A Characterization of the Small Suzuki Groups by the Number of the Same Element Order

H. Parvizi Mosaed ${ }^{1}$, A. Iranmanesh ${ }^{2 *}$, and A. Tehranian ${ }^{1}$
${ }^{l}$ Department of Mathematics, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Islamic Republic of Iran
${ }^{2}$ Department of Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran

Received: 23 October 2014 / Revised: 3 January 2015 / Accepted: 17 May 2015

Abstract

Suppose that G is a finite group. Then the set of all prime divisors of $|G|$ is denoted by $\pi(G)$ and the set of element orders of G is denoted by $\pi_{e}(G)$. Suppose that $k \in \pi_{e}(G)$. Then the number of elements of order k in G is denoted by m_{k} and the sizes of the set of elements with the same order is denoted by nse (G); that is, $n s e(G)=\left\{m_{k}: k \in \pi_{e}(G)\right\}$. In this paper, we prove that if G is a group such that $n s e(G)=n \operatorname{se}(S z(n))$, where $n \in\{32,128\}$, then $G \cong S z(n)$. Here $S z(n)$ denotes the family of Suzuki simple groups, $n=2^{2 k+1}, k \in$. This proves that the second and third member of the family of Suzuki simple groups are characterizable by the set of the number of the same element order.

Keywords: Element order; Sylow subgroup; Simple K_{n}-group; Suzuki group.

Introduction

Suppose that G is a finite simple group and $|\pi(G)|=n$, where $|\pi(G)|$ denotes the number of prime numbers dividing the order of G. Then G is called a simple K_{n}-group. Suppose that G is a finite group. Then a Sylow q-subgroup of G is denoted by P_{q} and the number of Sylow q-subgroups of G is denoted by n_{q} and the greatest order of elements in P_{q} is denoted by $\exp \left(P_{q}\right)$. The Euler totient function is
denoted by $\varphi(n)$. The set of sizes of conjugacy classes has an essential role in determining of the structure of a finite group. So one might ask whether the set of sizes of elements with the same order has an essential role in determining the structure of a finite group. In [9], it is proved that all simple K_{4}-groups can be uniquely determined by $n \operatorname{se}(G)$ and $|G|$. But in [1,6,10], it is proved that the groups $A_{4}, A_{5}, A_{6}, S z(8)$ and the groups $L_{2}(q)$, for $q \in\{7,8,11,13\}$ are uniquely determined only by $n \operatorname{se}(G)$. In this paper, we prove

[^0]that if G is a group such that $n s e(G)=n \operatorname{se}(\operatorname{Sz}(n))$, where $n \in\{32,128\}$, then $G \cong S z(n)$.

Preliminary and Notations

In this section, we bring some lemmas that is need in the proof of main theorem.

Lemma 1.1 [5] If G is a simple K_{3}-group, then G is isomorphic to one of the following groups:
$A_{5}, A_{6}, L_{2}(7), L_{2}(8), L_{2}(17), L_{3}(3), U_{3}(3)$, $U_{4}(2)$.

Lemma 1.2 [8] If G is a simple K_{4}-group, then G is isomorphic to one of the following groups:
(1) $A_{7}, A_{8}, A_{9}, A_{10}$.
(2) M_{11}, M_{12}, J_{2}.
(3) (a) $L_{2}(r)$, where r is a prime and satisfies $r^{2}-1=2^{a} \times 3^{b} \times v^{c}$
with $a \geq 1, b \geq 1, c \geq 1, v>3, v$ is a prime.
(b) $L_{2}\left(2^{m}\right)$, where m satisfies

$$
\left\{\begin{array}{c}
2^{m}-1=u \\
2^{m}+1=3 t^{b}
\end{array}\right.
$$

with $m \geq 2, u, t$ are primes, $t>3, b \geq 1$.
(c) $L_{2}\left(3^{m}\right)$, where m satisfies

$$
\left\{\begin{array} { c }
{ 3 ^ { m } + 1 = 4 t } \\
{ 3 ^ { m } - 1 = 2 u ^ { c } }
\end{array} \text { or } \left\{\begin{array}{l}
3^{m}+1=4 t^{b} \\
3^{m}-1=2 u
\end{array}\right.\right.
$$

