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Abstract

In this paper, we propose and study exp-kumaraswamy distribution. Some of its
properties are derived, including the density function, hazard rate function, quantile
function, moments, skewness and kurtosis. A data set is used to illustrate an
application of the proposed distribution. Also, we obtain a new distribution by
transformation on exp-kumaraswamy distribution. New distribution is an alternative to
skew-normal distribution. Basic properties of this new distribution, such as moment
generating function, moments, skewness, kurtosis and maximum likelihood estimation
are studied. Its applicability is illustrated by means of two real data sets.
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Introduction

Beta distribution is extremely versatile to model
data restricted to any finite interval. This distribution
has widespread applications in different areas. On the
other hand, Kumaraswamy [1] pleads that beta
distribution does not fit hydrological random variable
well and proposed a new double bounded distribution
named after him, say Kw distribution, as an
alternative to beta distribution. The probability
density function (pdf) and cumulative distribution
function (cdf) of Kw distribution are as

fo)=abx? ! (1-x®P 71 o<x<1, (1)
and
FOO=1-(1-x3)°, 0<x<I, @)

respectively, for a,b>0. Kw distribution has widely
been used in hydrology and related areas [2-6].
According to Nadarajah [7], many papers in the
hydrological literature have used this distribution
because it is deemed as a better alternative to the beta
distribution [8]. Jones [9] noted some similarities and
differences between beta and Kw distributions. He
emphasized several advantages of Kw distribution
over the beta distribution: the normalizing constant
is very simple; simple explicit formulae for the
distribution and quantile functions which do not
involve any special functions; a simple formula for
random variate generation; and explicit formulae for
moments of order statistics and L-moments. Further,
according to Jones [9], the beta distribution has the
following advantages over the Kw distribution:
simpler formulae for moments and moment-generating
function; a one-parameter sub-family of symmetric
distributions; simpler moment estimation and more
ways of generating the distribution via physical
processes. Generalized Kw distributions have been
widely studied in statistics and numerous authors have
developed various classes of these distributions.
Cordeiro and Castro [10] defined a new family of Kw
generalized (Kw-G) distributions to extend several
widely-known distributions such  as the normal,
Weibull, gamma and Gumbel distributions.
Bourguignon etal. [11] Introduced Kumaraswamy
Pareto (Kw-P) distribution and provided some
structural properties of the proposed distribution
including explicit expressions for the moments and
generating function. Pascoa et al. [12] studied a four
parameter lifetime distribution, so-called Kum-
generalized gamma (KumGG) distribution which is a
simple extension of the generalized gamma distribution.
Cordeiro et al. [13] proposed a new four-parameter
distribution called the Kumaraswamy generalized half-
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normal (Kw-GHN) distribution to extend thehalf-
normal (HN) and generalized half-normal (GHN)
distributions. Pescim et al. [14] defined a new family of
Kummer beta generalized (KBG) distributions to
extend several widely known distributions such as the
normal, Weibull, gamma and Gumbel distributions.
Nadarajah and Eljabri [15] proposed, simple
generalization of GP distribution, Kumaraswamy GP
(KumGP) distribution.

In this paper, we propose a generalization of Kw
distribution. The generalization is motivated by the
following general class,

1 — =26
F(x) = 1—e 2

G(x)

x#0
x=0

€)

where A€eR. The cdf G(x) could be quite arbitrary and
F is named exp-G distribution.

One major advantage of exp-G distribution is its
flexibility for fitting a wide spectrum of real data sets.
Barreto-Souza and Simas [16] obtained several
mathematical  properties of this class  of
distributions and discussed the two special cases:
exp-Weibull and exp- beta distributions. Javanshiri et
al. [17] introduced what is known as the exp-uniform
distribution and provided closed form expressions for
hazard function, density function and moments of order
statistics and discussed the maximum likelihood
estimation procedure, the asymptotic properties of
estimations and various characterizations.

