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Abstract
One of the most important prediction problems in finite population is the

prediction of a linear function of characteristic values of a finite population. In this
paper the admissibility of linear predictors of an arbitrary linear function of
characteristic values in a finite population under reflected normal loss function is
considered. Under the super-population model, we obtain the conditions for which
the linear predictors are admissible. Also, the risk of some admissible and
inadmissible predictors are compared by a simulation study.
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Introduction
A finite population is a collection of identifiable

objects or elements. The students in a school, the
households in a certain locality and etc. are examples
of finite populations. A finite population of N units
is denoted by index set {1,2,..., }U N and the
characteristic value associated with i th unit in the
population is denoted by ,   1,2,..., .iy i N The vector

1( ,... )T
Ny yy


is the unknown state of nature. In

finite population, we usually want to estimate a linear
function of characteristic values such as total value

1 ,N
iiY y


 mean value

1 ,( ) /N
iiY Ny


  or

generally
1( ) ,N

i ii p y


y


where 0,  1,...,ip i N 

are known values. To estimate ( ), y


we first choose

a sample {1, 2,..., }s N with associated

characteristic values { ,  }ky k ss  y


by an

arbitrary sampling design ( )p s ( ( 0)p s  , and

( ) 1s S sp


 where S is any subset of

{1,2,..., }U N ). Then, from this sample we estimate

( ) y


by an estimator ( ).s y
The problem of estimation of an arbitrary linear

function of the characteristic values

1( ) ,N
i ii p y


y


in a finite population, has been

considered and studied in the literature. One of the
most interesting estimation problems is the
admissibility of a given estimator. The problem of
admissibility of an estimator of ( ) y


has been

considered by many statisticians according to design-
based and model-based approaches. In design-based
approach (where we choose the sample s by a design
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( )p s ), Godambe [7] proved that the Horvitz-
Thompson [12] estimator is admissible in the class of
linear unbiased estimators under the Squared Error
Loss (SEL) function. Godambe and Joshi [9] extended
Godambe's [7] result and proved that the Horvitz-
Thompson estimator is admissible in the class of all
unbiased estimators. For more details, see Xu [26], He
and Xu [11], Hu et al. [13] and Peng et al. [20]. Also,
the problem of Bayes estimation of ( ) y


in finite

population is considered in the literature by many
researchers. For more details, see Joshi [14],
Mashayekhi [18], Karunamuni and Zhang [15], Ghosh
and Sinha [10], Bansal and Aggarwal [3], Chen et al.
[6], Si et al. [22] and Zangeneh and Little [27].

In model-based approach, the values 1,..., Ny y in
a population are considered as a realization of random
variables 1,..., NY Y . The finite population may,
therefore, be looked upon as a sample from a super-
population. In this case, estimation of

1( ) N
i ii p y


y


based on the sample s is known

as prediction of a function of unobserved y's.
Bolfarine [2] considered the prediction of the total of

characteristic values 1( ) ,N
ii y


y


in a finite

population under the LINEX loss function. He
obtained the Bayes estimators and discussed

the admissibility of these estimators. Zou [28]
obtained all admissible linear estimators of ( ) y

under the LINEX loss function. Zou et al. [29] found
all admissible linear estimators of ( ) y


in the class

of linear and all estimators under the SEL function.
In literature, the prediction of the unknown value

( ) y


is achieved only under SEL and LINEX loss
functions. These loss functions are symmetric and
asymmetric functions of ( ) ( ),s   y y

 respectively. But both of these losses are unbounded
and are not appropriate for prediction of ( ) y


. As an

alternative, Spiring [23] in response to this criticism,
suggests the Reflected Normal Loss (RNL) function,
which is defined by

2

22( ) 1 ,( )L k e 



   (1)

where k is the maximum loss and  is a shape
parameter (see also Spring and Yeung [24]). The RNL
function is a symmetric and bounded function of  ,

and is essentially a normal density flipped upside
down, whence its name (Figure 1). Without loss of
generality, we assume 1k  .

According to our best knowledge, in the literature,
there is no trace of obtaining the admissible predictor
of ( ) y


under the RNL function. So, in this paper we

consider the problem of admissible prediction of
( ) y


under the RNL function based on the super-
population model.

