Eq.(2-7) (where we 
left the same type solutions out): 

 
2-1. The soliton-like solutions to Whitham-Broer-

Kaup System 
(1) When ܣ = 0, ܤ = 1, ܥ = −1, from Table 1, (ߦ)ܨ = ଵଶ + ଵଶ tanh(ଵଶ  By case I, the exact solution to .(ߦ

equation (2-7) is given by: ݑଵ(ݔ, (ݐ = ߣ− − ඥߙ + ଶtanh(ଵଶߚ ݔ) +  .((ݐߣ

,ݔ)ଵݒ (ݐ = ଵଶ ߙ) + ଶߚ − (ଶߣ − ଵଶ ,ݔ)ଵଶݑ] (ݐ ,ݔ)ଵݑߣ2+ (ݐ ߙඥߚ2 − + ଶ(1ߚ − tanhଶ(ଵଶ ݔ) +  .[((ݐߣ
 

(2) When ܣ = 0, ܤ = −1, ܥ = 1, from Table 1, (ߦ)ܨ = ଵଶ − ଵଶ coth(ଵଶ  By case I, the exact solution to .(ߦ

equation (2-7) is given by: ݑଶ(ݔ, (ݐ = ߣ− − ඥߙ + ଶcoth(ଵଶߚ ݔ) + ,ݔ)ଶݒ .((ݐߣ (ݐ = − ଵଶ ߙ) + ଶߚ + (ଶߣ − ଵଶ ,ݔ)ଶଶݑ] (ݐ ,ݔ)ଶݑߣ2+ (ݐ ߙඥߚ2  − + ଶ(1ߚ − cothଶ(ଵଶ ݔ) +  .[((ݐߣ
 

(3) When ܣ = ଵଶ , ܤ = 0, ܥ = −ଵଶ, from Table 1, F(ξ) = coth(ߦ) ± csch(ߦ) 	ݎ݋	 tanh(ξ) ± i	sech(ξ). By 
case I, the exact solution to equation (2-7) is given by: ݑଷ(ݔ, (ݐ = ߣ− − ඥߙ + ݔ)[coth	ଶߚ + (ݐߣ ݔ)ℎܿݏܿ± + ,ݔ)ଷݒ .[(ݐߣ (ݐ = ଵଶ ߙ) + (ଶߚ − ଵଶ ,ݔ)ଷଶݑ] (ݐ + ,ݔ)ଷݑߣ2 (ݐ ߙඥߚ2  − + ଶ(1ߚ − cothଶ(ݔ + (ݐߣ ∓ ݔ)ℎܿݏܿ ݔ)ℎݐ݋ܿ(ݐߣ+ + ,ݔ)ସݑ .[((ݐߣ (ݐ = ߣ− − ඥߙ + ݔ)[tanh	ଶߚ + (ݐߣ ݔ)ℎܿ݁ݏ	݅± + ,ݔ)ସݒ .[(ݐߣ (ݐ = ଵଶ ߙ) + (ଶߚ − ଵଶ ,ݔ)ସଶݑ] (ݐ + ,ݔ)ସݑߣ2 (ݐ ߙඥߚ2  − + ଶ(1ߚ − tanhଶ(ݔ + (ݐߣ ∓ ݔ)ℎܿ݁ݏ	݅ ݔ)ℎ݊ܽݐ(ݐߣ+ +  .[((ݐߣ
 

By case II, the exact solution to equation (2-7) can 
be written as: ݑହ(ݔ, (ݐ = −1 + ඥߙ + ݔ)ℎݐ݋ܿ]ଶߚ + (ݐߣ ݔ)ℎܿݏܿ± + ,ݔ)ହݒ .ଵି[(ݐߣ (ݐ = ଵଶ ߙ) + (ଶߚ − ଵଶ ,ݔ)ହଶݑ] (ݐ + ,ݔ)ହݑߣ2 (ݐ ߙඥߚ2  − + ଶ(ଵିୡ୭୲୦మ(௫ାఒ௧)∓௖௦௖௛(௫ାఒ௧)௖௢௧௛(௫ାఒ௧)൫ୡ୭୲୦(௫ାఒ௧)±௖௦௖௛(௫ାఒ௧)൯మߚ ,ݔ)଺ݑ .[( (ݐ = −1 + ඥߙ + ݔ)ଶ[tanhߚ + (ݐߣ ݔ)ℎܿ݁ݏ	݅± + ,ݔ)଺ݒ .ଵି[(ݐߣ (ݐ = ଵଶ ߙ) + (ଶߚ − ଵଶ ,ݔ)଺ଶݑ] (ݐ + ,ݔ)଺ݑߣ2 (ݐ ߙඥߚ2  − + ௦௘௖௛(௫ାఒ௧)൯మ	௦௘௖௛(௫ାఒ௧)௧௔௡௛(௫ାఒ௧)൫୲ୟ୬୦(௫ାఒ௧)±௜	௜	ଶ(ଵି୲ୟ୬୦మ(௫ାఒ௧)∓ߚ )]. 
 

