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Abstract 

Recent experiments on the spherical tokamak have discovered the conditions to 

create a powerful plasma and ensure easy shaping and amplification of stability, high 

bootstrap current and confinement energy. The spherical tours (ST) fusion energy 

development path is complementary to the tokamak burning plasma experiment such 

as NSTX and higher toroidal beta regimes and improves the design of a power plant. 

To support the ST development path, one option of a Next Step Spherical Torus 

(NSST) device has been examined .NSST is a performance extension stage ST with  

a plasma current of 5-10 MA, R=1.5m, Bt<2.7T with flexible physics. The baseline 

heating and current device system for NSST is the 30MW NBI system and a 10 MW 

of ion cyclotron range of frequency (ICRF) and high harmonic fast wave (HHFW) 

system. In this work, we investigated lower hybrid wave interaction in the NSST 

reactor and found an optimal lower hybrid wave power and frequency for it. Finally, 

we compared the lower optimal hybrid waves and NSST spherical tokamak with HT-

7 tokamak. Our results indicated that the use of lower hybrid waves in improved 

spherical tokamak NSST, as compared to the HT-7, was much better and more 

efficient. 
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Introduction 
Lawson criterion is a condition for the realization of 

fusion reactions and is approximately expressed by 
20 310 /n s m   in 10 keV. To achieve the ignition 

mode in plasma and nuclear fusion reactions, various 

methods of current drive and heating have been used, 

relative to spherical and toroidal shaped tokamaks. In 

order to allow tokamaks to run in the steady state, some 

means of continuously driving the toroidal plasma 

current must be found. An essential requirement for 

reactor applications is that the power required to drive 

the current be only a small fraction of the fusion power 

output. Recently, the damping of high-phase-velocity 

Radio-Frequency traveling waves has been proposed as 
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a way of driving the toroidal current. These currents 

could be efficiently generated by waves having phase 

velocities several times greater than the electron thermal 

velocity. This prediction has been confirmed by 

numerous experiments in which the current was driven 

by lower-hybrid waves. These results allow us to 

contemplate a steady-state tokamak reactor in which the 

toroidal current is driven by lower-hybrid waves [1, 2]. 

The feasibility of the steady-state reactor driven in 

this way rests crucially on the arguments concerning the 

question of resistivity. In essence, a new resistivity law 

is advanced, mainly due to factors such as the 

recombination and diffusion of particles in fusion 

plasma, in which the dissipated power was proportional 

to the current, as in the familiar ohmic resistivity law. It 

is estimated that the ratio of radio-frequency (RF) power 

dissipated to fusion power output is in the order of a few 

percent for the typical reactors. In order to conduct the 

analysis of electron distribution , we must use one-

dimensional Fokker-Planck equation. Axial symmetry 

around the magnetic field allows the reduction in the 

complexity of the problem from three to two velocity 

dimensions. The reduction of velocity dimension from 

two to one is made under the assumption of the 

dependence of the electron velocity distribution function 

on the perpendicular velocity that supposes the electron 

temperature as a Maxwellian distribution. Within the 

framework of the one-dimensional equations, there is no 

easier way to check this assumption. We assess the 

validity of this assumption by a numerical solution for 

the two-dimensional effects in this paper. Note that this 

work is also related to the problem of wave heating in a 

magnetized plasma (i.e., heating a tokamak plasma with 

the lower hybrid waves). Our objective is to maximize 

the power dissipation rather than minimizing the 

resistivity in the instance of heating [2, 3]. The outline 

of the paper is as follows: 

In Section 2 we express current drive theory and 

Landau damping coefficient. In Section 3, we write the 

two-dimensional Fokker-Planck equation with an 

additional quasi-linear diffusion term which describes 

the interaction of the waves with the plasma. In Section 

4, we study the numerical solution method of the two-

dimensional Fokker- Planck equation briefly. Finally,we 

simulate several parameters associated with the lower 

hybrid wave injection for NSST and HT-7 tokamaks 

and compare the results of simulation with the 

experimental results of HT-7 tokamak. 