This article is organized as follows. In the next
section, we give some definitions, notations and
preliminary results which are used throughout the
paper. In the main result section, we provide sufficient
conditions for admissibility of linear predictors of

( ) y


under the RNL function using the super-
population model with known variance. Besides, there
are some results illustrated by simulation study in the
application section. Finally, a discussion is given in
discussion section.

Preliminaries
In this section, we give some definitions and

preliminary results which are used in the subsequent
sections.

Finite population
In a finite population with index set

{1, 2,..., }U N , the vector of characteristic values

1( ,... )T
Ny yy


is the unknown state of nature and

is assumed to belong to NR  . A subset s of
{1, 2,..., }N is called a sample and ( )n s denote the
number of elements belonging to s . We consider a

Figure 1. Plot of the RNL function for 1k  and
certain values of 
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fixed number of sample, i.e., ( )n s n . A sample of

size n is denoted by
1

( ,..., )
n

T
s i iy yy


. In some

prediction problems, it is necessary to predict a linear
function of characteristic values of finite population.
As in Zou et al. [29], we consider a general case, i.e.,
the prediction problem of an arbitrary linear function

1( 0.) ,N
k k kk y pp


 y



Super-population model
We consider the model-based or super-population

approach in which y


is viewed as arising from a

random sample of N units  from some super-
population having a probability density function
(p.d.f) given by ( | )f yi  where  may be either
known or some unknown super-population parameter
(Pfeffermann and Rao [19]). The model-based
approach considers the values 1,..., Ny y in the
population as a realization of random variables

1,..., NY Y . The finite population may, therefore, be
looked upon as a sample from a super-population
distribution. After the sample has been observed,
estimating ( ) y


reduces to predicting a function of

unobserved Y 's. In Bayesian point of view,  is a
random variable with density function ( )  , which
is known as prior distribution.

Consider the following model for y


, (2)

(3)

where 01,2,..., ,  kNk a  and kb are known
constants and  is unknown parameter. This model is
a basic and very useful one in survey sampling and
was discussed in detail by Cassel et al. [4,5]. Also,
Godambe [8] and Zou [28] considered this model.

Under the model (2) we assume
20( , ) 1,..,~ ,  k N Nk  . Hence, we have

(4)
2

2
1 ( )

2 0 0 1,...,
1( | )   ,   ,    ,   ,   .

2
k k ky a b

k k Nf y e a k


  


  
    

Assuming a normal prior for  with p.d.f.

(5)
2

02
0

1 ( )
2 0

1( )   ,     ,     
2

e areknown
 

   


 
  

then the posterior p.d.f. of  given sy


is

( , )N w with

0

2
2 2 2

2 2 2 2 2 2

( )
,          ,

k k k
k s

s s s

a y b
and w

d d d


   
     




   
  



where 2 .s kk sd a



Posterior risk function of a predictor under RNL
function using normal model

Following Towhidi and Behboodian [25], the
posterior risk of a predictor ( )s y


under the RNL

function using normal model is given by
(6)

* 22
* 22
11  ( ( ) ) ( ( ) ( ))

2( )2
2 *

( , ( )) 1 | 1   ,( ) ss
w

s sE e e
w

  
   



  
   



yy y
y y 

 

where
* *( ( ) | ),        ( ( ) | ).s sE and w V   y y y y

   

Hence, the posterior risk as a function of  is

minimized when *( ) ( ( ) | ) ,s sE   y y y
  

which is the same as Bayes predictor of ( ) y under
the SEL function. From (5), the posterior risk of

( )s
 y


is

2 *
( ( ), )) 1 .

w
    


 


(7)

Since the posterior risk does not depend on ,sy


therefore the Bayes risk of ( )s
 y is

2 *
( , ( )) 1 .sr

w
  


 


y


å (8)

In the next section, we obtain the admissible linear

predictors of
1( ) .N

k kk yp


y


0

2 2
0 0

,     
( ) ,  ( ) ,  ( ) ,    ,

k k k k

k k k l

y a b
E E E k l

  

    

   

   




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Results
In this section, we obtain the admissible predictor

of
1( ) N

k kk yp


y


under the RNL function,

using model (2) with normal assumption and known
2 . The main result is given in the following

theorem.

