Novel Levofloxacin Derivatives as Potent Antibacterial Agents

M. H. Moshafi¹, N. Bahador¹, S. Moghimi², R. Ejtemaei²
A. Foroumadi²,³, and A. Asadipour*³

¹Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Islamic Republic of Iran
²Drug Design and Development Research Center, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
³Department of Medicinal Chemistry, Faculty of Pharmacy and Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Islamic Republic of Iran

Received: 3 July 2016 / Revised: 26 September 2016 / Accepted: 5 November 2016

Abstract

In this report, a new series of fluoroquinolone agents which was derived from levofloxacin was synthesized and evaluated against Gram-positive (Bacillus subtilis, Staphylococcus aureus, Staphylococcus epidermidis and Micrococcus luteus) and Gram-negative (Esherichio coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Serratia marcescens) organisms. The results showed that some of the synthesized compounds are strong antibacterial agents. All the synthesized compounds showed remarkable activities against Staphylococcus epidermidis and Staphylococcus aureus (MIC = 0.03-1 µg/mL and 0.06-1 µg/mL respectively).

Keywords: Antibacterial evaluation; Fluoroquinolone; Levofloxacin.

Introduction

Infections, caused by bacteria, parasites, viruses and fungi threaten the global public health by causing mild to severe disease. To reduce illness and death from infectious disease, antibiotics and similar drugs, together called antimicrobial agents have been widely used. Antibacterial agents work by killing or arresting the growth of bacteria to the antibacterial drugs which have become a public issue worldwide [1]. Misuse and overuse of them led to the resistance of a bacteria to the antibacterial drugs which have become a public issue worldwide [2-5]. This drug resistance led to the increased risk of death due to the unsuccessful responses to the standard treatments. Therefore, an ever-increasing efforts which was encouraged by FDA, have been devoted to the development of novel antimicrobial agents with no or little bacterial resistance.

Among various antibacterial agents and their different mechanism of action in fighting against bacteria, fluoroquinolones (FQ) have been extensively used to combat bacterial infections [6-9]. This class of antibiotics exhibited the significant ability to combat Gram-positive, Gram-negative and anaerobic bacterial infections. In addition, the target of these agents is two type II bacterial topoisomerase enzymes, DNA gyrase and/or topoisomerase IV [10]. The ability of this category in the treatment of tuberculosis (TB) [11], respiratory and urinary tract disease, typhoid fever, bone-joint infections, acute bronchitis and sinusitis is among the therapeutic applications of these agents.

* Corresponding author: Tel: +983431325; Fax: +982166461178; Email: aliasadipour@yahoo.com
Levofloxacin (LVFX), ciprofloxacin (CPFX), gemifloxacin (GMFX), moxifloxacin, norfloxacin and ofloxacin belong to this group [Fig. 1] [12, 13]. The presence of 4-quinolone/naphthyridone-3-carboxylic acid as the main core and a secondary amino group at the C-7 position of the heterocyclic core are the required common feature of this group, however, recently novel cores have been found effective. The presence of five or six-membered nitrogen-containing heterocycles at the C-7 position of the basic quinolone strongly impressed the antibacterial potency of FQs [14], due to its role in the drug-enzyme interaction domain [15] and helping in the easily transportation of the drug into the cells [16].

Dealing with the drug resistance challenge, new solutions have been introduced, among them, producing novel analogs of existing drugs by chemical modification led to positive outcomes [17-21]. To achieve this, several factors should be considered involving excellent bioavailability, tissue penetrability and low toxic effects. Levofloxacin [22], a chiral analogue of ofloxacin, was approved for the treatment of a number of bacterial infections by targeting topoisomerase II (DNA-gyrase) in Gram-negative bacteria and topoisomerase IV in Gram-positive bacteria [23]. With respect to excellent activity of levofloxacin, we decided to study the effect of structural modification on the antibacterial activity of new LVFX’S derivatives.