We introduce a three parameters distribution, exp-
Kumaraswamy (exp-Kw) distribution, as an alternative
to beta and Kw distributions. The pdf, cdf and hazard
rate function(hrf) of exp-Kw distribution are as follows,

abﬂxa_l(l _ xa)b—le/l(l—x‘l)b

flx) = v a— ,0<x<1, (4
e/l _ e/l(l—xa)b
F(x) = 171 , 0<x<1, (5)
and
abAx®1(1 — x2)b-1
h(x) = ( ) , 0<x<1, (6)

1 — e—A(1-x9)?
fora,b > 0,4 # 0.

We provide three possible motivations for
introducing exp-Kw distribution. First, exp-Kw
distribution contains, as sub-models, truncated
exponential distribution and truncated Weibull
distribution. For a=b=1, Equation (4) gives
truncated exponential distribution over (0,1). For
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b=1, it yields truncated Weibull distribution over
(0,1).

Second, in reliability and life testing experiments,
many times data are modeled by finite range
distributions [18]. The exp-Kw distribution, due to
the flexibility of its hrf could be an important model
in a variety of problems in survival analysis. Its hrf
can be bathtub shaped, monotonically increasing
and upside-down bathtub depending basically on the
values of the parameters.

Our final and major motivation is based on a
transformation.

Let v _jog.x , be a transformation from the unit

interval to the whole real line. The distribution of Y
is an interesting heavy-tail alternative to skew-
normal distribution. This distribution has three
parameters and its pdf is unimodal like skew-normal
distribution. It has some advantages over skew-
normal distribution. Its cdf, hrf and quantile function
have closed form. Also, the ranges of skewness and
kurtosis for this new distribution are larger than
skew-normal distribution. So, the new distribution
could be more appropriate for fitting skew and
heavy tailed data.

Shape of exp-Kw distribution

Note from @) that f(x)~x%"1 as
x—0, f (x)~(1 —x*)?~1as x—1 and,

«ifa>1, b>1 and A€R, then f (X) is unimodal.

«if a<l, b<1 and A€R, then f (X) is uniantimodal.

« if a>1, b<1 and A€R, then f(X) is increasing or
unimodal.

« if <1, b>1 and A€R, then f(x) is decreasing or
unimodal.

« if a=b=1 and A>0, then f(X) is decreasing.
« if a=b=1 and A<0, then f(x) is increasing.

Note from (6) that
h(x) ~ xa—l as X-’O, h(x)~ 1(1—x‘1)b—1

_e—A1-x)b

as Xx—1.
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Also from (6) we see that h(x) can be bathtub
shaped, monotonically increasing and upside-down
bathtub. Plots of the pdf (4) and hrf (6) for some
values a, b and A are given in Figures 1 and 2.

Quantile functions are in widespread use in general
statistics, the quantile function of exp-Kw distribution
is

log(1—u(l—e %) 11

0w =(1-(1+ - ) .

()

So, exp-Kw distribution is easily simulated by
X=Q(U), where U is an uniform random variable on
the unit (0,1).

Assume that X is an exp-Kw random variable with
parameters A, a and b. We sumarize the relationship
between exp-Kw distribution and some related
distributions as follows,

o if a=b=1, then X has truncated exponential
distribution on (0,1) with parameter A.

o If b=1, then X has truncated distribution on
(0,1) with parameters a and A.

e X" has exp-Kw distribution with parameters
%! b and A.

e(1—-(1- X“)b)i has  truncated Weibull
distribution on (0,1) with parameters a and A.
o If Db=1, then Xi has truncated Freche

distribution on (1,+o) with parameters a and A.

° ;1 has truncated Fréchet distribution

a-(-x®Hbya
on (1,+o0) with parameters a, b and A.
elIf A=1, then —log(1—(1—-X%") has
truncated Gumbel distribution on (0,+«) with
parameters 0 and 1.