Theorem 1
Using super-population model (2) with normal

assumption and known 2 , under the RNL function,
the predictor 0( ) ks k sk sT s w y w


  with

 ( )ks s k kw a p k s   , of linear function ( ) y


is
admissible in the class of all linear predictors, if one
of the following two conditions is satisfied:

( )i 0 /s s sc d  , where s k kk sc p a



and 2

s k
k s

d a


 ,

( )ii /s s sc d  , and

0 ( ).s
s k k k kk s k s

s

cw a b p b
d  

   

Proof: Using the transformation k k ky b y  ,

we need only to consider the case 0, kb 
1,..., .Nk  In this case, the condition ( )ii becomes

0 0/( ) s s s sii c d and w   .
After some calculations, using model (2) and under

the RNL function, the risk function of the predictor

0( ) ks k s
k s

T s w y w


  of ( ) y


is given by

(9)
2

2
22

1  ( ( ) ( ))
2( )2

2
( ( ), ( )) 1 1   ,( )

T s
mR T s E e e

m


 



 
   



y
y


where
0

2 2 2( ( ) )          ( ( ) ).ks k k k k s ks k k
k s k s k s k s

w p a p a w and m w p p  
   

         

In order to prove the above theorem, we consider
the following three cases.

(1) Assume 0s  . In this case

0( ) k k sk sT s p y w


  , and using (8) we have

2
1

2
12( )

2
1

( ( ), ( )) 1   ,mR T s e
m







 


y


(10)
where

0
2 2

1 1        .s s k
k s

w c and m p  


   

Now assume ( )T s is not admissible and is
dominated by the linear predictor

0
* *
ks k sk sw y w


  with * *

ks s k kw a p  .

Using (8), we have
2
2

2
22( )

2
2

( ( ), ) 1   ,mR e
m


 




 


y


(11)

where
0

* * 2 *2 2 2
2 2         .s s s s s s k

k s
d c w and m d p     


     

Since ( )T s is dominated by  , we have
( ( ), ) ( ( ), ( ))       ,R R T s    y y
 which from (9) and (10) is equivalent to

2 2
2 1

2 2
2 12( ) 2( )

2 2
2 1

           .m me e
m m

 
   

 

 
  

 
(12)

Let 0 /s sw c  and therefore 01  , so from
(11) we have

2
2

2
22( )

2 2
2 1

  .me
m m


 

 


 

 
(13)

Using the fact that 2 1m m , we have
2 2
2 2

2 2
2 22( ) 2( )

2 2 2
2 1 1

    .m me e
m m m

 
   

  

 
  

  
 (14)

The inequality (13) contradicts the inequality (12),
so the predictor ( )T s of ( ) y


is admissible for

0s  .

(2) Assume 0 /s s sc d  . Let  have the
prior distribution as in (4). The Bayes predictor of

( ) y


with respect to the normal prior (4) and under
the RNL function could be obtained as
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(15)
2 2

0
2 2 2 2( ) ( ( ) | ) ( ) .s s

s s k k k
k s s s

c cE a p y
d d

    
   

   
 

y y y
  

Therefore when 0 /s s sc d  , the predictor

0 0( ) ( )ks k s s k k k s
k s k s

T s w y w a p y w
 

     
is the Bayes predictor with respect to the prior

distribution * 2*
0( , )N   where

0
0

2
* 2*,   .s s

s s s s s s

w
c d c d

 
 

 
 
 

We can easily obtain the Bayes risk of ( )T s by
using (7). After some calculations, we can show that
the Bayes risk of ( )T s is finite. Now, since the loss
function (1) is bowl-shaped, then ( )T s is the unique
Bayes predictor and hence admissible.

