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Abstract

A modified F-expansion method to find the exact traveling wave solutions of
two-component nonlinear partial differential equations (NLPDESs) is discussed.
We use this method to construct many new solutions to the nonlinear Whitham-
Broer-Kaup system (1+1)-dimensional. The solutions obtained include Jacobi
elliptic periodic wave solutions which exactly degenerate to the soliton solutions,
triangular periodic wave solutions, exponential solutions and rational solutions
under certain limitet conditions. In addition, some figures of partial solutions are
provided for direct-viewing analysis. The method can also be extended to other
types of nonlinear evolution equations in mathematical physics.
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(1+1)-dimensional

Introduction

The discovery of the soliton, its remarkable
properties and the incredible richness of structure are all
included in its mathematical description. The story
begins with the observation by John Scott Russell of
"the great wave of translation". He states:

“...dts height gradually diminished, and after a chase
of one or two miles 1 lost it in the windings of the
channel. Such, in the month of August 1834, was my
first chance interview with that singular and beautiful
phenomenon which [ have called the Wave of
Translation, a name which it now very generally bears
[11]...”

The appearance of solitary wave solutions in nature
is quite common. Refereces can be made to Bell-shaped

sech-solutions and kink-shaped tanh-solutions model
wave phenomena in fluids, plasmas, elastic media,
electrical circuits, optical fibers, chemical reactions,
bio-genetics, etc. The travelling wave solutions of the
Korteweg—de Vries (KdV) and Boussinesq equations,
which describe water waves, are famous examples as
well.

In recent years, other methods have been developed,
such as the Backlund transformation method [9],
Darboux transformation [8], tanh method [10, 4],
extended tanh function method [5], Exp-function
method [3, 7], the generalized hyperbolic function [6],

the variable separation method [10], (%,) method [2] and

the extended Jacobi elliptic function expansion
method[1]. All the above-mentioned approaches are
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based on the assumption that the solutions can be
uniformly expressed in terms of some special ansatz.
Therefore, the original partial differential equations
(PDE’s) can be transformed into a set of algebraic
equations through balancing the same order of the
ansatz, which yields the explicit expressions of the
waves. The difference between these methods is
attributed to the different ansatz introduced. For
example, in the tanh-coth method, the ansatz can be
written in as combinations of tanh and coth functions,
while in the Jacobi elliptic function expansion method,
the ansatz can be expressed in the form of Jacobi elliptic
functions.

From our point of view, all these methods have some
merits and demerits with respect to the problem
considered and there is no unified method that can be
used to deal with all types of NLPDEs. That is why
anytime that an improvement is made in a particular
method to allow it to recover some new solutions to the
NLPDEs, it is always welcomed. The purpose of this
paper is to apply a modified F-expansion method to
coupled families of NLPDEs.

The aim of this paper is organized as follows: In
Section 2,at first, we briefly present the steps of the
modified F-expansion method. In Section 3, by using
the results obtained in Section 2, attempts are made to
apply the method to solve the Whitham-Broer-Kaup
system (1+1)-dimensional.

1. Description of Method

Consider a general nonlinear partial differential
equation with independent variables
x = (t, %1, X3, ..., X;) and dependent variables u, in the
form:
F(u, Upy Uy Uy e s Uy Uy Uiy o

Uty Uetr Unyxpr Uy xy oo Uty ) =0, (1-1)

where u = u(x, t) is the solution of nonlinear PDE
Eq.(1-1). Furthermore, the transformations which are
used are as follows:
u(xqy, Xg, o, Xy t) = U(E), & = ki (xq + kyxy + -+
KXy — At). (1-2)

where 4 and k; are constants. Using the chain rule, it
can be found that:
a

a a a a
7 () = —kdg: (), 6_951(') =ki5: (), a_xz(') =
a
klkza_g(')""' (1-3)
At present, Eq.(1-3) is employed to change the

nonlinear PDE Eq.(I-1) to nonlinear ordinary
differential equation:
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G(UE),Ue(8), Uge(§),..) = 0. (1-4)