Measures based on quantiles

The effect of the parameters on skewness and
kurtosis can be considered based on quantile measures.
Bowley skewness [19] and the Moors kurtosis [20] are
defined as
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o)+at)-20) values. Table 1 gives intervals for the parameter A (for
B-—4 4 2 (8) some values of a and b), when the Bowley skewness is
AP positive and negative. Table 2 gives the parameter A
and (for some values of a and b) that give the minimum and
) Q(%)—Q(%HQ(%)—Q(;) o maximum Moors kurtosis.
6 2
Q(g)—Q(g)

respectively. The above measures exist even for
distributions without moments. We plot the measures B
and M for exp-Kw distribution for some a and b, as
functions of X in Figure 3. These plots show that the
Bowley skewness is increasing with A (for any values
of a and b), is decreasing whit a (for any values of A
and b) and is increasing with b (forany values of A and
a). In contrast, the Moors kurtosis first decreases to the
minimum value and then increases, with A (for some
values of a and b).

The Bowley skewness can take positive and negative

— Kwlk D)

L
t

Figure 1. Pdf plots for some values of a, b and A.
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Figure 3. The Bowely skewness and Moors kurtosis of exp-Kw distribution as functions of A for some values of a and b.
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Table 1. Intervals for the parameter (for fixed a and b) for positive and negative B.

Some values of a and b B<0 B>0
a=1.5,b=0.6 (-00,2.04) (2.04,+00)
a=1.5,b=1 (-0,0.87) (0.87,+00)
a=1.5,b=7 0 (-00,+00)
a=0.6,b=1.5 (-00,-2.60) (-2.60,+00)
a=1,b=1.5 (-00,-0.87) (-0.87,+00)
a=7,b=1.5 (-00,+00) o)

Table 2. Values of the parameter A (for fixed a and b) for which M has minimum or maximum value.
Some values of aand b Minimum value for M Maximum value for M

a=1.5,b=0.6 1.08 -6.19
a=1.5,b=1 0.43 -5.31
a=1.5,b=7 -0.53 3.51
a=0.6,b=1.5 -1.34 5.22
a=1,b=1.5 -0.43 5.31
a=7,b=1.5 1.04 -3.12
Moments S(X) = E(X —E(X))?
Consider Y and X random variables with G and exp- s '
G distributions, respectively. The r-th moment of X can (E(X—E(X))")
be expressed in terms of E(Y'G(Y)) for j=0,1,... as K(X) =- E(X -E(X))* 15)
defined by Barreto-Souza and Simas [16]. (E(X-E(X))*)?
r A 1r(_4) yr
()= 1-e'5 E(VG(1)') 1) Figure 4 shows skewness and kurtosis for some

From (10) the r-th moment of exp-Kw distribution is

= j ) uidu. 1)
Now we glve a similar alternative expression to (11)
1ablxuafl(l_Xa)b—lel(lfxa)“

0 et -1
@-xy

E(X")= dx 12)

Expandinge”™”" in Maclaurin's series yields

1 ikirl

A
-lizo(k

13

where Y, has Kw distribution with parameters a and
b(k+1). Hence we have

X" —bz 1+ b(k+1) (14)
e -lio
The skewness and Kkurtosis measures can be

calculated using the following relationships,
respectively
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choices of a and b as a function of A .

Estimation parameters of exp-Kw distribution

Suppose X,...,x, constitute a random sample from
an exp-Kw distribution with density (4). The log-
likelihood function is given by

{(A,ab)=nlog(a)+nlog(b)

A
T

+(a—1)znllog( X )+(b—1)znllog( 1-x )+lzn:(1—xf‘ )3

It follows that the maximum likelihood estimators
(MLES) are the solution of the equations:

11 " .
NG g )t X =0
n+z'°g(x ) (1-bxe(1+ A(1- X)) =0,
n+bZIog(1—xf‘)(1+/1(1—xf)b=0,