 

Materials and Methods 

Current Drive Theory 

Current drive theory deals with the production of 

toroidal electric current in tokamak, a current produced 

around the toroidal field of the machine. Using these 

currents, the fusion reactors help to operate consistently 

and continuously. Waves-injection causes energy 

exchange between waves and plasma particles by 

Landau mechanism and damping coefficient can be 

shown by the following equation: 
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It is proportional to the slope of the distribution 

function in the wave phase -point and causes pure 

energy-exchange between particles and waves. So 

waves loses energy and are damped [4]. For the current 

drive, waves with adequate phase velocity are injected 

along the toroidal magnetic field to resonant with 

plasma electrons and raise the energy and momentum of 

the electrons by the absorption of wave energy with 

Landau damping [5]. These resonance frequencies 

involve the Ion Cyclotron Resonance (ICRH), the 

Lower Hybrid resonance (LH), and the Electron 

Cyclotron Resonance (ECRH) [6]. The ICRH is the ion-

ion resonance with wave frequencies in the 30 MHz to 

120 MHz range, but the density limit causes the 

disappearance of these waves for more external areas of 

plasma. The Lower Hybrid waves are the combination 

of ion and electron cyclotron frequencies in 1 GHz to 8 

GHz ranges [7]. They can penetrate into plasma center 

and according to their available frequencies, allow 

tokamak to be in a uniform mode by creating a current 

drive in it. Therefore, they are the best choice for 

current drive in the fusion plasma [8]. 

 

Fokker- Planck equation 

With increasing the energy of the plasma particles, 

Coulomb collisions of plasma particles are increased 

with each other. The effect of such collisions is obtained 

by adding a quasi-linear term to Vlasov equation, called 

Fokker- Planck equation, thereby giving a general 

description of the distribution function changes due to 

successive collisions [9]. The rate of change in the 

distribution function ‘f ‘due to collisions can be written 

as: 
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is called the ‘Fokker-Planck 

equation’ [10]. To write Eq. (2) in the standard form, we 

consider a test particle moving with a speed Tv
 
and 
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colliding with other particles. By  the calculation of 

diffusion coefficients in the center-of-mass and taking 

the average over the velocity distribution of scattering 

particles and its substitution in the equation(2),a 

standard form for the Fokker-Planck equation is 

obtained as follows: 
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(3)
  

 

Functions ( )sG v  & ( )sH v  are defined as follows: 
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This describes diffusion coefficients due to velocity 

changes in the phase space [11]. 

 

Solving method of Fokker - Planck Equation 

Initially, we consider a uniform plasma at 

equilibrium state. For the next time i.e 0t  , it is 

subject to an electric field ( )E t and a wave-induced flux

( , )S v t . If the electric field and the wave-induced flux 

are weak enough, the electron distribution remains close 

to a Maxwellian shape for T  , where
21

2
mv  is the 

energy of an electron. Substituting 1ffm    into the 

Boltzmann equation for the electron distribution f and 

linearizing it give 
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where                                             

  )/exp(2/
2/3
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is Maxwellian distribution and 

),()(),()( 1ffCffCffCfC mm    is linearized collision 

operator [12]. We make three assumptions: 

1. We assume that 1f  is azimuthally symmetric about 

the ambient magnetic field. 

2. We take the electric field to be constant and in the 

direction parallel to the magnetic field ||v̂EE 


.  

3. We restrict our attention to those cases where S is 

only finite and tvv    with 2 /tv T m   for the thermal 

velocity. 

Linearized collision operator comes in the form of 
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where
v

v||
 , 22

0
4 4/ln meq  , 0  is the 

dielectric constant of free space, ln  is the Coulomb 

logarithm and Z  is the effective ion charge state. We 

have included pitch-angle scattering and frictional 

slowing down, but ignored energy diffusion. In the case 

of steady- state current drive, the energy diffusion term 

is introduced to correct the order of 2)/( vvt . Another 

term neglected in this approximate collision operator is 

the effect of the Maxwelian colliding off the perturbed 

distribution ),( ffC m  . Corrections resulting from this 

term lead to 3)/( vvt [12]. The Fokker- Planck equation is 

then reduced to an equation in time and two velocity 

dimensions, parallel and vertical to the field [13]. We 

write the Fokker- Planck equation for electrons as: 
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where sq and sm are the charge and mass of species 

s , ),( ba ffC  is the collision term for species a colliding 

off species b, the sum extends over all the species of 

plasma ( typically electrons and ions ), and S  is the 

wave induced quasi-linear  flux. Because collisions in 

plasma are primarily due to small- angle scattering, the 

collision term can be written as the divergence of a flux: 

 

,),( / ba
cba SffC 

                                          (10) 

                                 
 

where ewc SSSS  is the total flux in the 

velocity space [13]. When computing ( / )collf t  in eq. 

3, we will assume that the background distributions of 

both ions and electrons are of non-drifting, non-

evolving Maxwellian kind, in which ( / )collf t  is 

given by Trubnikov (*). This assumption has two 

important implications regarding the collision term. 