According to the modified F-expansion method, it is
assumed that the solution can be expressed in the form:

UE) = ag+ ) aFi©)+ ) bFE) (1-5)
i=1 i=1

where a,, a;and b; are constants to be determined.
F (&) satisfies Riccati equation:
F'(§) = A+ BF(&) + CF%(&). (1-6)

where4, B and C are constants to be determined. The
prime 'denotes d/d¢. Integer Ncan be determined by
considering the homogeneous balance between the
governing nonlinear term(s) and highest order
derivatives of U(§) in Eq.(1-4). Given different values
of A,Band C, the different Riccati function solution,
F(&) can be obtained from Eq.(1-6) (see Table 1). To
determine U (&) explicitly, we take the following steps:

Step I. Substituting (1-5) along with (1-6) into
Eq.(1-4) and collect coefficients of F!(§) (i =
—N, ..., N), then set each coefficient to zero. Equating
each coefficient of F!(§) to zero yields a system of
algebraic equations for a;(i =N,...,1,0),b;(i =
1,..,N),k;(i=1,..,m)and A

Step II. Solving the system of algebraic equations,
probably with the aid of Mathematicaor Maple. a;
(i=N,..,1,0)and b; (i=N,...,1) can be expressed
by A,B and C (or the coefficients of ODE(1-4).
Substituting these results into (1-5), we can obtain the
general form of travelling wave solutions to Eq.(1-4).

Step III. Selecting A,B,C and F(¢) from Table 1
and substituting them along with a; (i = N, ...,1,0) and
b; (i=N,...,1) into Eq.(1-5), a series of soliton-like
solutions, trigonometric function solutions and rational
solutions to Eq.(1-4) can be obtained.

The modified F-expansion method is more effective
in obtaining the soliton-like solution, trigonometric
function solutions, exponential solutions and rational
solutions of the nonlinear partial deferential equations.
This method will yield more rich solutions types of the
nonlinear partial deferential equations. It shows that the
modified F-expansion method is more powerful in
constructing exact solutions of NLPDEs.

Relations between values of A,B,C
corresponding F(§) in Eq.(6) are listed in (Table 1).

and
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Table 1. Relations between values of A, B, C and corresponding F(€) in Eq.(6)

Values of A, B, C F(?)
A=0B=1,C=-1 1 1 1
> + > tanh(2 %)
A=0B=-1C=1 1 1 1
573 coth(2 %)
1 1 i
A=~ B=0C= -3 coth(%) + csch(), tanh(&) + isech(&)
A=1B=0C=-1 tanh(%), coth(%)

A—1 B—OC—1
_2’ - Y, _2

A= 1 B=0,C= 1
- 2! - ) - 2

A=1(-1),B=0,C=1(-1)

A=0B=0,C=+0

sec(€) + tan(¥), csc(®) — cot(¥)
sec() — tan(¥), csc(¥) + cot(¥)

tan(§) (cot(¥))

1 . .
———(n is anarbitrary constant)

C&+n
A is arbitaray constant, B=0,C =0 A%
A is arbitaray constant,B + 0,C = 0 exp(BE) — A
B

Results

2. Exact solutions to Whitham-Broer-Kaup
coupled system of equation

The Whitham-Broer-Kaup (WBK) equation is
written in the form:
Up + Uy, + U, + fuy, =0, 2-7)
Ve + (W), + AUyyy — BV = 0.

where a and S are real constants. Due to the
convective, dispersive and viscous effects [13], the
WBK equation is a valuable model of long waves.When
specific values are taken for the parameters a and f3,
system (2-7) will be transformed into many important
mathematical and physical equations. For example,
when a = 0,8 # 0, Eq. (2-7) becomes a classical long
wave equation describing shallow water with dispersive,
whereas if @ = 1, = 0, the system becomes a variant
Boussinesq equation. Furthermore, many important
models are extensions of the WBK equation, such as the
generalized Broer-Kaup equation [12].