The above equations can be solved numerically by
using R software [22].
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Applications of exp-Kw distribution 0.162394, 0.150944, 0.148141, 0.228595, 0.231623,
This section contains an application of exp-Kw 0.172567, 0.153481, 0.204314, 0.262727, 0.200071,

distribution to real data. The data are shape 0.144810, 0.113852, 0.291029, 0.240077, 0.161865,

measurements of 48 rock samples from a petroleum 0.280887, 0.179455, 0.191802, 0.133083, 0.225214,

reservoir. Data were extracted from BP Research, 0.341273, 0.311646, 0.276016, 0.197653, 0.326635,

image analysis by Ronit Katz, U. Oxford. The data set 0.154192, 0.276016, 0.176969, 0.438712, 0.163586,

is: 0.253832, 0.328641, 0.230081, 0.464125, 0.420477,
0.0903296,  0.148622, 0.183312, 0.117063, 0.200744, 0.262651, 0.182453, 0.200447.

0.122417, 0.167045, 0.189651, 0.164127, 0.203654,

W

et
T
1

e

Lo
Il

Lt

Figure 4. The skewness and kurtosis of exp-Kw distribution as functions of A for somevalues ofa and b.
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Figure 5. Probability plots for the fit of the exp-Kw distribution, Kw distribution and beta distribution.
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A

Table 3. MLEs of parameters, { , p-values of Kolmogotoov-Smirnov test, AICc and BIC.

A

Model Estimated parameters / p-value AlCc BIC
Exp-Kw( A, a,b) A= —-32.71,4 =0.67, 6 =9.15 57.82 0.63 -109.64 -104.03
Kw(a,b) a=271, 3 — 44.04 52.49 0.21 -100.98 -97.24
Beta (¢, f3) a=594 , B =21.20 55.60 0.28 -107.20 103.46
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Figure 6. Histogram and estimated pdfs for the shape measurements of 48 rock samplesfrom a petroleum reservoir.

Now, we fit exp-Kw distribution, Kw distribution and
beta distribution to the data. The MLEs of the

parameters and the maximized log-likelihood (/) for
this distributions are computed.

The results of goodness of fit tests based on
Kolmogorov-Smirnov test, the evaluation of the
corrected Akaike information criterion (AICc) [23,24]
and Bayesian information criterion (BIC) [25] are
shown in Table 3. From Table 3, we see that the exp-
Kw distribution is a better fit, judging on the basis of p-
values, AlCcs and BICs. The probability plots are given
in Figure 5 and the histogram of the data is shown in
Figure 6 along with the estimated densities of the exp-
Kw, Kw and beta distributions. Apparently, the exp-Kw
distribution gives the best fit.
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Log-exp-Kw distribution
Transformation vy _ |0g1 XX yields log-exp-Kw

distribution as an alternative to skew-normal
distribution with pdf, cdf and hrf respectively as

M

_abde”((L+e? ) -1)"e

16
a(y) TEG (16)
1(1’(L“
1-e%g ¥
G(y)= e (17)
MLy
able”((1+e7 P -1)\te b
py)- 22 e 7o) (18)

HH— P .
(e " —1)(l4e? )™
for a,b>0, A#0. Plots of the pdf (16) and hrf (18) for
some special values of a,b and X are given in Figures 7
and 8. The quantile function corresponding to (16) is
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Figure 7. Plots of log-exp-Kw pdf for some values of a,b and A
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log(1-(L-¢")u

& 1 (19)
log(1- (1—e*)u) o

A

(-

Q(u) = log
1-(-(

Simulation of log-exp-Kw distribution is easy by Y
= Q(U), where U is a uniform over (0,1).

Expansions for moment generating function and
moments
The mgf of log-exp-Kw distribution is given by
1
?bﬂ' J’XHa—l(l_ X)—t (1_ Xa)h—lei(l—xa)bdxl

0

M (t) = (20)

e* -1

A(1=x2 )P

Expanding e in Maclaurins series yields

65

abl S s 4t ayb(k+1)-1
M(t)‘e*-1zﬁjx (LX) (LX)

k=0 0

(21)

b(k+1)-1

Now, we expand(1—x?) in Maclaurin's

series

M (D) = abl i A i 1) j[b(k+1)—1j Jlxt*a*a"l(l—x)"dx. 2)