Materials and Methods

Determination of antibacterial activity

Compounds 5(a-c), 6(a-c), 7(a-c) were evaluated for their antibacterial activity using conventional agar-dilution method. Two-fold serial dilutions of the compounds and reference drugs were prepared in Mueller–Hinton agar. Drugs (10.0 mg) were dissolved in DMSO (1 mL) and the solution was diluted with water (9 mL). Further progressive double dilution with melted Mueller–Hinton agar was performed to obtain the required concentrations of 100, 50, 25, 12.5, 6.25, 3.13, 1.56, 0.78, 0.39, 0.19, 0.098, 0.049, 0.025, 0.013, 0.006 and 0.003 mg/mL. The bacteria inocula were prepared by suspending overnight colonies from Mueller–Hinton agar media in 0.85% saline. The inocula were adjusted photometrically at 600 nm to a cell density equivalent to approximately 0.5 McFarland standard (1.5*10⁸ CFU/mL). The inocula were then diluted in 0.85% saline to give 10⁷ CFU/ml. Petri dishes were spot-inoculated with 1mL of each prepared bacterial suspension (10⁴ CFU/spot) and incubated at 35-37 °C for 18 h. The minimum inhibitory concentration (MIC) was the lowest concentration of the test compound, which resulted in no visible growth on the plate. To ensure that the solvent had no effect on bacterial growth, a control test was performed with test medium supplemented with DMSO at the same dilutions as used in the experiment.

![Figure 1. The structures of known fluoroquinolone antibacterial agents.](image-url)
Results and Discussion

Following our recent program in developing potent bioactive compounds [24, 25] especially fluoroquinolone derivatives by making structural modifications, which normally resulted in excellent activities against many Gram-positive and Gram-negative microorganisms [26, 27], herein, we synthesized and evaluated novel levofloxacin-based derivatives. Four Gram-positive and four Gram-negative bacteria were chosen and the potency of the synthesized compounds was determined. Due to the importance of levofloxacin against Gram-positive bacteria series, better results were obtained in the case of these organisms. However, some of the synthesized compounds exhibited good results against Gram-negative strains.

Chemistry. At first, the reaction of ketones 1 with hydroxylamine hydrochloride or O-methylhydroxylamine hydrochloride gave 2 [28, 29]. The substitution of 2-methyl piperazine at C-7 position was carried out according the literature [30]. The target compounds were prepared in good yields in the presence of sodium hydrogen carbonate at room temperature.

Antibacterial activity. The minimum inhibitory concentration (MIC) of compounds was determined by agar-dilution method against four Gram-negative (*Esherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa* and *Serratia marcescens*) and four Gram-positive (*Bacillus subtilis, Staphylococcus aureus, Staphylococcus epidermidis* and *Micrococcus luteus*) bacteria panel along with levofloxacin for comparison. The MIC values are presented in Table 1. In general, all

![Scheme 1](image_url)

Scheme 1. Synthesis of target compounds: Reagents and conditions: (a) NH$_2$OH.HCl or MeONH$_2$HCl, MeOH, r.t.; (b) 2-methyl piperazine; (c) 1 or 2, DMF, NaHCO$_3$, r.t.
the synthesized compounds showed remarkable activities against *Staphylococcus epidermidis* and *Staphylococcus aureus* (MIC = 0.03-1 µg/mL and 0.06-1 µg/mL respectively). The potency of compounds against Gram-positive bacteria was better or the same with levofloxacin’s amount, except for *Micrococcus lutes*. Compound 5a showed the best activity against Gram-positive and Gram-negative microorganisms and its most potent activity was observed against *Staphylococcus aureus* (MIC = 0.06 µg/mL), 16-times more active than levofloxacin. In some other cases, superior results compared to reference drug was obtained. In *Staphylococcus epidermidis, Bacillus subtilis* and *Klebsiella pneumonia*, the presence of oximes (5b, 6b, 7b) led to the better or same activity compared to ketone counterparts (5a, 6a, 7a). In the case of methyl oxime derivatives, compound 7c exhibited potent activity against *Staphylococcus epidermidis* and *Staphylococcus aureus*, that of reference compound (MIC = 0.12, 0.12 µg/mL respectively). Compounds 5c and 6c also had superior activity against *Bacillus subtilis* and *Klebsiella pneumonia* than other derivatives (MIC = 0.03, 0.06 µg/mL respectively). Thiophene containing derivatives 7a-c resulted in the weakest activity.

Conclusion

In conclusion, in vitro antibacterial activity of levofloxacin derivatives against Gram-positive (*Bacillus subtilis, Staphylococcus aureus, Staphylococcus epidermidis* and *Micrococcus Lutei*) and Gram-negative (*Escherichio coli*, *Klebsiella pneumoniae, Pseudomonas aeruginosa, and Serratiamarcescens*) was evaluated. By using agar dilution technique, compounds 5a, 6a, 7b were found to be more potent against *Staphylococcus aureus* and *Staphylococcus epidermidis* respectively, which are stronger than levofloxacin.

Acknowledgements

The authors gratefully acknowledge the partial financial support from Kerman University of Medicinal Sciences and Iran National Science Foundation (INSF).

References

Novel Levofloxacin Derivatives as Potent Antibacterial Agents