By using the transformation:
u(x, t) =UE), v(x,t)=V(), andé = x + At.
(2-8)

where A is arbitrary constant, and substituting Eq.(2-
8) with Eq.(2-7), there will be a change as follows:
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AU() + U U (&) + Ve () + BU(E) =0,
AVe(§) + (U(f)V(f))f + aUgg:(§) — BV () = 0.
(2-9)

where by integrating the first equation of the Eq.(2-
9) with respect to &, it can be found that:

V() = ¢, =5 (U(E) + 22U () + 2BU(9). (2-10)

where c; is an integral constant. Substituting Eq.(2-
10) with the second equation of the second Eq.(2-9)
results in:
(2e, — 24)U(§) — 62U (U (§) — 3UX()U(§) +

Integrating Eq.(2-11) once yields:
(2¢; — 222U (&) — 3AU?(€) — U3(&) + 2(a +
B Uge(§) = c; = 0. (2-12)

where ¢, is an integral constant. Considering the
homogeneous balance between U3 and Ugs in (2-12),
we suppose that the solution to ordinary differential
equation (2-12) can be expressed by
U@ =ao+ a;F(§) + b F71(§). (2-13)

Where a,, a;and b;are constants to be determined.
Substituting (2-13) with Eq.(2-12), and using (1-6), the
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left-hand side of Eq.(2-13) can be converted into a finite
series in F/(&)(j = —3, ...,3). Equating each coefficient
of FJ (&) to zero yields a system of algebraic equations
for ay, a4, b1, cyand c;:

F3: —a} +4a,C*(a + p?) =0,

F?: —31a? — 3aya? + 6a,;BC(a + f?) =0,

F1: 2(¢; — 2®a, — 6aga; A — 3(ayby + ad)a, +
2a,(a + B?)(B? + 24C) = 0,
F%: 2(¢; — A®ay — 32(2a, by + a3)

— (a3 + 6aga;by) + 2(a + B?) x

x (BChy + ABa,) — ¢, = 0, (2-14)

F~1:2(c; — A%)by — 6agby A — 3(a by + ad)b, +
2(a+ B?)(B? + 24)b, = 0,

F~2: —=3(ay + A)b? + 6ABby(a + p?) =0,

F3: —b} +44%b,(a + B?) = 0.

Solving the algebraic equations (2-14) using Maple,
the following solutions will be obtained:
CaseI:

ay=BJa+pB?—-2a, =2CJa+B?%b;, =
0,c, = GB2 - 240)(a + p2) — 212,
c; = 2A(B? + 2AC)(a + ) + A2(41 —

6B\a + f2) — 31a}. (2-15)

Case II:
ap =BJa+p2—1,a, =0,b, =
24\Ja+ B c; = G B2 — 24C)(a + 2) — S 22,
c; = 2A(B? + 2AC) (a + B?) + 12(41 —

6B\/a + f2) — 3ak. (2-16)

Case III:
ap = BJa+p2—Aa, =24Ja+pLb, =
2CJa+ 7 ¢; = (5B? - 24C) x
(@ +B2) =522, ¢y = 24(B? + 24C) (@ + B?) +
2%(42 — 6ByJa + 2) — 3a3. (2-17)

Substituting (2-15), (2-16) and (2-17) with Eq.(2-
13), from Table 1, we may obtain many soliton-like
solutions, trigonometric function solutions, exponential
solutions and rational solutions to Eq.(2-7) (where we
left the same type solutions out):

2-1. The soliton-like solutions to Whitham-Broer-
Kaup System

(1) When A=0,B=1,C =-1, from Table 1,
F(&) = %+ %tanh(% £). By case 1, the exact solution to
equation (2-7) is given by:
u (x,t) = —-A1—Ja+ [)’Ztanh(% (x + At)).
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v (x,t) = %(a + B2 —22) —%[u%(x, t) +
20uy (x,t) — 2B+ + B7(1 — tanh?(; (x + At))].

(2) When A=0,B=-1,C =1, from Table 1,
F(&) = %— %coth(% £). By case 1, the exact solution to
equation (2-7) is given by:

u,(x,t) = —A—Ja+ [)’Zcoth(i (x + At)).
vy(x,t) = —%(a + B2+ 2% —i[u%(x, t) +
22u,(x, t) —

2B Ja + BZ(1 - coth2(§ (x + AD)].