- et -1liz k! =0 j 0

The above expression shows that the mgf of log-exp-
Kw distribution exist if t<1. So, for t<1 we have

M(t) = a:b/i iﬁf(—l)i[b(kzl)fljs(uawj,i—t) , (23)

e’ -1i% k! i
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The r-th moment of the log-exp-Kw distribution can ) abid & 2K &= (bk+1) -1
- A d'M, @) E(V) =72 2D
be obtained froms E(y )=d—| =0. So, we have e 13 k! = i
tr t = =
0'B(t+a+aj,i—t
traraicy, . (22)

atr

In particular, the first four moments of Y are as
follows

ararwes
no
LL T

— L —
- I - D
= a1l ees mizexm ww . llee =dine

i ) I
— S -
- el
LR =10 -
o 1 o
T T T T T
“ 0 [ = .

Figure 9. Skewness and kurtosis of log-exp-Kw distribtion for some choices of a and b asfunction of A

skew -normal distribution log-exp-Kw distribution
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Fiatire 10 The rannes of skewness and kiirtosis of the lon-exn-Kw distribution and skew-normal distrihition:
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log-exp-kw distribution
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Figure 11. Probability plots for the fit of the log-exp-Kw distribution and skew-normal distribution.

b k&, o Thk+D) .
B =2 Mk,;( 1) —(. Aok -] )( y(aj+a)-y (@)
%)= b/l T(b(k +1)) N,
TSR )( y(aj+a)-y ()" +
v (aJ+a)+t//(1))
WLV YA T'(b(k +1)) RN
=512 2 ek VIO
+3(w(aj +a) -y )y (@ +a) +y' )+ (v (aj +a) +y" (D),
and
o bA & &, T(b(k +1)) . .
E(Y ):euléﬁ ;(—n G arek.n—p) Y@ A

+6(w(ai +a) —w (D)’ (' (@ +2a) +y' ) + 30’ (@ +a) +y' (V)?

+ay (@ +a) -y (@ +a) +y" D) + (" (aj + 2) -y D),

Where y(a) is ' (2) legF(X)|
I'(a) dx

The skewness and kurtosis of Y can be obtained
from ( 15). Plots of the skewness and kurtosis for some
choices of a and b as functions of A, are given in Figure
9. In Figure 10, we compare the ranges of kurtosis and
skewness of log-exp-Kw distribution with those of
skew-normal distribution, respectively. These plots
indicate that the ranges of skewness and specially
kurtosis in log-exp-Kw distribution are larger than
those of skew-normal distribution.

Estimation of parameters of log-exp-Kw distribution
Here, we consider estimation by method of
maximum likelihood. Suppose vy;,...y, constitute a

67

random sample from (16), the log-likelihood function is

¢(1,a,b) =nlog(a) + nlog(b) +n

Zn: y;, —(ab +1)Zn: log(1+e™)

1

+(b- 1)Zlog((1+e ) o) )"

i=1

1)+,12(1

i=1

It follows that the MLEs are the solution of the
equationS'

(* ,ﬁ) Z(l—*) =
a a b-1
n+aZIog(t)(b b bﬂ(tita‘bl) )=0,
n+b2(1+,1(1—ra)b)xlog(l—tia)zo,
i=1 i i
Where t, = 1 for i=1,...,n. the above
l+e™

equations can be solved numerically by using R
software [22].

Applications of log-exp-Kw distribution

In this section we fit log-exp-Kw distribution to real
data sets. We provide two examples.

Example 1: The data is obtained from Smith and
Naylor [26] represent the strengths of 1.5 cm glass
fibres, measured at the National Physical Laboratory,
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England. The data set is: 0.55, 0.93, 1.25, 1.36, 1.49,
1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2,0.74, 1.04,
1.27, 1.39,1.49, 1.53, 1.59, 1.61, 1.66, 1.68, 1.76, 1.82,
2.01, 0.77, 1.11, 1.28, 1.42, 1.5, 1.54, 1.6, 1.62,1.66,
1.69, 1.76, 1.84, 2.24, 0.81, 1.13, 1.29, 1.48, 1.5, 1.55,
1.61, 1.62, 1.66, 1.7, 1.77, 1.84,0.84, 1.24, 1.3, 1.48,
1.51, 1.55,1.61, 1.63, 1.67, 1.7, 1.78, 1.89.