By case III, the exact solution to equation (2-7) will 
be shown as follows: ݑ଻(ݔ, (ݐ = ߣ− − ඥߙ + ݔ)ଶ[cothߚ + (ݐߣ ݔ)ℎܿݏܿ± + [(ݐߣ +  ඥߙ + ݔ)ଶ[cothߚ + (ݐߣ ± ݔ)ℎܿݏܿ + ,ݔ)଻ݒ  .ଵି[(ݐߣ (ݐ = ଵଶ ߙ) + (ଶߚ − ଵଶ ,ݔ)଻ଶݑ] (ݐ + ,ݔ)଻ݑߣ2 (ݐ ߙඥߚ2  − + ଶ(1ߚ − cothଶ(ݔ + (ݐߣ ∓ ݔ)ℎܿݏܿ ݔ)ℎݐ݋ܿ(ݐߣ+ + ((ݐߣ −  
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For direct-viewing analysis, we provide the figures 
of ݑଵଷ(ݔ, ,ݔ)ଵସݑ and(ݐ ߙ where we choose ,(ݐ = 2, ଶߚ =2 and ߣ = 2. 

Where ߙ and ߚ are real constants, ߣ is arbitrary 
constants in section 2.1 and 2.2. 

 
2-3. The rational solutions to Whitham-Broer-

Kaup system 
(1) When ܣ = ܤ = 0, ܥ ≠ 0, from Table 1, (ߦ)ܨ =− ଵ஼కାఎ(ߟ	is an arbitrary constant). By case I, the exact 

solution to equation (2-7) is obtained as: ݑଶହ(ݔ, (ݐ = ߣ− + ߙඥܥ2 + −)ଶߚ ଵ஼(௫ାఒ௧)ାఎ), ݒଶହ(ݔ, (ݐ = − ଵଶ ଶߣ − ଵଶ ଶହଶݑ] ,ݔ) (ݐ + ,ݔ)ଶହݑߣ2 (ݐ ߙඥܥߚ4+ + )ଶߚ େ(஼(௫ାఒ௧)ାఎ)మ)]. 
 

where ߙ and ߚ are real constants,and  ߣ and ܥ are 
arbitrary constants. 

 
(2) When ܥ = ܤ = 0 and ܣ is an arbitrary constant, 

from Table 1, (ߦ)ܨ =  By case II, the exact solution .ߦܣ
to equation (2-7) can be obtained that: ݑଶ଺(ݔ, (ݐ = −1 + 2ඥߙ + )ଶߚ ଵ௫ାఒ௧), ݒଶ଺(ݔ, (ݐ = − ଵଶ ଶߣ − ଵଶ ଶ଺ଶݑ] ,ݔ) (ݐ + ,ݔ)ଶ଺ݑߣ2 (ݐ ߙඥߚ4− + )ଶߚ ଵ(௫ାఒ௧)మ)]. 
 

where ߙ and ߚ are real constants, ߣ, are arbitrary 
constants. 

 
2-4. The exponential solutionsto Whitham-Broer-

Kaup system 
(1) When ܤ ≠ 0, ܥ = 0 and ܣ is anarbitrary 

constant, from Table 1, (ߦ)ܨ = ୣ୶୮(஻క)ି஺஻ . By case II, 

the exact solution to equation (2-7) is found to be: ݑଶ଻(ݔ, (ݐ ߙඥܤ)= + ଶߚ − 1) + ߙඥܣ2 + ଶ(ୣ୶୮(஻(௫ାఒ௧))ି஺஻ߚ ,ݔ)ଶ଻ݒ .( (ݐ = − ଵଶ ଶߣ − ଵଶ ଶ଻ଶݑ] ,ݔ) (ݐ + ,ݔ)ଶ଻ݑߣ2 (ݐ ߙඥܣߚ4− + ଶ(exp(B(xߚ + λt)))]. 
 

By case III, the exact solution to equation (2-7) can 
be written as: ݑଶ଼(ݔ, (ݐ ߙඥܤ)= + ଶߚ − (ߣ + ߙඥܣ2 + ଶߚ ቀୣ୶୮(஻క)ି஺஻ ቁିଵ. ݒଶ଼(ݔ, (ݐ = − ଵଶ ଶߣ − ଵଶ ଶ଼ଶݑ] ,ݔ) (ݐ + ,ݔ)ଶ଼ݑߣ2 (ݐ ߙඥܣߚ4− + )ଶߚ ஻మ ୣ୶୮൫୆(୶ାλ୲)൯(ୣ୶୮(୆(୶ାλ୲)ି୅)మ)]. 

 
where ߙ and ߚ are real constants,and  ߣ and ܥ are 

arbitrary constants. 
 

Discussion 

In this study, we aimed to present an improved F-
expansion method for generating traveling wave 
solutions of nonlinear partial differential equation 
(NLPDE). The merit of the method is that it is 
independent of the integrability of the coupled NLPDEs, 
so it can be used to solve both integrable and non-
integrable coupled NLPDEs. This new method is used 
to get some types of traveling wave solutions including 
the periodic waves and solitary waves for the Whitham-
Broer-Kaup System. It is found that the coupled 
nonlinear system possesses many more solution 
structures. For each coupled system investigated, we are 
able to replicate solutions previously derived in 
literature and discover many new ones as well. Figures 
(1-2) graphically exhibit the representative structures of 
each explicit solution found for some special parameter 
values. Moreover, with the aid of computer symbolic 
systems (Mathematicaor Maple), the method can be 
conveniently operated. 

Altough these new solutions may be important for 
physical problems, this study suggests that one may find 
different solutions by choosing different methods. 
Therefore, this method can be utilized to solve many 
systems of nonlinear partial differential equations 
arising in the theory of soliton and other related areas of 
research. Finally, it is worthwhile to mention that the 
proposed method is straightforward and concise.In 
future studies that we plan to carry out, more 
applications to other nonlinear physical systems would 
be considered.  
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