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Abstract
Suppose that G is a finite group. Then the set of all prime divisors of G is denoted

by ( )G and the set of element orders of G is denoted by ( )e G . Suppose that
( )ek G . Then the number of elements of order k in G is denoted by km and the

sizes of the set of elements with the same order is denoted by  nse G ; that is,

   : ( )k em knse G G  . In this paper, we prove that if G is a group such that

  ( ( ))nsens SzG ne  , where  32,128n , then ( )G Sz n . Here ( )Sz n denotes the

family of Suzuki simple groups, 2 12 kn  , k . This proves that the second and
third member of the family of Suzuki simple groups are characterizable by the set of
the number of the same element order.
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Introduction
Suppose that G is a finite simple group and
( )G n  , where ( )G denotes the number of

prime numbers dividing the order of G . Then G is
called a simple nK -group. Suppose that G is a finite

group. Then a Sylow q -subgroup of G is denoted by

qP and the number of Sylow q -subgroups of G is

denoted by qn and the greatest order of elements in qP
is denoted by exp( )qP . The Euler totient function is

denoted by ( )n . The set of sizes of conjugacy classes
has an essential role in determining of the structure of a
finite group. So one might ask whether the set of sizes
of elements with the same order has an essential role in
determining the structure of a finite group. In [9], it is
proved that all simple 4K -groups can be uniquely

determined by ( )nse G and G . But in [1,6,10], it is

proved that the groups 4A , 5A , 6A , (8)Sz and the

groups 2 ( )L q , for  7,8,11,13q are uniquely

determined only by ( )nse G . In this paper, we prove
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that if G is a group such that ( ) ( ( ))nse G nse Sz n ,

where  32,128n , then ( )G Sz n .

Preliminary and Notations
In this section, we bring some lemmas that is need in

the proof of main theorem.
Lemma 1.1 [5] If G is a simple 3K -group, then

G is isomorphic to one of the following groups:

5A , 6A , 2 (7)L , 2 (8)L , 2 (17)L , 3 (3)L , 3(3)U ,

4 (2)U .

Lemma 1.2 [8] If G is a simple 4K -group, then G
is isomorphic to one of the following groups:

(1) 7A , 8A , 9A , 10A .

(2) 11M , 12M , 2J .

(3) (a) 2 ( )L r , where r is a prime and satisfies
2 1 2 3a b cr v   

with 1a  , 1b  , 1c  , 3v  , v is a prime.
(b) 2 (2 )mL , where m satisfies

2 1
2 1 3

m

m b

u
t

  

 

with 2m  , u , t are primes, 3t  , 1b  .
(c) 2 (3 )mL , where m satisfies

3 1 4
3 1 2

m

m c

t
u

 
 





or
3 1 4
3 1 2

m b

m

t
u

 
 





with 2m  , u , t are odd primes, 1b  , 1c  .
(d) 2 (16)L , 2 (25)L , 2 (49)L , 2 (81)L , 3(4)L ,

3(5)L , 3(7)L , 3 (8)L , 3 (17)L , 4 (3)L , 4 (4)S ,

4 (5)S , 4 (7)S , 4 (9)S , 6 (2)S , 8 (2)O , 2 (3)G ,

3 (4)U , 3(5)U , 3 (7)U , 3(8)U , 3 (9)U , 4 (3)U ,

5 (2)U , (8)Sz , (32)Sz , 3
4 (2)D , 2

4 (2)F  .

Lemma 1.3 [3] Let G be a finite solvable group and
G mn , where 1

1 ... r
rm p p  ,  , 1m n  . Let

 1, , rp p   and mh be the number of Hall  -

subgroups of G . Then 1
1 ... s

m sh q q satisfies the

following conditions for all  1, ,i s  :

(1)  1  mod i
i jq p  , for some jp .

(2) The order of some chief factor of G is divisible
by i

iq .

Lemma 1.4 [2] Let G be a finite group and m be a
positive integer dividing | |G . If

 ( ) : 1m
mL G g G g   , then      ( )mm L G .