Now, we fit log-exp-Kw distribution and skew-
normal distribution to the data. The MLEs of the

parameters and the / for this distributions are
computed.The results of goodness of fit tests based on

A
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probability plots given in Figure 11, also show that log-
exp-Kw distribution gives a better fit than skew-normal
distribution.

Example 2: The data is obtained from Nichols and
Padgett [21] and it represents the breaking stress of
carbon fibres (in Gba), (n = 100). Log-exp-Kw
distribution and skew-normal distribution are fitted to
the data set. The results of Kolmogorov-Smirnov test,
AIC, and BIC are reported in Table 5.

From Table 5, we see that in both cases, we cannot
reject the null hypothesis that data are coming from log-

Table 4. MLEs of parameters,f , P-values of Kolmogorov-Smirnov test, AlIC. and BIC.

Model Estimated parameters A p-value AIC, BIC
Log-exp-Kw (A,a,b) n A A -13.54 0.31 33.08 39.51
A=-2.28,a=16.84,b =34.19
~ » -17.91 0.03 4182 4825

Skew-normal (5,602 ,a)

£=151,0° =0.32,a =0.005

log-exp-Kw distribution
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<
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Figure 12. Probability plots for the fit of the new and skew-normal distribution to the data

Kolmogorov-Smirnov test, the evaluationof the AIC,
and BIC are shown in Table 4. From Table 4, we see
that the log-exp-Kw distribution is a better fit, judging
on the basis of p-values, AIC;s and BICs. The

A

exp-Kw distribution or skew-normal distribution. On
the other hand, the values of AICc , BIC and the
probability plots given in Figure 12 are almost the same
for both models. So, we compare them based on hrfs.

Table 5. MLFs of parameters, [, P-values of Kolmogorov-Smirnov test, AICs and BIC,

Model Estimated parameters A p-value AIC, BIC
{
Log-exp-Kw (1,a,b) n ~ ~ -141.76 0.652 289.52 297.33
A=-1.28,a=9.77,b=1.6
n -141.70 0.753 289.41 297.22

Skew-normal (Zj, o’ , 05)

£=1.68,0° =1.38,a = 1.63
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Figure 13. Estimated hrfs of the new and skew-normal distributions for the data set.

The plots of empirical Hrf of data and fitted hrfs are
shown in Figure 13. This Figure indicates that the hrf of
log-exp-Kw distribution has a better fit than that of
skew-normal distribution. As a further check, we
calculate the mean square difference of emprical hrf
and estimated hrf for both distributions. This error is
0.09 for log-exp-Kw distribution and is 0.17 for skew-
normal distribution. Hence, the log-exp-Kw distribution
has a better fit to the data, in terms of hrf.

Results and Discussion

We studied exp-Kw distribution. We derived various
properties of this distribution, including the shape of
pdf and hrf, related distributions, moments, skewness,
kurtosis and estimation of parameters. The exp-Kw
distribution, due to the flexibility of its hrf could be an
important model in a variety of problems in survival
analysis. Also, a new distribution by transformation on
exp-Kw distribution, as an alternative to skew-normal
distribution, is obtained. This distribution has three
parameters and its pdf is unimodal like skew-normal
distribution. It has some advantages over skew-normal
distribution. Its

Cdf, hrf and quantile function have closed form.
Also, the ranges of skewness and kurtosis for this new
distribution are larger than skew-normal distribution.
So, the new distribution could be more appropriate for
fitting skew and heavy tailed data. Application of
distributions to real data sets was shown by three
examples, showing that these distributions, can be used
effectively in analysing data.
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