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Abstract
One of the important problems in group theory is characterization of a group by a

given property, that is, to prove there exist only one group with a given property. Let G
be a finite group. We denote by k(G) the largest order of elements of G. In this paper, we
prove that some Suzuki groups are characterizable by order and the largest order of
elements. In fact, we prove that if G is a group with |G| = |Sz(q)| and k(G) = k(Sz(q))
where q − 1 or q ± 2q + 1 is a prime number, then G ≅ Sz(q).
Keywords: Largest elements order; Prime graph; Frobenius Group; Suzuki group.

* Corresponding author: Tel: +982188009730; Fax: +982188009730; Email: iranmana@modares.ac.ir

Introduction
For a finite group G, the set of prime divisors of |G|

is denoted by π(G) and the set of order of elements of G
is denoted by ω(G). Also, the largest order of elements
of G is denoted by k(G). Moreover, a Sylow p-subgroup
of G is denoted by G . The prime graph Γ(G) of group G
is a graph  whose vertex set is π(G), and two distinct
vertices p and q are adjacent if and only if pq ∈ ω(G).
Moreover, assume that Γ(G) has t(G) connected
components π for i = 1,2, … , t(G). In the case where of|G| is even, we always assume that 2 ∈ π .

One of the important problems in group theory is
characterization by given property, that is, there exist
only one group with given properties (up to
isomorphism). There are different kinds of
characterization, for example, the characterization by
the set of elements order, prime graph, the set of the
number of elements with the same order. To see results

on characterizing simple groups, we refer the reader to
the references [11,12,14]. Recently, He and Chen
studied the characterization of groups by the largest
order of elements. In [7], they proved that the groupsL (q) with q < 125 are characterizable by their order
and the largest, the second largest and the third largest
order of elements. In the following, it is proved that the
simple K -groups [6], Sporadic simple groups [1],PGL(2, q), L (q), L (q) and U (q), for some q [8,9,10]
are characterizable by their order and the largest and the
second largest and the third largest order of elements. In
this article, we prove that the Suzuki groups are
characterizable by their order and the largest order of
elements.

1. Preliminaries
Lemma 1.1. [2,5] Let G be a Frobenius group of

even order with kernel K and complement H. Then
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(a) t(G) = 2, π(H) and π(K) are vertex sets of the
connected components of Γ(G);

(b) |H| divides |K| − 1;
(c) K is nilpotent.

Definition 1.2. A group G is called a 2-Frobenius
group if there is a normal series 1 ⊴ H ⊴ K ⊴ G such
that G/H and K are Frobenius groups with kernel K/H
and H respectively.

Lemma 1.3. [2] Let G be a 2-Frobenius group of
even order. Then

(a) t(G) = 2, π(H) ∪ π(G/K) = π and π(K/H) =π ;
(b) G/K and K/H are cyclic groups and |G/K|

divides |Aut(K/H)|.
Lemma 1.4. [15] Let G be a finite group witht(G) ≥ 2. Then one of the following statements holds:
(a) G is a Frobenius group;
(b) G is a 2-Frobenius group;
(c) G has a normal series 1 ⊴ H ⊴ K ⊴ G such that H

and G/K are π -groups, K/H is a non-abelian simple
group, H is a nilpotent group and |G/K| divides|Out(K/H)|.

Lemma 1.5. [12] Let S = Sz(q) be Suzuki group
where q = 2 and m ≥ 1. Then ω(S) consists of
exactly all factors of 4, q − 1, q − 2q + 1, andq + 2q + 1.

Lemma 1.6. [16] Let q, k, l be natural numbers.
Then

(a) (q − 1, q − 1) = q( , ) − 1,
(b) (q + 1, q + 1) =q( , ) + 1 if both ( , ) and ( , ) are odd,(2, q + 1) otherwise.
(c) (q − 1, q + 1) =q( , ) + 1 if ( , ) is even and ( , ) is odd,(2, q + 1) otherwise.
In particular, for every q ≥ 2 and k ≥ 1, the

inequality (q − 1, q + 1) ≤ 2 holds.

Results
In this section, we prove that the Suzuki groups are

characterizable by their order and the largest order of
elements. In fact, we prove that if G is a group with|G| = |Sz(q)| and k(G) = k(Sz(q)), where q − 1 orq ± 2q + 1 is a prime number, then G ≅ Sz(q). We
divide the proof to several lemmas. From now on, we

denote the Suzuki group Sz(q), where q = 2 ,m ≥ 1 by S and the number q − 1 or q ± 2q + 1 by p.
The group Sz(q) is discoveres by M. Suzuki in [13], and
its order is q (q + 1)(q − 1). Also, it is the only
simple non-abelian group of order prime to 3 [4].