Lemma 1.5 [10] Let G be a group containing more
than two elements. Let ( )ek G and km be the
number of elements of order k in G . If

 : ( )k es sup m k G  is finite, then G is finite

and 2( 1)G s s  .

Lemma 1.6 [7] Let G be a finite group and
( )p G be odd. Suppose that P is a Sylow p -

subgroup of G and sn p m , where ( , ) 1p m  . If
P is not cyclic and 1s  , then the number of elements
of order n is always a multiple of sp .

Lemma 1.7 [4] Let G be a solvable group and 
be any set of primes. Then

(1) G has a Hall  -subgroup.
(2) If H is a Hall  -subgroup of G and V is

any  -subgroup of G , then gV H for some
g G . In particular, the Hall  -subgroups of G
form a single conjugacy class of subgroups of G .

Lemma 1.8 Let G be a finite group which is not
solvable. Then there is a normal series
1 N M G( ( ( such that N is a maximal solvable
normal subgroup of G and M N is a non-abelian
simple group or the direct product of isomorphic non-
abelian simple groups.

Proof. Since G is a finite group, there is chief
series 0 1 11 ... n nM M M M G ( ( ( ( . Since
G is not solvable, there is a maximal i such that

1iM  is solvable and 1i iM M  is not solvable. On
the other hand, we know that every chief factors is a
simple group or the direct product of isomorphic simple
groups. Therefore 1iM  is a maximal solvable normal
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subgroup of G and 1i iM M  is a non-abelian simple
group or the direct product of isomorphic non-abelian
simple groups.

Lemma 1.9 Let G be a group such that
( ) ( ( ))nse G nse Sz n , where  32,128n . Then

G is finite and for every ( )ei G ,

 

  

    
     

i

d
d i

i m

i m







and if i 2 , then im is even.

Proof. By Lemma 1.5, G is a finite group. By
Lemma 1.4,      d

d i
i m . We know that the number of

elements of order i in a cyclic group of order i is
equal with ( )i . Hence ( )im i k , where k is the
number of cyclic subgroups of order i in G . Thus

    ( )   ii m . We know that if 2i  , then ( )i is even

and since     ( )   ii m , we conclude that im is even. □

Results
In this section, we prove two theorems as the main

results of our paper. The first theorem is the following
theorem:

Theorem 2.1 Suppose that G is a group such that
( ) ( (32))nse G nse Sz . Then (32)G Sz .

Proof. By a program written in the GAP, we have in

nse(G)=nse(Sz(32))=
{1,31775,1016800,1301504,6507520,
7936000,15744000 }.

We prove this theorem in five steps.
Step 1.    2, 5, 31, 41G  .

Since 31775 is odd, Lemma 1.9 implies that
 2 G and 2 31775m  . Assume that

 q G and 2q  , by Lemma 1.9,      1 qq m

and    1      qq q m  , which imply that

 3, 5, 7,1  3, 31, 41,6507521q . If  6507521 G ,

then by Lemma 1.9, 6507521 6507520m  . On the

other hand, if  13015042 2 6507521 e G   ,

then by Lemma 1.9,   1301504213015042      m and

 2 6507521 1301504213015042     1  m m m   , which

is a contradiction. Hence  2 6507521 e G  .

Thus 6507521P acts fixed point freely on the set of

elements of order 2 by conjugation. Therefore

6507521 2      P m , which is a contradiction. So

 6507521 G . If  13 G , then by Lemma

1.9, 13 15744000m  . On the other hand, if

 26 2 13 e G   , then by Lemma 1.9,

  2626     m and  2 13 2626     1 m m m   , which is

a contradiction. Hence  2 13 e G  . Thus 13P acts

fixed point freely on the set of elements of order 2 by

conjugation. Therefore 13 2    P m , which is a

contradiction. So  13 G . If  7 G , then by

Lemma 1.9, 7 15744000m  . On the other hand, if

 14 2 7 e G   , then by Lemma 1.9,

  1414     m and  2 7 1414     1  m m m   , which is a

contradiction. Hence  14 2 7 e G   . Thus 7P
acts fixed point freely on the set of elements of order 2
by conjugation. Therefore 7 2    P m , which is a

contradiction. So  7 G . Therefore we conclude

that    2, 3, 5, 31, 41G  .