(3) When A=—,B=0,C=—, from Table I,
F(&) = coth(&) + csch(é) or tanh(§) +isech(§). By
case 1, the exact solution to equation (2-7) is given by:

us(x,t) = =12 —Ja+ B? [coth(x + At) +
csch(x + At)].

v3(x, t) = %(a + B%) —%[u%(x, t) + 2uz(x,t) —
2B a+ B2(1 — coth?(x + At) F csch(x +
At)coth(x + At))].

uy(x, t) = =1 —Ja + B? [tanh(x + At) +

i sech(x + At)].

vu(x, t) = %(a + 6% — % [uz(x,t) + 2Au,(x, t) —

2B+ a + B2(1 — tanh?(x + At) ¥ i sech(x +
At)tanh(x + At))].

By case 11, the exact solution to equation (2-7) can
be written as:

us(x,t) = =14/ a + B?[coth(x + At)
csch(x + At)]™L.
vs(6, ) = 3 (a + B7) — 3 [ud (e, ) + 2Aus (x, ) —

1—coth? (x+At)Fesch(x+At)coth(x+At)
2\ a + B( )]

(coth(x+/1t)icsch(x+lt))2
ug(x,t) = -1+ a + B?[tanh(x + At) +
i sech(x + At)]™L.
v(x, t) = %(af + B%) — % [u2(x,t) + 2Aug(x, t) —

1—tanh?(x+At)F i sech(x+At)tanh(x+At)
2B\ a+ B3( )]

(tanh(x+At)+i sech(x+ﬂ.t))2

By case 111, the exact solution to equation (2-7) will
be shown as follows:

u,(x, t) = -1 — \/rﬁz[coth(x + At) +

csch(x + At)] +

Ja + B2%[coth(x + At) + csch(x + At)]™L.

v (x, t) = %(a +£2) - % [uz(x,t) + 2Au, (x, t) —

26+ a + B%(1 — coth?(x + At) F csch(x +
At)coth(x + At)) —
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1-coth? (x+At)Fcsch(x+At)coth(x+At)
2B\ a+ B*( )]

(coth(x+/1t)icsch(x+lt))2
ug(x,t) = =2 — y/a + f?[tanh(x + At) +
i sech(x + At)] +
Ja+ p2%[tanh(x + At) + i sech(x + At)] L.
vg(x, t) = %(a + B%) — % [ud(x,t) + 2Aug(x, t) —
2B+Ja + B2(1 — tanh?(x + At) F i sech(x +
At)tanh(x + At)) —

1—tanh?(x+At)F i sech(x+At)tanh(x+At)
2p\a + B*( )]

(tanh(x+At)+i sech(x+At))2

(4) When A=1,B=0,C =-1, from Table 1,
F(§) = tanh(¢) or coth(¢). By case II, the exact
solution to equation (2-7) can be written as:

Ug(x,t) = —1 4 2y a + B?coth(x + At).
vo(x,t) = 2(a + f2) — 2 2% — - [ud (x,1) +
2uq(x, t) +

2B+Ja + BZ(1 — coth?(x + At)].

Uyo(x, t) = =1+ 2\/a + B?tanh(x + At).
vio(6,0) = 2(a + ) = 322 = S [ufo(x, ) +
2 uq0(x, t) +

2B+Ja + B2(1 — tanh?(x + At)].

By case 111, the exact solution to equation (2-7) is
given by:
Uy (x,t) = =4+ 2\/a + B? [coth(x + At) —
tanh(x + At)].
100 t) = 2(a + 1) = 322 = S [ud (o ) +
2Auq,(x, ) +

2B+ a + B%(tanh?(x + At) — coth?(x + At))].

Uy (x,t) = =4+ 2y a + B? [tanh(x + At) —
coth(x + At) ].

V1206 t) = 2(a + f2) — 522 — 2 [ud,(x, 1) +
22uq,(x, t) +
2B+ a + B%(coth?(x + At) — tanh?(x + At))].

