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Abstract 

In this paper, we propose and study exp-kumaraswamy distribution. Some of its 

properties  are derived, including the density function, hazard rate function, quantile 

function, moments,  skewness  and kurtosis.   A data set is used to illustrate an 

application of the proposed distribution. Also, we obtain a new distribution by 

transformation on exp-kumaraswamy distribution.   New distribution is an alternative to 

skew-normal distribution. Basic properties of this new distribution, such as moment 

generating function, moments, skewness, kurtosis and maximum likelihood estimation 

are studied. Its applicability is illustrated by means of two real data sets. 
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Introduction 
Beta distribution is extremely versatile to model 

data restricted to any finite interval. This distribution 

has widespread applications in different areas. On the 

other hand, Kumaraswamy [1] pleads that beta 

distribution does not fit hydrological random variable 

well and proposed a new double bounded distribution 

named after him, say Kw distribution, as an 

alternative to beta distribution. The probability 

density function (pdf) and cumulative distribution 

function (cdf) of Kw distribution are as 

f(x)=abx
a−1

 (1−x
a

)
b−1

,0<x<1,                      (1) 

and 

F(x)=1−(1−x
a
)
b
,    0<x<1,                               (2) 

respectively, for a,b>0. Kw distribution has widely 

been used in hydrology and related areas [2-6]. 

According to Nadarajah [7], many papers in the 

hydrological literature have used this distribution 

because it is deemed as a better alternative to the beta 

distribution [8]. Jones [9] noted some similarities and 

differences between beta and Kw distributions. He 

emphasized several advantages of Kw distribution 

over the beta  distribution: the normalizing constant 

is very simple; simple explicit formulae for the 

distribution and quantile functions which do not 

involve any  special functions; a simple formula for 

random variate generation;   and explicit formulae for 

moments of order statistics and L-moments. Further, 

according to  Jones [9], the beta distribution has the 

following advantages over the Kw distribution: 

simpler formulae for moments and moment-generating 

function; a one-parameter sub-family of symmetric 

distributions; simpler  moment estimation and more 

ways of generating the distribution via physical 

processes. Generalized Kw distributions have been 

widely studied in statistics and numerous authors have 

developed various classes of these distributions. 

Cordeiro and Castro [10] defined a new family of Kw 

generalized (Kw-G) distributions to extend several 

widely-known distributions such  as the normal, 

Weibull, gamma and Gumbel distributions. 

Bourguignon e t al. [11] Introduced Kumaraswamy 

Pareto (Kw-P) distribution and provided some 

structural properties  of the proposed distribution 

including explicit expressions for the moments and 

generating function. Pascoa et al. [12] studied a four 

parameter lifetime distribution, so-called Kum-

generalized gamma (KumGG) distribution which is a 

simple extension of the generalized gamma distribution. 

Cordeiro et al. [13] proposed a new four-parameter 

distribution called the Kumaraswamy generalized half-

normal (Kw-GHN) distribution to extend thehalf-

normal (HN) and generalized half-normal (GHN) 

distributions. Pescim et al. [14] defined a new family of 

Kummer beta generalized (KBG) distributions to 

extend several widely known distributions such as the 

normal, Weibull, gamma and Gumbel distributions. 

Nadarajah and Eljabri [15] proposed, simple 

generalization of GP distribution, Kumaraswamy GP 

(KumGP) distribution. 

In this paper, we propose a generalization of Kw 

distribution. The generalization is motivated by the 

following general class, 

 

F(𝑥) = {
1 − 𝑒−𝜆𝐺(𝑥)

1 − 𝑒−𝜆
        𝑥 ≠ 0

𝐺(𝑥)                     𝑥 = 0

,                                      (3) 

 

where 𝜆𝟄R. The cdf G(x) could be quite arbitrary and 

F is named exp-G distribution. 

One major advantage of exp-G distribution is its 

flexibility for fitting a wide spectrum of real data sets. 