(3) When /s s sc d  and 0 0sw  , by using the
limiting Bayes method (see Blyth [1] and Lehmann
and Casella [17]), we can show that ( )T s is
admissible. In fact, from (9), the risk function of the

predictor ( ) ( )s
k k kk s

s

c
T s a p y

d
  of ( ) y


is

given by

2
3

( ( ), ,1( ))  R T s
m

r


  


y


(16)

where
2 2 2

3 ( ) )( .s
s k

s k s

cm d p
d




 
Suppose that the predictor ( )T s is dominated by

* , then
*( ( ), ) ( ( ), ( ))        ,R R T s for all   y y

 
(17)

0
*( ( ), ) ( ( ), ( ))         .R R T s for some   y y

 
(18)

Since *( ( ), )R  y


is a continuous function of  ,

then there exist an 0  and 1 2  such that
*

1 2( ( ), ) ( ( ), ( ))          .R R T s for all         y y
 

(19)

Let B be the Bayes predictor with respect to the

prior distribution 20( , )BN  , and let *( )Br  be the

Bayes risk of B . From (14), we have
2

2 2( ) ( ) .B s
B s k k k

k s B s

c a p y
d

  
 

  


y


(20)

From (7), the Bayes risk of B could be obtained
as

*
2 *

( ) 1 ,B
B

r
w




 


(21)

where
22

* 2 2
2 2 .B s

B s k
k sB s

cw d p
d




  

  
       



Let * *( )r  be the Bayes risk of the predictor *

with respect to the prior distribution 20( , ).BN  Then
from (15), (17), (18) and (20), we get

2
22

1

2
22

1

1
2*

* *

*

2 22
2 2 22 2 2

2 2

1
2

22
2

2 2

1[ ( ( ), ( )) ( ( ), )]  
2( )

( )

2

B

B

B

B

sB s
s ks k

s k sk sB s

B

B s
s k

B s

R T s R e d
r r
r r

cc d pd p
dd

e d

c d p
d

 


 


   


 

   
 

 





 











 

      
                  



 
   







y y
 

2
2 2 22 2 s

s k
s k sk s

c d p
d



 





    
      
      



when .B  Thus, if B is sufficiently

large, then * * *( ) ( )Br r  , which contradicts the

fact that B is the Bayes predictor with respect to the

prior distribution 20( , )BN  . Therefore, ( )T s is
admissible. Cases (1)-(3) complete the proof of the
Theorem.

Remark 1
Following Lehmann [16] under the general loss

function ( ( ), ( ))sL  y y
 

, an estimator ( )s y


is

risk unbiased estimator of ( ) y


if it satisfies

(21)
( ( ), ( )) ( ( ), ( )) , ( ) ( ).s sE L E L               y y y y y y
     

Under the SEL function, the above condition of
risk unbiasedness reduces to the usual condition of
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unbiasedness, i.e., ( ( )) ( )sE  y y
 

, and if an

estimator ( )s y


is not

unbiased, then its bias is given by
( ( )) ( ( )) ( ).s sBias E   y y y
  

So, the risk

unbiased condition and bias of an estimator are
depend on the loss function that we use. Under the
RNL function, the risk unbiased condition (21)
reduces to

2
2

1  ( ( ) ( ))
2

2
1 ( ( ) ( )) 0 .

s

sE e
 

 


  
 
 
 


y y

y y 



Therefore we can define the risk bias of an
estimator ( )s y


of ( ) y


under the RNL function as

(22)
2

2
1  ( ( ) ( ))

2
2

1( ( )) ( ( ) ( )) .
s

s sRisk Bias E e
 

  


  
  
 
 

y y
y y y 

 

In what follows, we use (22) to compute the risk
bias of the given estimators in a simulation study.