For direct-viewing analysis, we provide the figures
of us(x, t), where we choose @ = 2,82 =2and A = 1.

2-2. The trigonometric function solutions to
Whitham-Broer-Kaup system

(1) When A=§,B=o,c=§, from Table 1,

F (&) = sec(&) + tan(§) or csc(¢é) — cot(€). By case I,
the exact solution to equation (2-7) is given by:

Uz, t) = =2+ Ja + B? [sec(x + At) +

tan(x + At) ],

vis(x,6) = =2 (a + B2+ 2%) =S [ufs(x,0) +

2 u 3 (x, t) +

2B+ a + BZ(1 + tan?(x + At) + sec(x + At) tan(x + At))]

Uia(x,t) = =2+ Ja + B? [csc(x + At) —
cot(x + At) ].

V1306 8) = =3 (@ + B2+ 2%) — S [udy (x,0) +
22Uy, (x, t) +
2B+ a + B%(—1 + cot?(x + At) — csc(x + At)cot(x + At))]

By case 11, the exact solution to equation (2-7) can
be written as:

-1 -2 05 0 -05 -1

Figure 1. Graphics of soliton-like solution ugare shown at “+” and “-”, respectively
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us(x, t) = =1+ /a + B? [sec(x + At) +
tan(x + At)]7L.

vis(n,t) = =3 (@ + B2+ 4%) — 2 [uls(x, £) +
2uq5(x, t) —

1+tan?(x+At)+ sec(x+At)tan(x+At)
2p\a + p3( )]

(tan(x+lt)+sec(x+lt))2

ue(x,t) = -1+ a+fp? [csc(% (x + At)) —
cot(% (x + )]t

vis(0t) = =3 (@ + B2+ A%) — 2 [ufs(x, 1) +
22U 6(x, t) —
Zﬁm(—lﬂ:otz(x+lt)—csc(x+/1t)cot(x+/1t))]’

(csc(x+lt)—cot(x+lt))2

A. Aasaraai et al.

(2) When 4 = —%,B =0,C= —g, from Table 1,

F (&) = sec(¢é) — tan(&) or csc(€) + cot(¢). By case 1,
the exact solution to equation (2-7) will be shown as

follows:

U, (x,t) = =1 —Ja+ B? [sec(x + At) —
tan(x + At) ].

v, (0, t) = =5 (@ + B2+ A2) — 2 [ud, (x, 1) +
2uq,(x, t) —

2B+ a + B2(—1 — tan?(x + At) + sec(x + At)tan(x + At))]

ug(x, t) = =4 —Ja + B? [csc(x + At) +
cot(x + At) ].

vig(,t) = =2 (a + B2 + A2) -~ [ude(x, t) +
2/1u18(x, t) -

2B+ a + B2(1 — cot?(x + At) — csc(x + At)cot(x + At))]

300+
200+

100

-100—

-1-050 05

Figure 2. (a) Graphic of the periodic solution u;,

352

By case 11, the exact solution to equation (2-7) can

be written as:

Upo(x, t) = —1—/a + B? [sec(x + At) —
tan(x + At)] %,

vis (o, t) = — (@ + 2+ 12) — S [udy(x, t) +
2 uq9(x, t) +

—1-tan?(x+At)+ sec(x+At)tan(x+At)
2B\ a + p2( )]

(sec(x+At)— tan(x+lt))2

Uyo(x,t) = —1—
cot(x + At)]™L,
Va0 (%, ) = =3 (a + B2+ 22) — 2 [udo (e 1) +
2 uy0(x, t) +

1—cot?(x+At)—csc(x+At)cot(x+At)
2B\ a+ B3( )]

(csc(x+lt)+cot(x+lt))2

a+ B2 [csc(x + At) +

(3) When A=1,B=0,C =1, from Table 1,
F(¢) =tan(¢). By case 1I, the exact solution to

equation (2-7) is found to be:

Uy (x, t) = =1+ 2,/a + B?cot(x + At).