Barreto-Souza and Simas [16] obtained several 

mathematical properties of this class of 

distributions and discussed the two special cases: 

exp-Weibull and exp- beta distributions. Javanshiri et 

al. [17] introduced what is known  as the exp-uniform 

distribution and provided closed form expressions for 

hazard function, density function and moments of order 

statistics and discussed the maximum likelihood 

estimation procedure, the asymptotic properties of 

estimations and various characterizations. 

We introduce a three parameters distribution, exp-

Kumaraswamy (exp-Kw) distribution, as an alternative 

to beta and Kw distributions. The pdf, cdf and hazard 

rate function(hrf) of exp-Kw distribution are as follows, 

 

𝑓(𝑥) =
𝑎𝑏𝜆𝑥𝑎−1(1 − 𝑥𝑎)𝑏−1𝑒𝜆(1−𝑥𝑎)𝑏

𝑒𝜆 − 1
,   0 < 𝑥 < 1 ,   (4) 

𝐹(𝑥) =
𝑒𝜆 − 𝑒𝜆(1−𝑥𝑎)𝑏

𝑒𝜆 − 1
,   0 < 𝑥 < 1,                                 (5) 

 

and 

ℎ(𝑥) =
𝑎𝑏𝜆𝑥𝑎−1(1 − 𝑥𝑎)𝑏−1

1 − 𝑒−𝜆(1−𝑥𝑎)𝑏 ,   0 < 𝑥 < 1,                    (6) 

 

for 𝑎, 𝑏 > 0, 𝜆 ≠ 0. 
 

We provide three possible motivations for 

introducing exp-Kw distribution. First, exp-Kw 

distribution contains, as sub-models, truncated 

exponential distribution and truncated Weibull 

distribution. For a=b=1, Equation (4) gives 

truncated exponential distribution over (0,1). For 
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b=1, it yields truncated Weibull distribution over 

(0,1). 

Second, in reliability and life testing experiments, 

many times data are modeled by finite range 

distributions [18]. The exp-Kw distribution, due to 

the flexibility of its hrf could be an important model 

in a variety of problems in survival analysis. Its hrf 

can be bathtub shaped, monotonically increasing 

and upside-down bathtub depending basically on the 

values of the parameters. 

Our final and major motivation is based on a 

transformation.  

Let 
X

XY



1

log , be a transformation from the unit 

interval to the whole real line. The distribution of Y 

is an interesting heavy-tail alternative to skew-

normal distribution. This distribution has three 

parameters and its pdf is unimodal like skew-normal 

distribution. It has some advantages over skew-

normal distribution. Its cdf, hrf and quantile function 

have closed form. Also, the ranges of skewness and 

kurtosis for this new distribution are larger than 

skew-normal distribution. So, the new distribution 

could be more appropriate for fitting skew and 

heavy tailed data. 

 

Shape of exp-Kw distribution 

Note  from  (4)  that 𝑓(𝑥)~𝑥𝑎−1  as 

x→0, 𝑓 (𝑥)~(1 − 𝑥𝑎)𝑏−1 as x→1 and, 

• if a>1, b>1 and λ∈R, then f     (x) is unimodal. 

• if  a<1, b<1 and λ∈R, then f    (x) is uniantimodal. 

• if a>1, b≤1 and λ∈R, then f  (x) is increasing  or 

unimodal. 

• if a≤1, b>1 and λ∈R, then f  (x) is decreasing or 

unimodal. 

• if a=b=1 and λ>0, then f   (x) is decreasing. 

• if a=b=1 and λ<0, then f   (x) is increasing. 

 

Note from (6) that 

  ℎ(𝑥) ~ 𝑥𝑎−1 as x→0, ℎ(𝑥)~
(1−𝑥𝑎)𝑏−1

1−𝑒−𝜆(1−𝑥𝑎)𝑏  as x→1. 

Also from (6) we see that h(x) can be bathtub 

shaped, monotonically increasing and upside-down 

bathtub. Plots of the pdf (4) and hrf (6) for some 

values a, b and λ are given in Figures 1 and  2. 