Comparison of the predictors using simulation data
In this section, we perform a simulation study to

compare the predictors of
1( ) /N

iY y Ni
 

under RNL function. For generating a population of
size 1000N  , we generate a random sample from
normal distributions with different values of variance

2 0.01, 0.1, 0.25, 0.5, 1  and means ,ka 
1, ...,1000k  , where 3, 4,5,7  and

1 1000( ,..., )a a a


is an arbitrary vector of positive
elements. The population consist of these 1000N 
data. Now we extract samples of size

5,10,15, 20,50n  and compute predictors, risk
function and risk bias of them. Repeat this tasks

410B  times and calculate the estimated risk
function and risk bias of the predictors as a
comparative tool. The simulation study proceeds as
follows:

1. Generate a sample with size 1000 from normal

distributions: 2 1,...,1000( , ),kN a k   .
2. Use simulation data as a population and extract

samples of size 5,10,15, 20,50n  .
3. Calculate the predictors for each sample as

follows:

1 2 0

1 2

3( ) ( ) , ( ) ( ) ,
2 4

( ) ( ) , ( ) (2 ) .

a as s
s k k k s k k k s

s sk s k s

n ns s
s k k k s k k k

s sk s k s

c ca p y a p y w
d d
c ca p y a p y
d d

 

 

 

 

    

    

 

 

y y

y y

 

 

Where 1
a and 2

a are admissible predictors
satisfying the conditions of Theorem 3.1 and the

predictors 1
n and 2

n don’t satisfying those

conditions. We set 0s sw c  in 2
a .

4. Repeat steps 2-3 410B  times and calculate
the value of estimated risk function (ERF) and
estimated absolute risk bias (EARB) of the predictors
using the following formulas:

2 2

1

11 exp{ ( ( )) / 2 },  i 1, 2,      , ,
B

k
ij

j
ERF k a n

B
  


      y



2 2 2

1

1 ( ( )) exp{ ( ( )) / 2 } / , 1, 2, , ,
B

k k
ij ij

j
EARB i k a n

B
     


      y y

 

where 2  and k
ij is the predictor

, 1,2, ,k
i i k a n   in j th repetition of

sampling. Tables 1-5 present the estimated risk
function and estimated risk bias (in parenthesis) of the
predictors for different values for  and . From

these tables we observe that 1
a and 2

a have the
smallest risk among the four predictors and dominate

1
n and 2

n for all values of  and 2 . So, 1
n

and 2
n are inadmissible. Note that 1

a ( 2
a ) for

small (large) values of  has smallest risk among
these predictors. Also, the risk of all predictors

increases as  increases. When 2 increases, the

risk of inadmissible predictors 1
n and 2

n decreases

and the risk of admissible predictors 1
a and 2

a have
no patterns. But for large values of  ( 7  ) the risk

of all predictors decreases as 2 increases.
Furthermore, in almost all cases, the risk of predictors
decrease as the sample size n increases. The results
of estimated risk bias of the predictors in Tables 1-5,

show that 1
n and 2

n have smallest estimated risk
bias among these predictors for almost all  and the

risk bias of 1
n is close to zero. When 2 increases,
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the estimated risk bias of admissible predictors 1
a

and 2
a decreases and the estimated risk bias of

inadmissible predictor 1
n increases. The estimated

risk bias of 2
n for small values of ( 3,4)  

decreases and for large values of ( 5,6)  
increases as 2 increases. Also, when  increases,

Table 1. Simulated risk function and estimated risk bias (in parenthesis) for some predictors of 1

1

N

iN
i

Y y


  for 2 0.01  and different values of ß.

3  4 
n

1
a 2

a 1
n 2

n 1
a 2

a 1
n 2

n
5 0.1428431

(0.2378885)
0.1894101

(0.2625259)
0.9148669

(0.0944558)
0.4597269

(0.2991968)
0.2396994

(0.2813828)
0.2398510

(0.2813643)
0.9874875

(0.0185136)
0.6652028
(0.247265)

10 0.1415236
(0.2370966)

0.1877090
(0.2618272)

0.9127647
(0.09632349)

0.4563263
(0.2998343)

0.2376270
(0.2807716)

0.2377781
(0.2807872)

0.9869354
(0.01923796)

0.6616230
(0.2488868)

15 0.1401947
(0.2362677)

0.1859913
(0.2610655)

0.9106133
(0.09820985)

0.4530182
(0.3002461)

0.2355348
(0.280125)

0.2356786
(0.2801496)

0.9863571
(0.01998987)

0.6579932
(0.2503771)

20 0.1388338
(0.2354049)

0.1842195
(0.2602587)

0.9084416
(0.1000972)

0.4498847
(0.3005806)

0.2334017
(0.2794499)