Lemma 2.1. p is an isolated vertex of Γ(G).
Proof. By Lemma 1.5, we have k(S) = q + 2q +1. We prove that p is an isolated vertex of Γ(G). Ifq = 8, then by Atlas [3], Sz(8) has no element of order13i, i ≥ 2. So k(S) = 13 and p is an isolated vertex ofΓ(G). Now let q > 8 and p is not an isolated vertex ofΓ(G). So there is the natural number t such that t ≠ p

and tp ∈ ω(G). Thus we deduce that tp ≥ 2p ≥ 2(q −2q + 1) > (q + 2q + 1) and hence k(G) > q +2q + 1which is impossible. So we conclude that p is
an isolated vertex of Γ(G) and t(G) ≥ 2.

Lemma 2.2. G is not a Frobenius group.
Proof. Let G be a Frobenius group with kernel K and

complement H. Then by Lemma 1.1(a), t(G) = 2, π(H)
and π(K) are vertex sets of the connected components
of Γ(G). Since p is an isolated vertex of Γ(G), we have
(i) |H| = | | and |K| = p, or (ii) |H| = p and |K| = | |.

Assume that |H| = | | and |K| = p. Then Lemma

1.1(b) implies that | | divides p − 1 and hence | | ≤ p −1 which is impossible. Therefore, the case |H| = p and|K| = | | will be considered. Now Lemma 1.1(b) implies

that p divides | | − 1. We show that it is impossible. Ifp = q − 1, then (q − 1) ∣ q (q + 1) − 1. So we
deduce that (q − 1) ∣ (q − 1)(q + q + 2q + 2) + 1
which is impossible. If p = q ± 2q + 1, then (q ±2q + 1) ∣ q q ∓ 2q + 1 (q − 1) − 1. So we
deduce that (q ± 2q + 1) ∣ (q ± 2q + 1) q ∓2 2qq + 3q − 4q ± 4 2q − 4 + 3. Hence (q ±2q + 1) ∣ 3 which is impossible.

Lemma 2.3. G is not a 2-Frobenius group.
Proof. Let G be a 2-Frobenius group. Then by

Lemma 1.3, there is a normal series 1 ⊴ H ⊴ K ⊴ G
such that G/H and K are Frobenius groups with kernelsK/H and H respectively, t(G) = 2, π(G/K) ∪ π(H) =π , π(K/H) = π ,G/K and K/H are cyclic groups
satisfying |G/K| divides |Aut(K/H)|. Since p is an
isolated vertex of Γ(G), we deduce π = {p} and|K/H| = p. If p = q ± 2q + 1, then by Lemma 1.6,(p − 1, q − 1) = 1 and since |G/K| ∣ p − 1, we deduce
that q − 1 divides |H|. So K/H ⋊ H is a Frobenius
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group with kernel H . Hence Lemma 1.1(b) implies
that p ∣ q − 2. We know that p is an odd prime. Thusp ∣ ( ). Hence 2p ∣ (q − 2). So 2(q ± 2q + 1) ≤(q − 2) which is impossible. If p = q − 1, then the
order of a Sylow 2-subgroup of G/K is at most 2
because |G/K| ∣ p − 1. So divides |H|. HenceK/H ⋊ H is a Frobenius group with kernel H . Thus
Lemma 1.1(b) implies that p ∣ |H | − 1.

If |H | = , then 2 − 1 ∣ 2 − 1 which by
lemma 1.6, is a contradiction. So we deduce that|H | = q and 2 ∤ |G/K|. Let |G/K| = x. Then x ∣ p −1. On the other hand, x ∣ q + 1, hence x ∣ 5 and|H| = ( ). Now since K is a Frobenius group with
kernel H, we deduce that |K/H| ∣ |H| − 1. So q − 1 ∣q (q + 1) − x. Thus (q − 1) ∣ (q − 1)(q + q +2q + 2) − (x − 2) which is a contradiction.

Lemma 2.4. The group G is isomorphic to the groupS.
Proof. By Lemma 2.1, t(G) ≥ 2. Thus G satisfy one

of the statements of Lemma 1.4. Now Lemmas 2.2 and
2.3 imply that G satisfies only the statement (c). HenceG has a normal series 1 ⊴ H ⊴ K ⊴ G such that H andG/K are π -groups K/H is a non-abelian simple group.
Since K/H is a non-abelian simple group and 3 ∤ |K/H|,
we deduce that K/H ≅ Sz(q′), where q′ = 2 ,m′ ≥ 1. We know that H ⊴ K ⊴ G, hence 2 ≤2 . So m′ ≤ m. On the other hand, p is an isolated
vertex of Γ(G). Thus we deduce that p ∈ π and hencep ∣ |K/H|. So q − 2q − 1 ≤ p ≤ q′ + 2q′ + 1 =k(K/H). Thus we deduce that m ≤ m′ and Sz(q′) = S.
Now since |K/H| = |S| and 1 ⊴ H ⊴ K ⊴ G, we deduce
that H = 1 and G = K ≅ S.
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