Quantile functions are in  widespread use in  general 

statistics, the quantile function of exp-Kw distribution 

is 

𝑄(𝑢) = (1 − (1 +
log (1 − 𝑢(1 − 𝑒−𝜆))

𝜆
)

1
𝑏)

1
𝑎  .             (7) 

 

So, exp-Kw distribution is easily simulated by 

X=Q(U), where U is an uniform random variable on 

the unit (0,1). 

Assume that X is an exp-Kw random variable with 

parameters λ, a and b. We sumarize the relationship 

between exp-Kw distribution and some related 

distributions as follows, 

 if a=b=1, then X has truncated exponential 

distribution on (0,1) with parameter λ.  

 If b=1, then X has truncated distribution on 

(0,1) with parameters a and λ.  

 𝑋𝑟 has exp-Kw distribution with parameters  
𝑎

𝑟
, b and λ.  

 (1 − (1 − 𝑋𝑎)𝑏)
1

𝑎  has truncated Weibull 

distribution on (0,1) with parameters a and λ.  

 If b=1, then 
1

𝑋 
 has truncated Freche 

distribution on (1,+∞) with parameters a and λ.  

 
1

(1−(1−𝑋𝑎)𝑏)
1
𝑎

 has truncated Fréchet distribution 

on (1,+∞) with parameters a, b and 𝜆. 

 If λ=1, then −log  (1 − (1 − 𝑋𝑎)𝑏) has 

truncated Gumbel distribution on (0,+∞) with 

parameters 0 and 1. 

 

Measures based on quantiles 

The effect of the parameters on skewness and 

kurtosis can be considered based on quantile measures. 

Bowley skewness [19] and the Moors kurtosis [20] are 

defined as  
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



respectively. The above measures exist even for 

distributions without moments. We plot the measures B 

and M for exp-Kw distribution for some a and b, as 

functions of λ in Figure 3. These plots show that the 

Bowley skewness is increasing with λ (for any values 

of a and b), is decreasing whit a (for any values of λ 

and b) and is increasing with b (forany values of λ and 

a). In contrast, the Moors kurtosis first decreases to the 

minimum value and then increases, with λ (for some 

values of a and b). 

The Bowley skewness can take positive and negative 

values. Table 1 gives intervals for the parameter λ (for 

some values of a and b), when the Bowley skewness is 

positive and negative. Table 2 gives the parameter λ 

(for some values of a and b) that give the minimum and 

maximum Moors kurtosis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 1. Pdf plots for some values of a, b and 𝜆. 
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Figure 2. Hrf plots for some values of a,band 𝜆. 

Figure 3. The Bowely skewness and Moors kurtosis of exp-Kw distribution as functions of λ for some values of a and b. 
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Moments 

Consider Y and X random variables with G and exp-

G distributions, respectively. The r-th moment of X can 

be expressed in terms of E(Y
r
G(Y)

j
) for j=0,1,… as 

defined by Barreto-Souza and Simas [16]. 

 

 

From (10) the r-th moment of exp-Kw distribution is  

 

)11(.))1(1(
!

)(

1
)(

0

1

0

1

 











j

ja

rj
r duuu

je
XE b




 
Now we give a similar alternative expression to (11) 

 

)12(
1

)1(
)(

1

0

)1(11

dx
e

exxab
XE

baxbaar
r













Expanding
baxe )1( 

 in Maclaurin's series yields  

 











0

1

)13(),(
)!1(1

1
)(

k

r

k

k
r YE

ke
XE




 

where 𝑌𝑘 has Kw distribution with parameters a and 

b(k+1). Hence we have  

 

)14())1(,1(
!1

)(
0










k

k
r kb

a

r
B

ke

b
XE




 

 

The skewness and kurtosis measures can be 

calculated using the following relationships, 

respectively  

)15(
)))(((

))((
)(

,

)))(((

))((
)(

22

4

2

3

2

3

XEXE

XEXE
XK

XEXE

XEXE
XS











 

 

Figure 4 shows skewness and kurtosis for some 

choices of a and b as a function of  .  