with $m \geq 2, u, t$ are odd primes, $b \geq 1, c \geq 1$.
(d) $L_{2}(16), L_{2}(25), L_{2}(49), L_{2}(81), L_{3}(4)$,
$L_{3}(5), L_{3}(7), L_{3}(8), L_{3}(17), L_{4}(3), S_{4}(4)$,
$S_{4}(5), \quad S_{4}(7), \quad S_{4}(9), \quad S_{6}(2), O_{8}^{+}(2), G_{2}(3)$, $U_{3}(4), U_{3}(5), U_{3}(7), U_{3}(8), U_{3}(9), U_{4}(3)$, $U_{5}(2), S z(8), S z(32),{ }^{3} D_{4}(2),{ }^{2} F_{4}(2)^{\prime}$.

Lemma 1.3 [3] Let G be a finite solvable group and $|G|=m n$, where $m=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}},(m, n)=1$. Let $\pi=\left\{p_{1}, \ldots, p_{r}\right\}$ and h_{m} be the number of Hall π subgroups of G. Then $h_{m}=q_{1}^{\beta_{1}} \ldots q_{s}^{\beta_{s}}$ satisfies the following conditions for all $i \in\{1, \ldots, s\}$:
(1) $q_{i}^{\beta_{i}} \equiv 1\left(\bmod p_{j}\right)$, for some p_{j}.
(2) The order of some chief factor of G is divisible by $q_{i}^{\beta_{i}}$.

Lemma 1.4 [2] Let G be a finite group and m be a positive integer dividing $|G|$. If $L_{m}(G)=\left\{g \in G: g^{m}=1\right\}$, then $m\left|\left|L_{m}(G)\right|\right.$.

Lemma 1.5 [10] Let G be a group containing more than two elements. Let $k \in \pi_{e}(G)$ and m_{k} be the number of elements of order k in G. If $s=\sup \left\{m_{k}: k \in \pi_{e}(G)\right\}$ is finite, then G is finite and $|G| \leq s\left(s^{2}-1\right)$.

Lemma 1.6 [7] Let G be a finite group and $p \in \pi(G)$ be odd. Suppose that P is a Sylow $p-$ subgroup of G and $n=p^{s} m$, where $(p, m)=1$. If P is not cyclic and $s>1$, then the number of elements of order n is always a multiple of p^{s}.

Lemma 1.7 [4] Let G be a solvable group and π be any set of primes. Then
(1) G has a Hall π-subgroup.
(2) If H is a Hall π-subgroup of G and V is any π-subgroup of G, then $V \leq H^{g}$ for some $g \in G$. In particular, the Hall π-subgroups of G form a single conjugacy class of subgroups of G.

Lemma 1.8 Let G be a finite group which is not solvable. Then there is a normal series $1(N(M(G$ such that N is a maximal solvable normal subgroup of G and M / N is a non-abelian simple group or the direct product of isomorphic nonabelian simple groups.

Proof. Since G is a finite group, there is chief series $1=M_{0}\left(M_{1}\left(\ldots\left(M_{n-1}\left(M_{n}=G\right.\right.\right.\right.$. Since G is not solvable, there is a maximal i such that M_{i-1} is solvable and M_{i} / M_{i-1} is not solvable. On the other hand, we know that every chief factors is a simple group or the direct product of isomorphic simple groups. Therefore M_{i-1} is a maximal solvable normal
subgroup of G and M_{i} / M_{i-1} is a non-abelian simple group or the direct product of isomorphic non-abelian simple groups.

Lemma 1.9 Let G be a group such that $n \operatorname{se}(G)=n \operatorname{se}(S z(n))$, where $n \in\{32,128\}$. Then G is finite and for every $i \in \pi_{e}(G)$,

$$
\left\{\begin{array}{l}
\varphi(i) \mid m_{i} \\
i \mid \sum_{d \mid i} m_{d}
\end{array}\right.
$$

and if $\mathrm{i}>2$, then m_{i} is even.