If    2, 3, 5, 31, 41 G , then by Lemma 1.9,

2 31775m  , 3 1301504m  , 5 1301504m  ,

31 15744000m  , 41 7936000m  and

 13 3 3 2 22 ,3 ,5 ,31 , 41 , 2 31, 3 41, 31 41 e G    .

Since  132 e G , we conclude that

   12
2exp 2, , 2P   . If   2

2exp 2P  , then by

Lemma 1.4 and considering 2m P , we conclude that
20

2     2P otherwise 19
2     2P .
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Since  33 e G , we conclude that

 3exp 3 P  or 23 . There are two cases:

Case 1. If  3exp 3P  , then by Lemma 1.4 and

considering 3m P , we conclude that 3 3P  .

Hence 3P is  cyclic  and
 

93
3 2 31 41

3
mn

    .

Case 2. If   2
3exp 3P  , then by Lemma 1.4 and

considering 3m P , we conclude that 3
3     3P . If

3
3 3P  , then 3P is not cyclic. Hence by Lemma 1.6,

99     15744000m  , which is a contradiction.

Therefore 2
3 3P  and  

2 9 33
3 2

2 5 41
3

m
n

    .

Since  35 e G , we conclude that  5exp 5P 

or 25 . If  5exp 5P  , then by Lemma 1.4 and by

considering 5m P , we conclude that 5 5P  and

 
85

5 2 31 41
5

mn

    . If   2

5exp 5P  , then

by Lemma 1.4 and  considering 5m P , we conclude

that 2
5 5P  and  

2 85
5 2

2 31 41
5

m
n

    .

Since  231 e G , by Lemma 1.4 and considering

31m P , we conclude that 31 31P  and

 
9 231

31 2 5 41
31

mn

    .

Since  241 e G , by Lemma 1.4 and considering

41m P , we conclude that 2
41     41P .

Now we show that  3 G .

If  3 G , then by the above discussion,
9

3 2 31 41 n    or 9 32 5 41  . Hence 41    G .

Since  3 41 e G  , we conclude that 3P acts fixed

point freely on the set of elements of order 41 by

conjugation. Hence 3 41    P m , which is a

contradiction. So  3 G . Therefore

     2, 5, 31, 41G  .

If    2G  , then we  know  that   7nse G  .

Thus  2exp 4P  . Hence 19
2     2G P . So

19
41 2m  , but

 4 1  016800,1  301504,  6507520, 7936000, 1  5744000m  ,
which is a contradiction.

If    2, 41G  , then we  know  that 132 ,

 241 e G and 20
2     2P , 2

41      41P . Hence

     12 121 , 2 , , 2 41,41 2, , 41 2e G      .

Therefore,| | = 2 × 41 = 32537600 + 1016800+ 1301504 + 6507520+ 7936000 + 15744000
where 1 2 3 4 50 19k k k k k      , 20 l  , 2k  .

It is easy to check that this equation has no solution.
If  5 G , then 8

5 2 31 41n    . We know

that 5    n G . Hence 31    G .
Therefore in any cases we can assume that
 31 G .

Now we prove that    2,5,31, 41G  . Since

 31 G , we conclude that 31 31P  and

 
9 231

31 2 5 41
31

mn

    . We know that 31    n G

, hence 9 22 5 41    G  . It follows that

   2,5,31, 41G  .

Step 2. 2 5 31 41k lG     , where 10k  ,

2l  .

By the above discussion 31 31P  , 2
5     5P .