0.2335183
(0.2794721)

0.985760
(0.02076099)

0.6544659
(0.2517787)

50 0.1310484
(0.2302795)

0.1741602
(0.2554332)

0.8942346
(0.1120913)

0.4296163
(0.302154)

0.2210316
(0.2752824)

0.2211499
(0.2753181)

0.9815972
(0.02600919)

0.6315701
(0.2602871)

5  7 
5 0.3483347

(0.3014971)
0.2932344

(0.2943094)
0.9989370

(0.0019661)
0.8190645

(0.1670604)
0.5680374
(0.279817)

0.4045212
(0.3030775)

0.9999985
(0.0000003)

0.9649467
(0.0453183)

10 0.3455610
(0.301297)

0.2908026
(0.2939112)

0.998863
(0.0020930)

0.8161054
(0.169103)

0.5644279
(0.2807682)

0.4014696
(0.30317)

0.9999983
(0.0000004)

0.9638405
(0.0465601)

15 0.3427571
(0.3010653)

0.2883346
(0.2934564)

0.9987834
(0.0022284)

0.8130285
(0.1711256)

0.5607679
(0.2817032)

0.3983638
(0.3032171)

0.9999981
(0.0000004)

0.9626497
(0.0478674)

20 0.3399043
(0.3008114)

0.2857999
(0.2929672)

0.9986990
(0.0023712)

0.8099853
(0.173091)

0.5570451
(0.2826323)

0.3951813
(0.3032416)

0.9999978
(0.0000005)

0.9614380
(0.0491847)

50 0.3231801
(0.2990046)

0.2711817
(0.2898401)

0.9980577
(0.0034317)

0.7899758
(0.1854963)

0.5347707
(0.2877669)

0.3765925
(0.3030189)

0.9999952
(.0000011)

0.9530882
(0.0580150)

Table 2. Simulated risk function and estimated risk bias (in parenthesis) for some predictors of 1

1

N

iN
i

Y y


  for 2 0.1  and different values of ß.

3  4 
n

1
a 2

a 1
n 2

n 1
a 2

a 1
n 2

n
5 0.1428778

(0.2373106)
0.1899330

(0.2615838)
0.9134266

(0.09546138)
0.457347

(0.2944187)
0.2395281

(0.2808586)
0.2401986

(0.2804178)
0.9871300

(0.0189325)
0.6604928

(0.2457796)

10 0.1414361
(0.236748)

0.1880036
(0.2613882)

0.9116745
(0.09715107)

0.4542422
(0.2975948)

0.2374198
(0.2804762)

0.2379909
(0.2803409)

0.9866810
(0.0195452)

0.6585625
(0.2484602)

15 0.1400460
(0.2359765)

0.1861740
(0.2607681)

0.9096459
(0.09896682)

0.4511625
(0.2987977)

0.2352894
(0.2798926)

0.2358063
(0.2798488)

0.9861356
(0.0202604)

0.6555643
(0.2502369)

20 0.1385680
(0.2350873)

0.1842029
(0.2599679)

0.9076021
(0.1007597)

0.4485780
(0.2995003)

0.2330346
(0.2792162)

0.2334499
(0.2791968)

0.9855674
(0.02099648)

0.6527223
(0.251646)

50 0.1307923
(0.2300419)

0.1741307
(0.2553004)

0.8934133
(0.1127423)

0.4283026
(0.3017492)

0.2207037
(0.2751161)

0.2210976
(0.275194)

0.9813986
(0.02624932)

0.6301796
(0.2604478)

5  7 
5 0.3479880

(0.3010821)
0.2934087

(0.2933897)
0.9988914

(0.0020393)
0.8142886

(0.1681261)
0.5674899

(0.2796951)
0.4043767
(0.302291)

0.9999984
(0.0000004 )

0.9628633
(0.047092)

10 0.3452591
(0.301082)

0.2909337
(0.2934726)

0.9988315
(0.0021441)

0.8132544
(0.1699556)

0.5640361
(0.2807386)

0.4014476
(0.302786)

0.9999982
(0.0000004)

0.9626741
(0.047586)