First, it is a linear equation since self-collisions among 

the non-Maxwellian components of the electron 

distribution are neglected. This linearization introduces 

a negligible error when the number of non Maxwellian 

particles remains small. Second, the background 

electrons represent an efficient energy sink. The 

evolving test electrons, being in contact with these 

background electrons of constant temperature, are able 
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to lose the energy imparted to them by the RF waves. 

Thus, a steady-state distribution of test electrons 

eventually results. In an experimentally realistic 

situation, where heat losses eventually balance the 

heating by RF waves, a similar steady state will result. 

Of course, in the absence of a heat sink, the electron 

temperature would increase, leading to more particles 

resonant with the wave and affecting both the current 

and power dissipated. Our main interest is to find the 

resistivity for a given set of plasma parameters. Thus, 

the assumption of a fixed temperature background 

electron distribution represents not only a significant 

mathematical simplification, but a specific framework 

in which we can pose the questions of current 

magnitude and resistivity in the steady state [14]. The 

runaway velocity is the one at which collisional 

frictional force equals the acceleration caused by the 

electric field: 

./)( qEmqEsignvr                                    (11) 

                                 

 

Notice that the sign of rv  is opposite to the direction 

in which electrons run away. The velocity is given by

rvZ 2 . Similarly, we define a runaway collision 

frequency 
3
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Thus, the distribution functions of 1f  and  mf  are 
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[12]. Then the evolution of the electron distribution 

function, f, in the presence of RF waves, is given 

by: 
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where ||v is the velocity parallel to the magnetic 

field,
||( )RFD v  is the quasi-linear diffusion coefficient, 

and ( / )collf t   is the Fokker-Planck collision term. 

Again, by normalizing velocities to  
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/Te e ev T m  and 

times 1 4 3
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where  
0t  ,

|| / Tew v v   and 

3

|| 0( ) ( ) / ( )RF TeD w D v v  .[11] 

Since driving frequency   is small in comparison 

with the electron gyro frequency 
e , the current drive 

mechanism for Lower Hybrid waves is utilized only in 

the resonance are of parallel wave phase velocity (
||/ k ) 

and the quasi-linear diffusion tensor is reduced to the 

term of || ||v v . 

 

Results 

A. Numerical Results 

The wave spectrum may be of an arbitrary shape. 

However, we can partially solve the problem by 

considering very large spectrum amplitudes and 

anticipate that the precise wave amplitude is immaterial 

due to the wave saturation and so, we can ignore it. This 

assumption is strictly valid when /ev k  . Thus: 
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where the constant, D, is chosen to be large enough 

for the solution to be insensitive to its precise 

magnitude. This is, in fact, what occurs in the situations 

of interest such as RF heating or RF-driven tokamak 

reactors [10, 11]. Thus, in summary, we have pinpointed 

the important free parameters in the problem as just two

1w and 2w maximum and minimum parallel phase 

velocities of Lower Hybrid injection waves. They were 

were normalized to the electron heating velocity to 

characterize the resonance area of Lower Hybrid 

injection waves . According to the above descriptions, 

Eq. (8) becomes: 
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Taking distribution function as Maxwellian and 

integrating the Eq. (12), we obtain an equation to 

evaluate parallel distribution function as:  
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That ( )F w  is parallel distribution function. 

Solving the equation for the steady-state gives: 
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where C is a constant in integration as plotted in 

(Fig. 1) for ( ) 1/ 2D w   
& Z=2 i.e. 

 

For the numerical method of solving (Eq. 21), we 

first normalized this equation with a boundary condition 

. 0S u   that could satisfy the laws of conservation of 

particles:
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The steady-state solution ( ( ) 0D w  ) is 
23/2 ( /2)( ) (2 ) uf u e    and for the next states, the 

numerical solution is given by the following relation: 
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where 
ju j u  . Using this distribution function and 

its normalized velocity component, ( )F w , we can 

obtain power and current as [11, 12]: 
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Here, we obtained equations J and P by using the 

numerical method for deuterium plasma and plotted 

them in Fig. 2 and Fig. 3 in order to characterize current 

drive and power transferred in  the plasma environment 

and show the efficiency of this method. 

For the Adjoint Method of solving Eq. (15), beside 

assuming that the total distribution function is the sum 

of perturbation and Maxwellian distribution functions

1ffm  and using the collision operator D, we reach the 

equation 
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And we use it in the simulation program [12]. 

 

B. Simulation 

Nowadays, tokomaks designed and produced in 

 
Figure 1.  Distribution function F(w) of Deuterium plasma. 

 

 
Figure 2.  Current function for Deuterium plasma. 