 

Estimation parameters of exp-Kw distribution 

Suppose x1,…,xn constitute a random sample from 

an exp-Kw distribution with density (4). The log-

likelihood function is given by  

 

  
  






n

i

n

i

n

i

ba

i

a

ii xxbxa

e
nbnanba

1 1 1

.)1()1log()1()log()1(

)
1

log()log()log(),,(
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



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It follows that the maximum likelihood estimators 

(MLEs) are the solution of the equations: 
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The above equations can be solved numerically by 

using R software [22]. 

 

)10().)((
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1
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r YGYE
je
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

Table 1. Intervals for the parameter (for fixed a and b) for positive and negative B. 

Some values of a and b B<0 B>0 

a=1.5,b=0.6 (-∞,2.04) (2.04,+∞) 

a=1.5,b=1 (-∞,0.87) (0.87,+∞) 

a=1.5,b=7 Ø (-∞,+∞) 

a=0.6,b=1.5 (-∞,-2.60) (-2.60,+∞) 

a=1,b=1.5 (-∞,-0.87) (-0.87,+∞) 

a=7,b=1.5 (-∞,+∞) Ø 
 

Table 2. Values of the parameter λ (for fixed a and b) for which M has minimum or maximum value. 

Some values of a and b Minimum value for M Maximum value for M 

a=1.5,b=0.6 1.08 -6.19 

a=1.5,b=1 0.43 -5.31 

a=1.5,b=7 -0.53 3.51 

a=0.6,b=1.5 -1.34 5.22 

a=1,b=1.5 -0.43 5.31 

a=7,b=1.5 1.04 -3.12 
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Applications of exp-Kw distribution 

This section contains an application of exp-Kw 

distribution to real data. The data are shape 

measurements of 48 rock samples from a petroleum 

reservoir. Data were extracted from BP Research, 

image analysis by Ronit Katz, U. Oxford. The data set 

is:  

0.0903296, 0.148622, 0.183312, 0.117063, 

0.122417, 0.167045, 0.189651, 0.164127, 0.203654, 

0.162394, 0.150944, 0.148141, 0.228595, 0.231623, 

0.172567, 0.153481, 0.204314, 0.262727, 0.200071, 

0.144810, 0.113852, 0.291029, 0.240077, 0.161865, 

0.280887, 0.179455, 0.191802, 0.133083, 0.225214, 

0.341273, 0.311646, 0.276016, 0.197653, 0.326635, 

0.154192, 0.276016, 0.176969, 0.438712, 0.163586, 

0.253832, 0.328641, 0.230081, 0.464125, 0.420477, 

0.200744, 0.262651, 0.182453, 0.200447.  

 

Figure 4. The skewness and kurtosis of exp-Kw distribution as functions of λ for somevalues ofa and b. 

ss  

Figure 5. Probability plots for the fit of the exp-Kw distribution, Kw distribution and beta distribution. 
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Now, we fit exp-Kw distribution, Kw distribution and 

beta distribution to the data. The MLEs of the 

parameters and the maximized log-likelihood (
^

 ) for 

this distributions are computed. 

The results of goodness of fit tests based on 

Kolmogorov-Smirnov test, the evaluation of the 

corrected Akaike information criterion (AICc) [23,24] 

and Bayesian information criterion (BIC) [25] are 

shown in Table 3. From Table 3, we see that the exp-

Kw distribution is a better fit, judging on the basis of p-

values, AICcs and BICs. The probability plots are given 

in Figure 5 and the histogram of the data is shown in 

Figure 6 along with the estimated densities of the exp-

Kw, Kw and beta distributions. Apparently, the exp-Kw 

distribution gives the best fit. 