Proof. By Lemma 1.5, G is a finite group. By Lemma 1.4, $i \mid \sum_{d \mid i} m_{d}$. We know that the number of elements of order i in a cyclic group of order i is equal with $\varphi(i)$. Hence $m_{i}=\varphi(i) k$, where k is the number of cyclic subgroups of order i in G. Thus $\varphi(i) \mid m_{i}$. We know that if $i>2$, then $\varphi(i)$ is even and since $\varphi(i) \mid m_{i}$, we conclude that m_{i} is even.

Results

In this section, we prove two theorems as the main results of our paper. The first theorem is the following theorem:

Theorem 2.1 Suppose that G is a group such that $n s e(G)=n s e(S z(32))$. Then $G \cong S z(32)$.

Proof. By a program written in the $G A P$, we have in $\operatorname{nse}(\mathrm{G})=\mathrm{nse}(\mathrm{Sz}(32))=$

$$
\begin{aligned}
& \{1,31775,1016800,1301504,6507520, \\
& 7936000,15744000\}
\end{aligned}
$$

We prove this theorem in five steps.
Step 1. $\pi(G)=\{2,5,31,41\}$.
Since 31775 is odd, Lemma 1.9 implies that $2 \in \pi(G)$ and $m_{2}=31775$. Assume that $q \in \pi(G)$ and $q \neq 2$, by Lemma 1.9, $q \mid\left(1+m_{q}\right)$ and $\quad(q-1)=\varphi(q) \mid m_{q}$, which imply that
$q \in\{3,5,7,13,31,41,6507521\}$. If $6507521 \in \pi(G)$, then by Lemma 1.9, $m_{6507521}=6507520$. On the other hand, if $13015042=2 \times 6507521 \in \pi_{e}(G)$, then by Lemma 1.9, $\varphi(13015042) \mid m_{13015042}$ and $13015042 \mid\left(1+m_{2}+m_{6507521}+m_{13015042}\right), \quad$ which is a contradiction. Hence $2 \times 6507521 \notin \pi_{e}(G)$. Thus $P_{6507521}$ acts fixed point freely on the set of elements of order 2 by conjugation. Therefore $\left|P_{6507521}\right| \mid m_{2}$, which is a contradiction. So $6507521 \notin \pi(G)$. If $13 \in \pi(G)$, then by Lemma 1.9, $m_{13}=15744000$. On the other hand, if $26=2 \times 13 \in \pi_{e}(G)$, then by Lemma 1.9, $\varphi(26) \mid m_{26}$ and $26 \mid\left(1+m_{2}+m_{13}+m_{26}\right)$, which is a contradiction. Hence $2 \times 13 \notin \pi_{e}(G)$. Thus P_{13} acts fixed point freely on the set of elements of order 2 by conjugation. Therefore $\left|P_{13}\right| \mid m_{2}$, which is a contradiction. So $13 \notin \pi(G)$. If $7 \in \pi(G)$, then by Lemma 1.9, $m_{7}=15744000$. On the other hand, if $14=2 \times 7 \in \pi_{e}(G)$, then by Lemma 1.9, $\varphi(14) \mid m_{14}$ and $14 \mid\left(1+m_{2}+m_{7}+m_{14}\right)$, which is a contradiction. Hence $14=2 \times 7 \notin \pi_{e}(G)$. Thus P_{7} acts fixed point freely on the set of elements of order 2 by conjugation. Therefore $\left|P_{7}\right| \mid m_{2}$, which is a contradiction. So $7 \notin \pi(G)$. Therefore we conclude that $\pi(G) \subseteq\{2,3,5,31,41\}$.

If $\{2,3,5,31,41\} \subseteq \pi(G)$, then by Lemma 1.9, $m_{2}=31775, \quad m_{3}=1301504, \quad m_{5}=1301504$, $m_{31}=15744000$, $\quad m_{41}=7936000 \quad$ and $2^{13}, 3^{3}, 5^{3}, 31^{2}, 41^{2}, 2 \times 31,3 \times 41,31 \times 41 \notin \pi_{e}(G)$.