 

 
Figure 3. Power function P for Deuterium plasma. 
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many countries are divided in to spherical and toroidal 

shapes, according to their parameters. These parameters, 

given in table.1 for HT-7 and NSST tokamaks, are used 

in simulation code LSC. The Lower hybrid waves 

Simulation Code (LSC) is a computational model for 

lower hybrid waves current drive based on FORTRAN 

programming language in which electrons and ions 

heating, geometric details and plasma profile are 

discussed and space effects of the two-dimensional 

phase of the wave spectrum injected in Fokker- Planck 

equation are approximated in order to simulate the 

desired parameters.  In this paper, the relative power of 

the injected wave, electron quasi- linear power, current 

drive of electrons and electron power, and simulation 

phase velocity changes and computational data were 

plotted by computational software of MATLAB using 

LSC program outputs.. At the end, some simulation 

results for HT-7 tokamak were compared to the 

experimental information. 

 

a. Relative Power  of the injected wave spectrum at 

the  normalized distance from the plasma center 

Since the coupling of lower hybrid waves with 

plasma particles depends on various factors such as  the 

distance from plasma center and the toroidal magnetic 

field and relative power spectrum of the injected lower 

hybrid wave, it has a width that provides the resonance 

condition and causes plasma heating. This spectral 

width is usually suitable for lower hybrid waves, 

making them suitable in tokamaks. We plotted the 

relative power of normalized injected wave at a relative 

distance from the plasma center in (Fig. 4) such that a 

distance was measured from the interior part of tokamak 

and the location of the central solenoid. As can be seen, 

the injected wave spectrum could penetrate in plasma 

center and cause plasma heating for toroidal HT-7 

tokamak. But the injected wave spectrum is generally 

located at the plasma edges for spherical tokamak NSST 

and energy losses there and fusion plasma has little 

efficiency in the environment heating. Therefore, 

plasma heating by using the lower hybrid wave injection 

has higher output in toroidal tokamaks HT-7.  

 

b. Quasi-linear Power  of electrons at the  

normalized distance from the plasma center 

The growth rate of the quasi -linear diffusion 

coefficient qlD , with velocity ||v in a wave field and the 

wave number ||k , is given by:
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where ||E  is the electric field amplitude of the wave 

paralleled to the magnetic field. We can reach energy 

per time unit per volume unit of plasma from the quasi-

linear term point of view using the diffusion coefficient 

equation (30) [16]:   

||
|||||| )(

v

f
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This energy is absorbed by the emitted wave and 

plasma electrons. We plotted quasi-linear power of 

electrons at the relative distance from the plasma center 

that the distance was evaluated from the interior of 

tokamak and the location of the central solenoid. As 

shown in (Fig. 5), for toroidal tokamak HT-7 form, the 

main maximum peak with a larger width is usually 

located at the plasma center, but for the spherical 

 
Figure 4. Relative Power of the normalized injected wave 

spectrum to 7×104 at relative distance from the plasma 

center. 

 
Figure 5. Quasi-linear Power of electrons normalized to 

1.1×105 at the distance from the plasma center. 
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tokamak of NSST, the resonance maximum peak was 

closer to the plasma edge and the quasi-linear power 

received from wave was lost at plasma edges and 

couldnot be much useful in transferring power and the 

momentum of the injected wave. This shows the 

advantages of toroidal tokamak HT-7 compared to the 

spherical tokamak of NSST. 

 

c. Current drive  of electrons at  the normalized 

distance from plasma center 

Current drive on every flux surface is given by: 
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Here, )(uWs  function is: 
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It is calculated and used in the numerical method by 

expanding  )(uWs  function and keeping the first  two 

terms, we have: 
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for current drive. 1
 
And

 1  
are congruent 

and converse current drives to the field respectively in 

this equation [16]. According to this equation, current 

drive depends on many factors such as ions effective 

charge, particles velocity and runaway velocity, which 

have different values in various places in plasma and 

lead to the formation of different streams. We plotted 

electron current drive at the distance from the plasma 

center in (Fig. 6), and this distance was evaluated from 

the interior of tokamak and the location of the central 

solenoid. As shown in this figure, the current drive had 

a positive maximum peak, indicating a maximum 

resonance mode and showing the optimal conditions for 

the coupling of waves with plasma particles. This 

coupling by Landau damping mechanism caused the 

loss of the wave energy and transference of wave 

momentum to plasma particles and the plasma heating. 

Resonance peak was about 0.72% for spherical tokamak 

NSST and it had various maximums for toroidal 

tokamakas according to their aspect ratio. It was about 

0.23 for HT-7 tokamak and the lower the percentage, 

the higher was the tokamak performance. The 

normalization mechanism in the horizontal diagram has 

been done in LSC program and we have plotted with 

MATLAB software. 