 

 

 

 

Log-exp-Kw distribution 

Transformation 
X

X
Y


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yields log-exp-Kw 

distribution as an alternative to skew-normal 

distribution with pdf, cdf and hrf respectively as 
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for a,b>0, λ≠0. Plots of the pdf (16) and hrf (18) for 

some special values of a,b and λ are given in Figures 7 

and 8. The quantile function corresponding to (16) is 

 

 

 

Table 3. MLEs of parameters, ̂ , p-values of Kolmogotoov-Smirnov test, AICc and BIC. 

Model Estimated parameters ̂  p-value AICc BIC 

Exp-Kw( ),, ba  15.9ˆ,67.0ˆ,71.32ˆ  ba  57.82 0.63 -109.64 -104.03 

Kw(a,b) 04.44ˆ,71.2ˆ  ba  52.49 0.21 -100.98 -97.24 

Beta ( ),  20.21ˆ,94.5ˆ  a  55.60 0.28 -107.20 103.46 

 

 
 

Figure 6. Histogram and estimated pdfs for the shape measurements of 48 rock samplesfrom a petroleum reservoir. 
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Figure 7. Plots of log-exp-Kw pdf for some values of a,b and   

 

Figure 8. Plots of log-exp-Kw hrf for some values of a,b and   
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Simulation of log-exp-Kw distribution is easy by Y 

= Q(U), where U is a uniform over (0,1). 

 

Expansions for moment generating function and 

moments 

The mgf of log-exp-Kw distribution is given by 
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Expanding 
baxe )1( 
 in Maclaurins series yields 
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Now, we expand
1)1()1(  kbax  in Maclaurin's 

series  
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The above expression shows that the mgf of log-exp-

Kw distribution exist if t<1. So, for t<1 we have  
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The r-th moment of the log-exp-Kw distribution can 

be obtained froms 0|
)(

)(  tr

Y

r
r

dt

tMd
YE .  So, we have 

)24(.|
),(

1)1(
)1(

!1
)(

0

00






















 



 

tr

r

j

j

k

k
r

t

tiajatB

j

kb

ke

ab
YE




 

 

In particular, the first four moments of Y are as 

follows 

 

Figure 9. Skewness and kurtosis of log-exp-Kw distribtion for some choices of a and b asfunction of λ 

 

Figure 10. The ranges of skewness and kurtosis of the log-exp-Kw distribution and skew-normal distribution.
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Where ψ(a) is  .|
)(log

)(

)('
ax

dx

xd

a

a
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

  

The skewness and kurtosis of Y can be obtained 

from ( 15). Plots of the skewness and kurtosis for some 

choices of a and b as functions of λ, are given in Figure 

9. In Figure 10, we compare the ranges of kurtosis and 

skewness of log-exp-Kw distribution with those of 

skew-normal distribution, respectively. These plots 

indicate that the ranges of skewness and specially 

kurtosis in log-exp-Kw distribution are larger than 

those of skew-normal distribution.

  

Estimation of parameters of log-exp-Kw distribution 

Here, we consider estimation by method of 

maximum likelihood. Suppose y1,…yn constitute a 

random sample from (16), the log-likelihood function is 
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It follows that the MLEs are the solution of the 

equations:  
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Where 
11

1
yi

e
t




 for  i=1,...,n. the above 

equations can be solved numerically by using R 

software [22].  

 

Applications of log-exp-Kw distribution 

In this section we fit log-exp-Kw distribution to real 

data sets. We provide two examples.  

Example 1: The data is obtained from Smith and 

Naylor [26] represent the strengths of 1.5 cm glass 

fibres, measured at the National Physical Laboratory, 

 

Figure 11. Probability plots for the fit of the log-exp-Kw distribution and skew-normal distribution. 
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England. The data set is: 0.55, 0.93, 1.25, 1.36, 1.49, 

1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2,0.74, 1.04, 

1.27, 1.39,1.49, 1.53, 1.59, 1.61, 1.66, 1.68, 1.76, 1.82, 

2.01, 0.77, 1.11, 1.28, 1.42, 1.5, 1.54, 1.6, 1.62,1.66, 

1.69, 1.76, 1.84, 2.24, 0.81, 1.13, 1.29, 1.48, 1.5, 1.55, 

1.61, 1.62, 1.66, 1.7, 1.77, 1.84,0.84, 1.24, 1.3, 1.48, 

1.51, 1.55, 1.61, 1.63, 1.67, 1.7, 1.78, 1.89. 

