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Abstract 

In this article we introduce the notion of n-capable groups. It is shown that every 
group G admits a uniquely determined subgroup (〖Z^n)〗^* (G) which is a 
characteristic subgroup and lies in the n-centre subgroup of the group G. This is 
the smallest subgroup of G whose factor group is n-capable. Moreover, some 
properties of n-central extension will be studied. 
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Introduction 

In 1979 Fay and Waals [3]	introduced the notion of the n-potent and the n-centre subgroups of a group G, for a 
positive integer n, respectivelyas follows: 
 G =< [x, y ]|	x, y ∈ G >, 
 Z (G) = {x ∈ G|	xy = y x, ∀y ∈ G}, 
 
where	[x, y ] = x y xy . It is easy to see that G  is a 
fully invariant subgroup and Z (G) is a characteristic 
subgroup of group G. In the case n = 1, these subgroups 
will be G 	and Z(G), the drive and centre subgroups of G, respectively. If G = G,	then G is said to be n-perfect. 
Let H be a subgroup of G, then [H, G ]	is defined as 
follows: 
 [H, G ] =< [h, g ]|	h ∈ H, g ∈ G >, 
 
and in particular if	H = G, we get G .	The following 
lemma is similar to the Lemma 2.1 of [5]. 
 
Lemma	 . .		Let G	and H be two groups and N be a 
normal subgroup of G. Then 

 		(i)		G = {1} ⟺ Z (G) = G,	 		(ii)	(G ∕ N) = ∕ N, 		(iii)		N ⊆ Z (G) ⟺ [N, G ] = 1, 		(iv)		Z (G × H) = Z (G) × Z (H).  
 

Materials and Methods 
 .		 -capability 
Baer [1] initiated an investigation of the question 
"which conditions a group G must be fulfill in order to 
be isomorphic with the group of inner automorphisms of 
a group E? As InnE ≅ E⁄ (E), it is equivalent to 
study when G ≅ 	E/Z(E). By Hall and Senior [4] such a 
group is called capable. Let n be a positive integer, this 
notion can be generalized as follows: 
Definition . .		A group G is said to be n-capable if 
there exists a group E such that G ≅ 	E/Z(E). Consider 
the homomorphism ψ ∶ E ⟶ G	such that	Z (E) includes 
the kernel of  ψ. The intersection of all subgroups of G 
of the form	ψ(Z (E)), for every such  ψ, denoted	 by ( )∗( ).  
 
The group G is said to be n-unicentral if ( )∗( ) =( ). It is easy to see that ( )∗( )		is a characteristic 
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subgroup of  included in 	( ),	see	[6]. 
The following theorem is useful in the sense that the 
quotient group  by ( )∗( ) is -capable which is a 
generalized version of the work of Beyl, Feglner and 
Schmid in	[2] and similar to the work of Mirebrahimi 
and Mashayekhy [7] in the case of varieties of groups, 
see also [8] for more investigations. 
 
Theorem . .  Let 	be normal subgroup of  and /  be -capable ( ∈ 	).			If = ⋂ ∈ , then /  
is	 -capable. 
 
Proof. By definition of -capability, for any ∈ , there 
exists the following short exact sequence 
 1 → ( ) ⊂→ → 	 / 	→ 1.	
 
Let B = ∏ ∈ ( ), and 
 A	 = {(e ) 	∈ ∏ ∈ |	∃	g ∈ G		s. t		Ψ (e ) = gH , ∀i ∈ I},  
 
Where	∏ 	∈ is the cartesian product of the groups , . Clearly 	 ⊆ 	 . For any ∈ , we can choose the 
elements e , 	such that Ψ e , = gH.	Thus e =e , ∈ 	∏ ∈ . Also it is clear that the map 
 G ∕ N ⟶ A ∕ B, gN ⟶ e B 
 
is an isomorphism. Now, as = ( ), we conclude 
that /  is -capable. 
 
Theorem 1.3.	( )∗( )	is the least subgroup lies in the 

-centre of  such that /( )∗( )	is an	 -capable 
group. 

Proof. Let 1	 → 	 	 → 	 	 → 	 	→ 	1	be an -central 
extension by , i.e.	 	 ⊆ ( ). 
By isomorphism and Theorem 2.2z it is clear that /( )∗( )		is -capable. Now let  be a normal 
subgroup of , where /  is -capable. Therefore, 
there exists an -central extension  

    														1 → 	 ( ) ⟶ 	 → 	 / 	 → 1. 
 