Since $\quad 2^{13} \notin \pi_{e}(G)$, we conclude that $\exp \left(P_{2}\right) \in\left\{2, \ldots, 2^{12}\right\}$. If $\exp \left(P_{2}\right)=2^{2}$, then by Lemma 1.4 and considering $m=\left|P_{2}\right|$, we conclude that $\left|P_{2}\right| \mid 2^{20}$ otherwise $\left|P_{2}\right| \mid 2^{19}$.

Since $\quad 3^{3} \notin \pi_{e}(G)$, we conclude that $\exp \left(P_{3}\right)=3$ or 3^{2}. There are two cases:

Case 1. If $\exp \left(P_{3}\right)=3$, then by Lemma 1.4 and considering $m=\left|P_{3}\right|$, we conclude that $\left|P_{3}\right|=3$. Hence P_{3} is cyclic and $n_{3}=\frac{m_{3}}{\varphi(3)}=2^{9} \times 31 \times 41$.

Case 2. If $\exp \left(P_{3}\right)=3^{2}$, then by Lemma 1.4 and considering $m=\left|P_{3}\right|$, we conclude that $\left|P_{3}\right| \mid 3^{3}$. If $\left|P_{3}\right|=3^{3}$, then P_{3} is not cyclic. Hence by Lemma 1.6, $9 \mid m_{9}=15744000$, which is a contradiction. Therefore $\left|P_{3}\right|=3^{2}$ and $n_{3}=\frac{m_{3^{2}}}{\varphi\left(3^{2}\right)}=2^{9} \times 5^{3} \times 41$.

Since $5^{3} \notin \pi_{e}(G)$, we conclude that $\exp \left(P_{5}\right)=5$ or 5^{2}. If $\exp \left(P_{5}\right)=5$, then by Lemma 1.4 and by considering $m=\left|P_{5}\right|$, we conclude that $\left|P_{5}\right|=5$ and $n_{5}=\frac{m_{5}}{\varphi(5)}=2^{8} \times 31 \times 41$. If $\exp \left(P_{5}\right)=5^{2}$, then by Lemma 1.4 and considering $m=\left|P_{5}\right|$, we conclude that $\left|P_{5}\right|=5^{2}$ and $n_{5}=\frac{m_{5^{2}}}{\varphi\left(5^{2}\right)}=2^{8} \times 31 \times 41$.

Since $31^{2} \notin \pi_{e}(G)$, by Lemma 1.4 and considering $m=\left|P_{31}\right|$, we conclude that $\left|P_{31}\right|=31$ and $n_{31}=\frac{m_{31}}{\varphi(31)}=2^{9} \times 5^{2} \times 41$.

Since $41^{2} \notin \pi_{e}(G)$, by Lemma 1.4 and considering $m=\left|P_{41}\right|$, we conclude that $\left|P_{41}\right| \mid 41^{2}$.

Now we show that $3 \notin \pi(G)$.
If $3 \in \pi(G)$, then by the above discussion, $n_{3}=2^{9} \times 31 \times 41$ or $2^{9} \times 5^{3} \times 41$. Hence $41||G|$. Since $3 \times 41 \notin \pi_{e}(G)$, we conclude that P_{3} acts fixed point freely on the set of elements of order 41 by conjugation. Hence $\left|P_{3}\right| \mid m_{41}$, which is a contradiction. So $3 \notin \pi(G)$. Therefore
$\pi(G) \subseteq\{2,5,31,41\}$.
If $\pi(G)=\{2\}$, then we know that $|n s e(G)|=7$.
Thus $\exp \left(P_{2}\right)>4$. Hence $|G|=\left|P_{2}\right| \mid 2^{19}$. So $1 \leq m_{4} \leq 2^{19}$, but
$m_{4} \in\{1016800,1301504,6507520,7936000,15744000\}$, which is a contradiction.