Now, we fit log-exp-Kw distribution and skew-

normal distribution to the data. The MLEs of the 

parameters and the 
^

  for this distributions are 

computed.The results of goodness of fit tests based on 

Kolmogorov-Smirnov test, the evaluationof the AICc 

and BIC are shown in Table 4. From Table 4, we see 

that the log-exp-Kw distribution is a better fit, judging 

on the basis of p-values, AICcs and BICs. The 

probability plots given in Figure 11, also show that log-

exp-Kw distribution gives a better fit than skew-normal 

distribution. 

 

Example 2: The data is obtained from Nichols and 

Padgett [21] and it represents the breaking stress of 

carbon fibres (in Gba), (n = 100). Log-exp-Kw 

distribution and skew-normal distribution are fitted to 

the data set. The results of Kolmogorov-Smirnov test, 

AICc and BIC are reported in Table 5. 

From Table 5, we see that in both cases, we cannot 

reject the null hypothesis that data are coming from log-

exp-Kw distribution or skew-normal distribution. On 

the other hand, the values of AICc , BIC and the 

probability plots given in Figure 12 are almost the same 

for both models. So, we compare them based on hrfs. 

Table 4. MLEs of parameters,

^

 , P-values of Kolmogorov-Smirnov test, AICc and BIC. 

Model Estimated parameters ^

  

p-value AICc BIC 

Log-exp-Kw (λ,a,b) 
19.34,84.16,28.2

^^^

 ba  
-13.54 0.31 33.08 39.51 

Skew-normal ( ),, 2   005.0,32.0,51.1
^^

2
^

   
-17.91 0.03 41.82 48.25 

 

 
Figure 12. Probability plots for the fit of the new and skew-normal distribution to the data 

 

Table 5. MLFs of parameters, 

^

  , P-values of Kolmogorov-Smirnov test, AICcs and BICs 

Model Estimated parameters ^

  

p-value AICc BIC 

Log-exp-Kw (λ,a,b) 
6.1,77.9,28.1

^^^

 ba  
-141.76 0.652 289.52 297.33 

Skew-normal ( ),, 2   63.1,38.1,68.1
^^

2
^

   
-141.70 0.753 289.41 297.22 
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The plots of empirical Hrf of data and fitted hrfs are 

shown in Figure 13. This Figure indicates that the hrf of 

log-exp-Kw distribution has a better fit than that of 

skew-normal distribution. As a further check, we 

calculate the mean square difference of emprical hrf 

and estimated hrf for both distributions. This error is 

0.09 for log-exp-Kw distribution and is 0.17 for skew-

normal distribution. Hence, the log-exp-Kw distribution 

has a better fit to the data, in terms of hrf. 

Results and Discussion 

We studied exp-Kw distribution. We derived various 

properties of this distribution, including the shape of 

pdf and hrf, related distributions, moments, skewness, 

kurtosis and estimation of parameters. The exp-Kw 

distribution, due to the flexibility of its hrf could be an 

important model in a variety of problems in survival 

analysis. Also, a new distribution by transformation on 

exp-Kw distribution, as an alternative to skew-normal 

distribution, is obtained. This distribution has three 

parameters and its pdf is unimodal like skew-normal 

distribution. It has some advantages over skew-normal 

distribution. Its  

Cdf, hrf and quantile function have closed form. 

Also, the ranges of skewness and kurtosis for this new 

distribution are larger than skew-normal distribution. 

So, the new distribution could be more appropriate for  

fitting skew and heavy tailed data.  Application of 

distributions to real data sets was shown by three 

examples, showing that these distributions, can be used 

effectively in analysing data. 
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