Let E	 = {(g, h) ∈ 	G	 × 	H	|	gN = 	φ	(h)} and  be the 
projection map ( , ℎ) ⟼ . Then 1	 → 	 → 	 	 → 	 → 1 
 
is	 -central extension, since 	( × 	 ) = 	 ( ) ×	 	( ). Let ( , ℎ) ∈ 	 	( ), ( , ℎ ) ∈ ×  such 
that (ℎ ) = . Thus, we have 
 (1,1) = [(	 , ℎ), (	 , ℎ ) ] = ([	 , ], [ℎ, ℎ ]).	

 
 Therefore [ℎ, ℎ ] = 1, ∀ℎ ∈ 	  and then	ℎ	 ∈ 	( ). 
Now we have  ( 	( )) 	⊆ 	 	. Thus by the definition (	 )∗( ) ⊆ Z (E) 	⊆ , which completes the 
proof.  
 
 An immediate necessary and sufficient condition for a 
group G to be n-capable is, 
 
Corollary . .	A group G is n-capable if and only 
if	(Z )∗(G) = 1.  
 
Now we have a sufficient condition for n-capability of a 
group. 
 
Corollary 1.5. Let	N be a normal subgroup of  G, such 
that	N⋂(Z )∗(G) = 1. If  G/N is n-capable, then so is G. 
 
The next theorem shows that the class of n-capable 
groups is closed under the direct product which 
generalizes Proposition 6.3 of [2]. A group	G is said to 
be subdirect product of the groups	{G } ∈ ,	if	G is a 
subgroup of the (unrestricted) direct product ∏ G 	∈ such that	p (G) = G , i ∈ I, where p ,s	are natural 
projections. 
 
Theorem 1.6. Let G be a subdirect product of the n-
capable groups	{G } ∈ . Then so is G.   
 
Proof. Since	  is n-capable, we have the following 
short exact sequences, 
 1 → Z (E ) ⊂→E ψ→G → 1,							i ∈ I. 
 
Define 

ψ = ψ ∈ : E∈ { }↦{ψ ( )} G∈ , 
 
and let	E = ψ (G), A = ∏ Z (E∈ ).	Then A is the n-
central subgroup of	∏ E∈ . Hence we obtain the 
following commutative diagram, 1	 → 									A								 → 							E						 ψ|→ 							G							 → 	1 
                          ↓                      ↓               ↓                                   1	 → ∏ Z (E∈ ) → 	∏ E∈ 		 ψ→			∏ G∈ 		→ 	1 , 
  
where	ψ| is the restricted map of	ψ	and the vertical maps E → ∏ E∈ 	and G → ∏ G∈  are inclusions. Since G is a 
subdirect product and 	kerψ ⊆ E, the group E is a 
subdirect product of	{E } ∈ . 
Now it is obvious that	A ⊆ Z (E). For the reveres 
inclusion, let {e } ∈ ∈ Z (E)	and t ∈ E  for an arbitrary 
fixed group E . Denote also p′ 	to be the natural 
projection for E.Therefore, there exists	{t′ } ∈ ∈ E	such 



Some properties of n-capable and n-perfect groups 
 
 

363 

that p′ {t′ } ∈ = t 	. Thus 
 p′ {e } ∈ 	, t′ ∈ = p′ ([ e , t′ ] ∈ ) = p′ ({1 } ∈ ) = 1. 

 
On the other hand, p′([{e } ∈ 	, {t′ } ∈ ]) = [p′ ({e } ∈ ), p′ ({t′ } ∈ )] 																																		= [p′ ({e } ∈ ), p′ ({t′ } ∈ ] 

 		= [e , t ]. 
 
Hence, [e , t ] = 1	and so the reverse inclusion holds. 
By A = 	Z (E), we get the n-capability of G, which 
completes the proof. 
 
The following corollary is immediate. 

Corollary	 . .	If		∏ G 	( )∈ is a weak direct product of 

the groups {G } ∈ , then  

                 		(Z )∗(∏ G( )∈ ) ⊆ ∏ (Z )∗(G )( )∈ . 
 .		 	 	 	  
 
The structure of	Z∗(G) by any free presentation for the 
group G is given in [2]. In this section in a similar way, 
we study the structure of (Z )∗(G). First, we give the 
following useful lemma. 