If $\pi(G)=\{2,41\}$, then we know that 2^{13}, $41^{2} \notin \pi_{e}(G)$ and $\left|P_{2}\right|\left|2^{20},\left|P_{41}\right|\right| 41^{2}$. Hence $\pi_{e}(G) \subseteq\left\{1,2, \ldots, 2^{12}\right\} \cup\left\{41,41 \times 2, \ldots, 41 \times 2^{12}\right\}$. Therefore,

$$
\begin{aligned}
|G|=2^{1} \times 41^{k}= & 32537600+1016800 k_{1} \\
& +1301504 k_{2}+6507520 k_{3} \\
& +7936000 k_{4}+15744000 k_{5}
\end{aligned}
$$

where $0 \leq k_{1}+k_{2}+k_{3}+k_{4}+k_{5} \leq 19, l \leq 20, k \leq 2$. It is easy to check that this equation has no solution.

If $5 \in \pi(G)$, then $n_{5}=2^{8} \times 31 \times 41$. We know that $n_{5}| | G \mid$. Hence $31||G|$.

Therefore in any cases we can assume that $31 \in \pi(G)$.

Now we prove that $\pi(G)=\{2,5,31,41\}$. Since $31 \in \pi(G)$, we conclude that $\left|P_{31}\right|=31$ and $n_{31}=\frac{m_{31}}{\varphi(31)}=2^{9} \times 5^{2} \times 41$. We know that $n_{31}| | G \mid$, hence $2^{9} \times 5^{2} \times 41| | G \mid$. It follows that $\pi(G)=\{2,5,31,41\}$.

Step 2. $|G|=2^{k} \times 5^{l} \times 31 \times 41$, where $k \leq 10$, $l \leq 2$.

By the above discussion $\left|P_{31}\right|=31,\left|P_{5}\right| \mid 5^{2}$.
Since $62 \notin \pi_{e}(G)$, we conclude that P_{2} acts fixed point freely on the set of elements of order 31 by conjugation. Therefore $\left|P_{2}\right| \mid m_{31}$. Hence $\left|P_{2}\right| \mid 2^{10}$.

Since $1271 \notin \pi_{e}(G)$, we conclude that P_{41} acts fixed point freely on the set of elements of order 31 by conjugation. Therefore $\left|P_{41}\right| \mid m_{31}$. Hence $\left|P_{41}\right|=41$.

Step 3. G is not solvable.
If G is solvable, then by Lemma 1.7, G has a Hall
π-subgroup H, where $\pi=\{5,31,41\}$ and all the Hall π-subgroups of G are conjugate and the number of Hall π-subgroups of G is $\left|G: N_{G}(H)\right| \mid 2^{10}$. Since G is solvable, we conclude that H is solvable. Hence by Lemma 1.3, there are non negative integers $\alpha_{1}, \ldots, \alpha_{r}, \quad \beta_{1}, \ldots, \beta_{s} \quad$ such that $n_{31}(H)=5^{\alpha_{1}+\ldots+\alpha_{r}} \times 41^{\beta_{1}+\ldots+\beta_{s}}, 5^{\alpha_{i}} \equiv 1(\bmod 31)$, $41^{\beta_{i}} \equiv 1(\bmod 31)$. Since $|G|=2^{k} \times 5^{l} \times 31 \times 41$, where $k \leq 10, \quad l \leq 2$, we conclude that $\alpha_{1}+\ldots+\alpha_{r} \leq 2, \quad \beta_{1}+\ldots+\beta_{s} \leq 1 . \quad$ Therefore $n_{31}(H)=1$. So $30 \leq m_{31}(G) \leq\left(2^{10} \times 30\right)=30720$, but we have $m_{31}(G)=15744000$, which is a contradiction.

Step 4. $|G|=2^{10} \times 5^{2} \times 31 \times 41$.
Since G is a finite group which is not solvable, there is a normal series $1(N(M(G$ such that N is a maximal solvable normal subgroup of G and M / N is a non-abelian simple group or the direct product of isomorphic non-abelian simple groups, by Lemma 1.8. Let $M / N \cong S_{1} \times \ldots \times S_{r}$, where S_{1} is a non-abelian simple group and $S_{1} \cong \ldots \cong S_{r}$. Since

$$
1\left(N \left(M \left(G \quad \text { and } \quad|G|=2^{k} \times 5^{l} \times 31 \times 41\right.\right.\right.
$$ where $k \leq 10, l \leq 2$, we conclude that $r=1$ and M / N is a simple K_{3}-group or a simple K_{4}-group.