Va1 (x,8) = —2(a + )= A2 =2 [ud (6 6) +
22Uy (x, t) —

4B Ja + B2(1 + cot?(x + At))].

given by:

Uy (X, t) = =1 — 2 \Ja + B? [cot(x + At) +
tan(x + At)].

V30 (x,t) = —2(a + )= A =~ [ud, (x, 1) +
ZAu24(x, t)_

120+
100—

Lo oy 50 15

x f

(b) Graphic of the periodic solution 1,3

J. Sci. . R. Iran

By case 111, the exact solution to equation (2-7) is
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4B/ a + B2(2 — cot?(x + At)+tan?(x + At))].

For direct-viewing analysis, we provide the figures
of uy3(x, t)and u,4(x, t), where we choose a = 2, 8% =
2and A = 2.

Where a and f are real constants, A is arbitrary
constants in section 2.1 and 2.2.

2-3. The rational solutions to Whitham-Broer-
Kaup system
(1) When A =B =0,C # 0, from Table 1, F(§) =

(n is an arbitrary constant). By case 1, the exact

C§+
solution to equation (2-7) is obtained as:
_ 2(_ Y
Ups(x,t) = =4+ 2Cya + f?( c(x+At)+n)

Vys(x,t) = — glz -3 [uzs(x; t) + 2Auys(x, t) +
/ 2 ¢
4BC a+ ‘B ((C(x+lt)+n)2)]'

where a and f are real constants,and A and C are
arbitrary constants.

(2) When C = B = 0 and A is an arbitrary constant,
from Table 1, F(&) = A¢. By case 11, the exact solution
to equation (2-7) can be obtained that:

Uy, t) = =14+ 2\/a+ ﬁz(m)

Vye(x, 1) = —%/12 — % [u2e(x, t) + 2 uyg(x, t) —

4+ B ()]

where a and 8 are real constants, A, are arbitrary
constants.

2-4. The exponential solutionsto Whitham-Broer-
Kaup system
(1) When B#0,=0 and A 1is anarbitrary

constant, from Table 1, F(§) = eXP(IZé)—A
the exact solution to equation (2-7) is found to be:
Upy (x, t) =

B+ B2 — 1) + 24fa + pF(EREEDA)

vy, (x, 1) = —%/12 - % [uz,(x,t) + 2Auy, (x,t) —
4BA\/a + B%(exp(B(x + At)))].

. By case 11,

By case 111, the exact solution to equation (2-7) can
be written as:

Upg(x, t) = B
(Bya+p2—2) +24\/a + p? (_e"p(f)‘/*) ,

Vag(x, t) = _112 - i[uﬁg(x t) + 2uyg(x, t) —
T2 B exp(B(x+kt))
4ﬁA a+ ‘B ((exp(B(X+M) A)Z)]

where a and f are real constants,and A and C are
arbitrary constants.

Discussion

In this study, we aimed to present an improved F-
expansion method for generating traveling wave
solutions of nonlinear partial differential equation
(NLPDE). The merit of the method is that it is
independent of the integrability of the coupled NLPDEs,
so it can be used to solve both integrable and non-
integrable coupled NLPDEs. This new method is used
to get some types of traveling wave solutions including
the periodic waves and solitary waves for the Whitham-
Broer-Kaup System. It is found that the coupled
nonlinear system possesses many more solution
structures. For each coupled system investigated, we are
able to replicate solutions previously derived in
literature and discover many new ones as well. Figures
(1-2) graphically exhibit the representative structures of
each explicit solution found for some special parameter
values. Moreover, with the aid of computer symbolic
systems (Mathematicaor Maple), the method can be
conveniently operated.

Altough these new solutions may be important for
physical problems, this study suggests that one may find
different solutions by choosing different methods.
Therefore, this method can be utilized to solve many
systems of nonlinear partial differential equations
arising in the theory of soliton and other related areas of
research. Finally, it is worthwhile to mention that the
proposed method is straightforward and concise.In
future studies that we plan to carry out, more
applications to other nonlinear physical systems would
be considered.
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