Since  62 e G , we conclude that 2P acts fixed

point freely on the set of elements of order 31 by

conjugation. Therefore 2 31    P m . Hence 10
2     2P .

Since  1271 e G , we conclude that 41P acts

fixed point freely on the set of elements of order 31 by

conjugation. Therefore 41 31    P m . Hence 41 41P  .

Step 3. G is not solvable.
If G is solvable, then by Lemma 1.7, G has a Hall
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 -subgroup H , where  5,31, 41  and all the

Hall  -subgroups of G are conjugate and the number

of Hall  -subgroups of G is   10 :     2GG N H .

Since G is solvable, we conclude that H is solvable.
Hence by Lemma 1.3, there are non negative integers

1, , r  , 1, , s  such that

  11
31 5 41 srn H      ,  5 1  mod  31  i  ,

 41 1  mod  31i  . Since 2 5 31 41k lG     ,

where 10 k  , 2l  , we conclude that

1   2 r   , 1  1s   . Therefore

 31  1n H  . So 10
3130 ( ) (2 30) 30720m G    ,

but we have  31 15744000m G  , which is a
contradiction.

Step 4. 10 22 5 31 41G     .

Since G is a finite group which is not solvable,
there is a normal series  1  N M G( ( ( such that
N is a maximal solvable normal subgroup of G and

/M N is a non-abelian simple group or the direct
product of isomorphic non-abelian simple groups, by
Lemma 1.8. Let 1/ rM N S S  , where 1S is a

non-abelian simple group and 1 rS S . Since

 1  N M G( ( ( and 2 5 31 41k lG     ,

where 10 k  , 2l  , we conclude that 1r  and
/M N is a simple 3K -group or a simple 4K -group.

If /M N is a simple 3K -group, then  by Lemma

1.1 and 2 5 31 41k lG     , where 10 k  ,

2l  , we conclude a contradiction.
If /M N is a simple 4K -group, then by Lemma

1.2 and 2 5 31 41k lG     , where 10 k  ,

  2l  ,  we conclude that  / 32M N Sz . Hence
10 2 10 22 5 31 41 /          2 5 31 41M N G       .

So  32G Sz .

Step 5.  32G Sz .

Since 1 N M G( ( ( ,  / 32M N Sz and

 32G Sz , we can conclude 1 N  ,

 32G M Sz  and the proof is completed. □

The second theorem as the main result is the
following theorem:

Theorem 2.2 Suppose that G is a group such that
    128nse G nse Sz . Then  128G Sz .

Proof. By a program written in the GAP, we have
nse(G)=nse(Sz(128))=

{1,2080895,266354560,235126784,16
45887488,6583549952,8447918080,
16912465920}.

We prove this theorem in four steps.
Step 1.    2, 5, 29,1  13,1  27G  .

Since 2080895 is odd, Lemma 1.9 implies that
 2 G and 2 2080895m  . Assume that

 q G and 2q  by Lemma 1.9,      1 qq m

and    1      qq q m  which imply that

 3, 5,1  1,1  3, 29,1  13,1  27q . If  13 G , then

by Lemma 1.9, 13 16912465920m  . On the other

hand, by Lemma 1.9,  213 e G . Thus

 13 13    1P m . Therefore 13 13P  and

 
13

13 1409372160
13

mn

  . Since 13113    n , we

deduce that  113 G . Now by Lemma 1.9,

 13 113 e G  . Thus 13P acts fixed point freely

on the set of elements of order 113 by conjugation.

Therefore 13 113     8447918080P m  , which is a

contradiction. So  13 G . Similarly, we can prove

that  11 G .

If  3 G , then by Lemma 1.9,

 3 235126784,1  645887488, 6583549952m  .

On the other hand, by Lemma 1.9,  23 e G . Thus

 3 3    1P m . Therefore 3 3P  and

   3
3 117563392, 822943744, 3291774976

3
mn

  .