If M / N is a simple K_{3}-group, then by Lemma 1.1 and $|G|=2^{k} \times 5^{l} \times 31 \times 41$, where $k \leq 10$, $l \leq 2$, we conclude a contradiction.

If M / N is a simple K_{4}-group, then by Lemma 1.2 and $|G|=2^{k} \times 5^{l} \times 31 \times 41$, where $k \leq 10$, $l \leq 2$, we conclude that $M / N \cong S z(32)$. Hence $2^{10} \times 5^{2} \times 31 \times 41=|M / N|| | G| | 2^{10} \times 5^{2} \times 31 \times 41$. So $|G|=|S z(32)|$.

Step 5. $G \cong S z(32)$.
Since $1(N(M(G, M / N \cong S z(32)$ and $|G|=|S z(32)|$, we can conclude $\quad N=1$, $G=M \cong S z(32)$ and the proof is completed. \square

The second theorem as the main result is the following theorem:

Theorem 2.2 Suppose that G is a group such that $n s e(G)=n s e(S z(128))$. Then $G \cong S z(128)$.

Proof. By a program written in the $G A P$, we have $\mathrm{nse}(\mathrm{G})=\mathrm{nse}(\mathrm{Sz}(128))=$
$\{1,2080895,266354560,235126784,16$ 45887488,6583549952,8447918080, $16912465920\}$.

We prove this theorem in four steps.
Step 1. $\pi(G)=\{2,5,29,113,127\}$.
Since 2080895 is odd, Lemma 1.9 implies that $2 \in \pi(G)$ and $m_{2}=2080895$. Assume that $q \in \pi(G)$ and $q \neq 2$ by Lemma 1.9, $q \mid\left(1+m_{q}\right)$ and $\quad(q-1)=\varphi(q) \mid m_{q} \quad$ which imply that $q \in\{3,5,11,13,29,113,127\}$. If $13 \in \pi(G)$, then by Lemma 1.9, $m_{13}=16912465920$. On the other hand, by Lemma 1.9, $13^{2} \notin \pi_{e}(G)$. Thus $\left|P_{13}\right| \mid\left(1+m_{13}\right)$. Therefore $\quad\left|P_{13}\right|=13$ and $n_{13}=\frac{m_{13}}{\varphi(13)}=1409372160$. Since $113 \mid n_{13}$, we deduce that $113 \in \pi(G)$. Now by Lemma 1.9, $13 \times 113 \notin \pi_{e}(G)$. Thus P_{13} acts fixed point freely on the set of elements of order 113 by conjugation. Therefore $\left|P_{13}\right| \mid m_{113}=8447918080$, which is a contradiction. So $13 \notin \pi(G)$. Similarly, we can prove that $11 \notin \pi(G)$.

If $3 \in \pi(G)$, then by Lemma 1.9, $m_{3} \in\{235126784,1645887488,6583549952\}$. On the other hand, by Lemma 1.9, $3^{2} \notin \pi_{e}(G)$. Thus $\left|P_{3}\right| \mid\left(1+m_{3}\right) . \quad$ Therefore $\quad\left|P_{3}\right|=3 \quad$ and $n_{3}=\frac{m_{3}}{\varphi(3)} \in\{117563392,822943744,3291774976\}$. Since $127 \mid n_{3}$, we deduce that $127 \in \pi(G)$. Now by Lemma $1.9, \quad 127^{2} \notin \pi_{e}(G)$. Thus
$\left|P_{127}\right| \mid\left(1+m_{127}\right)=(1+16912465920)$. Therefore $\left|P_{127}\right|=127 \quad$ and $\quad n_{127}=\frac{m_{127}}{\varphi(127)}=134225920$. Since $29 \mid n_{127}$, we deduce that $29 \in \pi(G)$. Now by Lemma 1.9, $3 \times 29 \notin \pi_{e}(G)$. Thus P_{3} acts fixed point freely on the set of elements of order 29 by conjugation. Therefore $\left|P_{3}\right| \mid m_{29}=1645887488$, which is a contradiction. So $3 \notin \pi(G)$. If $\{2,5,29,113,127\} \subseteq \pi(G)$, then by Lemma 1.9, $m_{2}=2080895$,