15 0.3424403
(0.3009101)

0.2884076
(0.293162)

0.9987561
(0.0022730)

0.8108557
(0.1718577)

0.5603976
(0.2817089)

0.3983350
(0.302961)

0.9999980
(0.0000005)

0.9617857
(0.048638)

20 0.3394697
(0.3006757)

0.2856833
(0.2927148)

0.9986750
(0.0024103)

0.8084076
(0.1736032)

0.5565816
(0.2826809)

0.3949835
(0.303051)

0.9999977
(0.0000005)

0.9607979
(0.049750)

50 0.3228072
(0.2989169)

0.2711084
(0.2897275)

0.9980305
(0.0034752)

0.7888290
(0.1859771)

0.5343881
(0.28782)

0.3764845
(0.302936)

0.9999951
(0.0000012)

0.9526440
(0.058417)
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the estimated risk of 1
a ( 1

n and 2
n ) increases

(decreases) and the estimated risk bias of 2
a first

increases and then decreases. Note that when the

sample size n increases, the risk bias of all predictors
increases, this phenomenon can be occurred in survey
sampling as explained by Roxy et al. (2008, p. 34).

Table 3. Simulated risk function and estimated risk bias (in parenthesis) for some predictors of 1

1

N

iN
i

Y y


 
for 2 0.25  and different values of ß.

3  4 
n 1

a 2
a 1

n 2
n 1

a 2
a 1

n 2
n

5 0.1431960
(0.2365118)

0.1908865
(0.260062)

0.9115639
(0.0966448)

0.4547678
(0.2865557)

0.2395511
(0.2800806)

0.2408678
(0.2788779)

0.9866324
(0.0194958)

0.6538721
(0.242833)

10 0.1415035
(0.236301)

0.1885034
(0.2606631)

0.9104396
(0.0980132)

0.4521434
(0.2937791)

0.2373271
(0.2800624)

0.2383555
(0.2796023)

0.9863708
(0.0199069)

0.6546179
(0.2472884)

15 0.1400149
(0.2356288)

0.1864962
(0.2602816)

0.9086203
(0.0997134)

0.4493682
(0.2962802)

0.2351373
(0.2795864)

0.2360383
(0.2793543)

0.9858843
(0.0205573)

0.6526026
(0.2495729)

20 0.1384136
(0.2347427)

0.1843136
(0.2595478)

0.9067399
(0.1013973)

0.4473081
(0.2976293)

0.2327655
(0.2789364)

0.2334847
(0.278786)

0.9853569
(0.0212460)

0.6505791
(0.2511275)

50 0.1306059
(0.2298087)

0.1741591
(0.2551177)

0.8926575
(0.1133211)

0.4271461
(0.3010142)

0.2204447
(0.2749404)

0.2210941
(0.2750165)

0.9812093
(0.0264738)

0.6287511
(0.2603998)

5  7 
5 0.3477413

(0.300417)
0.2937951

(0.2918832)
0.9988243

(0.0021444)
0.8071225

(0.1692659)
0.5668848

(0.2794111)
0.4042373

(0.3009846)
0.9999982

(0.0000004)
0.9594932

(0.0498086)

10 0.3450271
(0.3007459)

0.2911629
(0.2927455)

0.9987910
(0.0022086)

0.8092747
(0.1708404)

0.5636358
(0.2806239)

0.4014227
(0.302147)

0.9999981
(0.0000004)

0.9609117
(0.0490660)

15 0.3421882
(0.3006754)

0.2885495
(0.292676)

0.9987235
(0.0023251)

0.8079684
(0.1725871)

0.5600385
(0.2816531)

0.3983081
(0.3025351)

0.9999979
(0.0000005)

0.9605356
(0.0497022)

20 0.3391139
(0.3004834)

0.2856449
(0.2923254)

0.9986474
(0.0024543)

0.8062981
(0.1741154)

0.5561552
(0.2826762)

0.3948152
(0.3027352)

0.9999977
(0.0000005)

0.9598706
(0.0505331)

50 0.3224979
(0.2988092)

0.2710743
(0.2895601)

0.9980038
(0.0035174)

0.7875509
(0.1863958)

0.5340508
(0.2878439)

0.3763964
(0.3028006)

0.9999950
(0.0000012)

0.9520992
(0.0588828)

Table 4. Simulated risk function and estimated risk bias (in parenthesis) for some predictors of 1

1

N

iN
i

Y y


  for 2 0.5  and different values of ß.