Since 3127    n , we deduce that  127 G . Now

by Lemma 1.9,  2127 e G . Thus
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   127 127    1 1 16912465920P m   . Therefore

127 127P  and
 

127
127 134225920

127
mn

  .

Since 12729    n , we deduce that  29 G . Now by

Lemma 1.9,  3 29 e G  . Thus 3P acts fixed

point freely on the set of elements of order 29 by

conjugation. Therefore 3 29     1645887488P m  ,

which is a contradiction. So  3 G . If

   2, 5, 29,1  13,1  27 G , then by Lemma 1.9,

2 2080895m  ,

5 235126784m  ,

29 1645887488m  ,

113 8447918080m  ,

127 16912465920m 

and  18 2 2 2 22 ,5 , 29 ,1  13 ,127 e G . Thus by

Lemma 1.4 and considering 5m P , we conclude that

5 5P  . Similarly, 29 29P  , 113 113P  and

127 127P  .

If    2G  , then since  182 e G , we

conclude that    2 171, 2, 2 , ,2e G   . Therefore| | = 2 = 34093383680 + 266354560+ 235126784 + 1645887488+ 6583549952 + 8447918080+ 16912465920
where 1 2 3 4 5, ,  ,  , , k k k k k k and 6k are non-negative

integers and 1 2 3 4 5 60 10k k k k k k       . It
is easy to check that this equation has no solution.

If  5 G , then
5 5P  and

 
5

5
235126784 58781696

5 4
mn

   . We know that

5    n G . Hence  127 G . Similarly, we can

prove that if  29 G or  113 G , then

 127 G . So in any cases, we can assume that

 127 G .

Now we prove that    2,5, 29,1  13,1  27G  .

Since  127 G , we conclude that 127 127P 

and
 

127
127 134225920

127
mn

  . We know that

127    n G . Hence 134225920    G . It follows that

   2,5, 29,1  13,1  27G  .

Step 2. 2 5 29 113 127kG      , where

13 14k  .
By the above discussion 5 5P  , 29 29P  ,

113 113P  and 127 127P  .

By Lemma 1.9,  2 127 e G  . Thus 2P acts

fixed point freely on the set of elements of order 127
by conjugation. Therefore 2 127    P m . Hence 14

2     2P

. On the other hand, since 127    n G , we deduce that
132    G . Hence 13

22    P .

Step 3. G is not solvable.
If G is solvable, then by Lemma 1.7, G has a Hall
 -subgroup H , where  5, 29,1  13,1  27  and all

the Hall  -subgroups of G are conjugate and the
number of Hall  -subgroups of G is

  14 :     2GG N H . Since G is solvable, we conclude

that H is solvable. Hence by Lemma 1.3, there are
nonnegative integers 1, , r  , 1, , s  , 1, , t 
such that
  1 11

5 29 113 127s trn H          ,

 29 1  mod  5  i  ,  113 1  mod  5i  ,

 127 1  mod  5i  .

Since 2 5 29 113 127kG      , where

13 14k  , we conclude that 1   1 r   ,

1 1s   , 1 1t   . Therefore

 5 1n H  . So    14
54 2 4 65536m G    ,

but we have  5 235126784m G  , which is a
contradiction.

Step 4.  128G Sz .

Since G is a finite group which is not solvable,
there is a normal series 1 N M G( ( ( such that
N is a maximal solvable normal subgroup of G and

/M N is a non-abelian simple group or the direct
product of isomorphic non-abelian simple groups, by
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Lemma 1.8. Let 1/ rM N S S  , where 1S is a

non-abelian simple group and 1 rS S . Since

1 N M G( ( ( and 2 5 29 113 127kG      ,

where 13 14k  , we conclude that 1r  and
/M N is a non-abelian simple group. Since 3 |  G ,

we deduce that 3 | /M N . We know that the group

 Sz q is only non-abelian simple group such that

 3 | Sz q . Hence  / 128M N Sz and since

2 5 29 113 127kG      , where 13 14k  ,

we deduce that 1N  and  128G M Sz  .
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