$$
\begin{aligned}
& m_{5}=235126784 \\
& m_{29}=1645887488 \\
& m_{113}=8447918080 \\
& m_{127}=16912465920 \\
& \text { and } 2^{18}, 5^{2}, 29^{2}, 113^{2}, 127^{2} \notin \pi_{e}(G) . \text { Thus by }
\end{aligned}
$$ Lemma 1.4 and considering $m=\left|P_{5}\right|$, we conclude that $\left|P_{5}\right|=5$. Similarly, $\left|P_{29}\right|=29,\left|P_{113}\right|=113$ and $\left|P_{127}\right|=127$.

If $\pi(G)=\{2\}$, then since $2^{18} \notin \pi_{e}(G)$, we conclude that $\pi_{e}(G) \subseteq\left\{1,2,2^{2}, \ldots, 2^{17}\right\}$. Therefore

$$
\begin{array}{rl}
|G|=2^{k}=340 & 93383680+266354560 k_{1} \\
& +235126784 k_{2}+1645887488 \\
& +6583549952 k_{4}+8447918080 k_{5} \\
& +16912465920 k_{6}
\end{array}
$$

where $k, k_{1}, k_{2}, k_{3}, k_{4}, k_{5}$ and k_{6} are non-negative integers and $0 \leq k_{1}+k_{2}+k_{3}+k_{4}+k_{5}+k_{6} \leq 10$. It is easy to check that this equation has no solution.

If $5 \in \pi(G)$, then $\left|P_{5}\right|=5$ and $n_{5}=\frac{m_{5}}{\varphi(5)}=\frac{235126784}{4}=58781696$. We know that $n_{5}| | G \mid$. Hence $127 \in \pi(G)$. Similarly, we can prove that if $29 \in \pi(G)$ or $113 \in \pi(G)$, then $127 \in \pi(G)$. So in any cases, we can assume that $127 \in \pi(G)$.

Now we prove that $\pi(G)=\{2,5,29,113,127\}$. Since $127 \in \pi(G)$, we conclude that $\left|P_{127}\right|=127$
and $n_{127}=\frac{m_{127}}{\varphi(127)}=134225920$. We know that $n_{127}| | G \mid$. Hence $134225920||G|$. It follows that $\pi(G)=\{2,5,29,113,127\}$.

Step 2. $|G|=2^{k} \times 5 \times 29 \times 113 \times 127$, where $13 \leq k \leq 14$.

By the above discussion $\left|P_{5}\right|=5,\left|P_{29}\right|=29$, $\left|P_{113}\right|=113$ and $\left|P_{127}\right|=127$.

By Lemma 1.9, $2 \times 127 \notin \pi_{e}(G)$. Thus P_{2} acts fixed point freely on the set of elements of order 127 by conjugation. Therefore $\left|P_{2}\right| \mid m_{127}$. Hence $\left|P_{2}\right| \mid 2^{14}$. On the other hand, since $n_{127}| | G \mid$, we deduce that $2^{13}| | G \mid$. Hence $2^{13}| | P_{2} \mid$.