 

 

d. Electrons Current 

Applying an electric field to the tokamak plasma 

environment causes the separation of charged particles 

by affecting them. This charge separation leads to an 

electric current in plasma environment: “bootstrap 

current”. Furthermore,  by launching the wave into the 

plasma environment, the plasma electrons produce 

electron current by receiving momentum and the energy 

of the wave .To simulate the electron current in 

tokamak, we divided plasma into 40- flux surfaces of 

the injected wave and plotted these parameters at flux 

surfaces. Electron current was plotted in (Fig. 7(a), (b)) 

for the NSST and HT-7 tokamks. As shown in (Fig. 7), 

the maximum of electron current for the toroidal 

tokamak HT-7 was located at the plasma edge, but for 

 
(a) 

 
(b) 

 

Figure 7.  Electrons Current at the number of flux surfaces, 

(a) NSST Tokamak, (b) HT-7 Tokamak. 
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the spherical tokamak, it was located near the flux 

surfaces of the central plasma and it had a negative 

maximum at the initial flux surfaces. This case could be 

justified since the electron current at such surfaces was 

in the opposite direction of bootstrap current.  

 

e. Phase Velocity Changes 

Thermal effects added to cold plasma should be 

considered because there are particles that move at 

speeds approaching the phase velocity in the heat 

distribution. Such particles have resonant interaction 

with waves and their interaction results in wave 

damping and instability. The waves with
0k   are not 

affected by the magnetic field and resonance does not 

happen. Moreover, for such waves, we have cut-off in

p  . For waves with 0k  , the dispersion 

relation of electro dynamics waves for collision plasma 

along the magnetic field is presented by: 
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 According to the dispersion relation, the equation of 

the injected wave phase velocity that is propagated 

along the magnetic field is changed as: 
1
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We simulated particles phase velocity changes in 

order to inject the LH waves into plasma in NSST and 

plotted it for five beams with different frequencies in 

(Fig. 8). Resonant regions in which wave damping 

occurred and wave energy was transferred to the plasma 

environment have been shown in this diagram [17]. 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 9. Comparison of simulation and experimental 

results for HT-7 tokamak; (a) & (b):  the result of electronic 

temperature and density simulation. (c): experimental 

results [18]. 
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C. comparison  

Due to the higher degree of ionization and current at 

plasma center, electron temperature and density were 

higher, but by getting away from the plasma center, 

because of factors such as plasma diffusion and the 

recombination of particles, the temperature and density 

were reduced. We should keep the temperature and 

density high for fusion reaction in order to achieve 

Lawson Criterion. In (Fig. 9(a)), we simulated 

temperature for HT-7 tokamak. In this figure, the 

vertical chart is the electron temperature normalized to 

keV and the horizontal chart has been normalized to 

form the plasma center. In (Fig. 9(b)), we simulated 

density for HT-7 tokamak. In this figure, the vertical 

chart is the density normalized to
13 310 /cm  and the 

horizontal chart has been normalized to form the 

plasma center. As shown in these figures, the highest 

values of electrons temperature and current were in the 

center and these parameters were reduced by getting 

away from it. Thus the fusion reaction rate was higher 

in the center of plasma and the interaction rate was 

reduced by going toward the plasma edges. 

A comparison between simulation and experimental 

results of temperature and density was plotted for HT-7 

tokamak in (Fig. 9). Both cases displayed a good 

relative accordance in all distances normalized to the 

plasma center. So there was a good agreement between 

simulation and experimental results, indicating more 

the accuracy of the performed simulation work. 

 

Conclusion 
NSST tokamak had an appropriate toroidal magnetic 

field, and major and minor radii in the same range that 

changed the fusion reactor into D-shape and the 

spherical form. D-shape configuration of this tokamak 

prevented it from absorbing the power of LH wave with 

the maximum ratio. Due to the large  , the spherical 

tokamak to the tokamak torus was not very effective, 

but here we saw that this improved spherical tokamak 

with toroidal magnetic field (NSST) had the ability to 

get the lower hybrid wave in the distance of the plasma 

and the application of lower hybrid waves in this 

tokamak, rather than the other spherical tokamak, had 

better advantages.  

As shown in the simulation figures, for all simulated 

and plotted quantities, HT-7 tokamak had quantities 

with more appropriate output than NSST tokamak. In 

other words, ST fusion reactors had a higher efficiency 

than spherical tokamaks, thereby resulting in the better 

establishment of the implement condition for the self-

sustained fusion reaction, i.e., Lawson’s criterion, and 

provided the possibility of the nuclear fusion with a 

higher power and efficiency. 
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