Lemma	 . . Let 1 → R → F π→G → 1	be a free 
presentation of the group G, and 1 → A → B → C →1	be an n-central extension of a group C. If α: G → C is a 
homomorphism, then there exists a homomorphism 
β: F ∕ [R, F ] → B such that the following diagram is 
commutative: 
 1	 → 				R ∕ [R, F ] → 	F ∕ [R, F ] π→ 					G			 → 			1 								↓ β| 																	 ↓ β																			 ↓ α 							1	 → 								A											 → 						B												 ψ→ 						C									 → 		1	 	 
Where	π	is the natural homomorphism induced by π	and 
β| is the restriction of	β. 
 
Theorem	 . .	For any free presentation 1 → R →F π→G → 1,	and every n-central extension	1 → A →E φ→G → 1, we have 

π (Z )∗(F [R, F ]⁄ ) ⊆ φ (Z )∗(E) . 
 

Proof. By Lemma 2.1 and putting  1 → A → E φ→G → 1 
instead of the second row in the diagram, there exists a 
homomorphism	β: F [R, F ]⁄ → E	such that the 
corresponding diagram is commutative. It is easily to 
check that	E = A	β(F [R, F ]⁄ ) and hence, 
β (Z )∗(F [R, F ]⁄ ) ⊆ (Z )∗(E). Therefore, we 
get	φ β(Z )∗(F [R, F ]⁄ ) ⊆ φ (Z )∗(E) ,	which 
completes the proof. 

The following important result is immediate. 
 
Corollary	 . . For any free presentation	1 → R →F π→G → 1	of 	G, we have 
 (Z )∗(G) = (Z )∗(F [R, F ]⁄ ). 
 .		 − 	  
 
The concept of covering of a central extension by 
another central extension has been studied in page 92 of [6].		Here we generalize this notion. 

Let	e:	1 → A → H→G → 1, be an n-central extension 
by the group . Now we state the following definition. 
 
Definition	 . .	We say that the n-central extension e ( )	 	n-central extension,  
 1 → A → H ψ→G⟶ 1, 
 
If there exists a (unique) homomorphism θ: H →H 	such that the following diagram is commutative, 1 → A	 → 	H	 ∅→ 	G	 → 1 			↓ θ| 			 ↓ θ			 ↓ I  1 → A → H → G → 1. 
 
The n-central extension e is said to be , if 
uniquely covers any other n-central extension by the 
group G. 
 
The following useful lemma can be easily proved. 
lemma	 . . Let G be an n-perfect group. Then  1 →1 → G→G → 1,	is a universal n-central extension if and 
only if any n-central extension by  splits. 
 
Now, we present the following theorem which states 
some essential properties of universal -central 
extension. 
 

Theorem	 . .	Let	e : 1 → A → H →G → 1, i = 1,2, be n-central extensions by the group G. Then 
  (i) If and	  are universal -central extensions, then 
there exists a homomorphism 							 → 	such that 
maps onto , 
  (ii) If e 	is universal n-central extension, then H and G 
are n-perfect, 

 (iii) If 1 → 1 → H→G → 1, is a universal -central 

extension, then so is	1 → 1 → G→G → 									1. 
 
Proof. 
  (i) The proof  is easy, see also Lemma	2.10.1(i) of [6]. 
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 (ii) Consider the following n-central extension, 
 1 → A × H ∕ H → H × H ∕ H ψ→G → 1, 
where	ψ(a, bH ) = ϕ (a), a ∈ A , b ∈ H . Now we 
define the following homomorphisms 
 

θ : H → H × H H⁄ , i = 1,2 
 

θ (h) = (h, 1), 	θ (h) = (h, hH ), ∀h ∈ H . 
 
 
Thus	ψοθ = ϕ , which implies that θ = θ .	 Therefore H = H 	and so G = G . 
 (iii) By the definition and part (ii), G and H are n-

perfect. If 	1 → A → G∗ ψ→G → 1 , is an n-central 
extension of A by G , then there exists a 
homomorphism	α: H → G∗ such that ϕ = ψοα. Also, 
αoϕ 	is a homomorphism from G onto G∗	such that 
ψο(αoϕ ) = 1.	Thus, by Lemma 3.2 the extension 
splits. 
 

Results 
In this paper by means of n-centre of a group we 
generalize some properties of  capablity. Furthermore 
we characterize a least normal subgroup which lies in 
the n-centre of a given group. We derive a necessary 
and sufficient condition for n-capability of a group, also 
a sufficient condition for a group to be n-capable. 
Moreover we prove that subdirect product of  n-capable 
groups is n-capable. Further we  present some properties 
of covering and uniquely covering of an n-central 
extension by another n-central extension.  
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