Step 3. G is not solvable.
If G is solvable, then by Lemma 1.7, G has a Hall π-subgroup H, where $\pi=\{5,29,113,127\}$ and all the Hall π-subgroups of G are conjugate and the number of Hall π-subgroups of G is $\left|G: N_{G}(H)\right| \mid 2^{14}$. Since G is solvable, we conclude that H is solvable. Hence by Lemma 1.3, there are nonnegative integers $\alpha_{1}, \ldots, \alpha_{r}, \beta_{1}, \ldots, \beta_{s}, \gamma_{1}, \ldots, \gamma_{t}$ such that $n_{5}(H)=29^{\alpha_{1}+\ldots+\alpha_{r}} \times 113^{\beta_{1}+\ldots+\beta_{s}} \times 127^{\gamma_{1}+\ldots+\gamma_{t}}$, $29^{\alpha_{i}} \equiv 1(\bmod 5), \quad 113^{\beta_{i}} \equiv 1(\bmod 5)$, $127^{\gamma_{i}} \equiv 1(\bmod 5)$.

Since $\quad|G|=2^{k} \times 5 \times 29 \times 113 \times 127$, where $13 \leq k \leq 14$, we conclude that $\alpha_{1}+\ldots+\alpha_{r} \leq 1$, $\beta_{1}+\ldots+\beta_{s} \leq 1, \quad \gamma_{1}+\ldots+\gamma_{t} \leq 1 . \quad$ Therefore $n_{5}(H)=1$. So $4 \leq m_{5}(G) \leq\left(2^{14} \times 4\right)=65536$, but we have $m_{5}(G)=235126784$, which is a contradiction.

Step 4. $G \cong S z(128)$.
Since G is a finite group which is not solvable, there is a normal series $1(N(M(G$ such that N is a maximal solvable normal subgroup of G and M / N is a non-abelian simple group or the direct product of isomorphic non-abelian simple groups, by

Lemma 1.8. Let $M / N \cong S_{1} \times \ldots \times S_{r}$, where S_{1} is a non-abelian simple group and $S_{1} \cong \ldots \cong S_{r}$. Since 1 ($N\left(M\left(G\right.\right.$ and $|G|=2^{k} \times 5 \times 29 \times 113 \times 127$, where $13 \leq k \leq 14$, we conclude that $r=1$ and M / N is a non-abelian simple group. Since $3 \backslash|G|$, we deduce that $3 \backslash|M / N|$. We know that the group $S z(q)$ is only non-abelian simple group such that $3 \backslash|S z(q)|$. Hence $M / N \cong S z(128)$ and since $|G|=2^{k} \times 5 \times 29 \times 113 \times 127$, where $13 \leq k \leq 14$, we deduce that $|N|=1$ and $G=M \cong S z(128)$.

Acknowledgement

The authors would like to thank the referees for a very careful reading of the paper and for all their insightful comments and valuable suggestions, which improve considerably the presentation of this paper. This work was partially supported by Center of Excellence of Algebraic Hyperstructures and its Applications of Tarbiat Modares University (CEAHA).

References

1. Asgary S. and Ahanjideh N. A characterization of $\mathrm{Sz}(8)$ by nse. The $6^{\text {th }}$ National Group Theory Conference, Golestan University, Gorgan, Iran. 50-54 (2014).
2. Frobenius G. Verallgemeinerung des sylowschen satze. Berliner sitz. 981-993 (1895).
3. Hall M. The Theory of Groups. Macmillan, New York. (1959).
4. Hall P. A note on soluble groups. J. London Math. Soc. 1: 98-105 (1928).
5. Herzog M. On finite simple groups of order divisible by three primes only. J. Algebra 10: 383-388 (1968).
6. Khatami M., Khosravi B. and Akhlaghi Z. A new characterization for some linear groups. Monatsh. Math. 163: 39-50 (2011).
7. Miller G. Addition to a theorem due to Frobenius. Bull. Am. Math. Soc. 11: 6-7 (1904).
8. Shi W.J. On simple K_{4}-groups. Chinese Science Bull. 36: 1281-1283 (1991).
9. Shao C.G., Shi W.J. and Jiang Q.H. Characterization of simple K_{4}-groups. Front. Math. China 3: 355-370 (2008).
10. Shen R., Shao C., Jiang Q., Shi W. and Mazurov V. A new characterization of A_{5}. Monatsh. Math. 160: 337-341 (2010).

[^0]: * Corresponding author: Tel: +982188009730; Fax: +982188009730; Email: iranmana@modares.ac.ir