3  4 
n

1
a 2

a 1
n 2

n 1
a 2

a 1
n 2

n
5 0.1438719

(0.2352783)
0.1925181

(0.2575772)
0.9087605

(0.0983138)
0.4518238

(0.2739971)
0.2397642

(0.2788423)
0.2420345

(0.2763559)
0.9858453

(0.0203631)
0.6442187

(0.2375071)

10 0.1417358
(0.2356343)

0.1893409
(0.2594646)

0.9087065
(0.0991527)

0.4495806
(0.2874868)

0.2373152
(0.2794181)

0.2389694
(0.2783803)

0.9859136
(0.0204272)

0.6488739
(0.2450213)

15 0.1400849
(0.2351272)

0.1870427
(0.2594784)

0.9072388
(0.1006654)

0.4471855
(0.2920719)

0.2350284
(0.279122)

0.2364358
(0.2785365)

0.9855295
(0.0209668)

0.6483589
(0.2481942)

20 0.1383187
(0.2342727)

0.1845760
(0.2588856)

0.9056033
(0.1021957)

0.4457451
(0.2944965)

0.2325097
(0.278532)

0.2336265
(0.2781296)

0.9850668
(0.0215825)

0.6474810
(0.2500799)

50 0.1304306
(0.2295118)

0.1742500
(0.2548351)

0.8917417
(0.1140009)

0.4258083
(0.2997578)

0.2201745
(0.2747046)

0.2211352
(0.2747375)

0.9809731
(0.0267495)

0.6268782
(0.2601379)

5  7 
5 0.3475190

(0.2993266)
0.2944979

(0.2894084)
0.9987137

(0.0023149)
0.7960637

(0.1703516)
0.5660530

(0.2788919)
0.4040736

(0.2988239)
0.9999979

(0.0000005)
0.9538439

(0.0540443)

10 0.3447938
(0.3001991)

0.2915527
(0.2915412)

0.9987290
(0.0023058)

0.8031820
(0.1718874)

0.5631117
(0.2803959)

0.4013911
(0.301086)

0.9999979
(0.0000005)

0.9580473
(0.0513656)

15 0.3419238
(0.300298)

0.2887978
(0.2918708)

0.9986757
(0.0024004)

0.8036147
(0.1734675)

0.5595856
(0.2815232)

0.3982763
(0.3018265)

0.9999978
(0.0000005)

0.9585439
(0.0513344)

20 0.3387285
(0.3001821)

0.2856690
(0.2916951)

0.9986082
(0.0025163)

0.8031000
(0.1747443)

0.5556393
(0.28262)

0.3946264
(0.3022078)

0.9999975
(0.0000006)

0.9583951
(0.0517403)

50 0.3221577
(0.2986512)

0.2710670
(0.2892926)

0.9979696
(0.0035709)

0.7857791
(0.1868721)

0.5336573
(0.2878474)

0.3763014
(0.3025762)

0.9999948
(0.0000012)

0.9512989
(0.0595426)
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Discussion
In this paper we obtain sufficient condition of

admissibility of linear predictors of

1( ) N
k kk p y


y


in the class of all linear

predictors under the RNL function. So, we could find
admissible linear predictors of the total value

1
N
i iY y


 and the mean value
1( ) /N

iY y Ni
 

of a finite population. Further research is needed to
find the necessity condition of admissibility of linear
predictors of ( ) y


under the RNL function. We

perform a simulation study to compare the predictors

of
1( ) /N

iY y Ni
  that satisfy and do not

satisfy the conditions of Theorem 3.1 under the RNL
function. From Tables 1-5, for simulated data we

observe that 1
a and 2

a have the smallest risks
among the four predictors being considered and

dominate 1
n and 2

n for all values of  and .

So, 1
n and 2

n are inadmissible.
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