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Abstract
The one photon absorption (OPA) cross section of a current carrying two-orbital

quantum dot (QD) with strong electron-phonon interaction (polaron regime) is
considered. Using the self-consistent non-equilibrium Hartree-Fock (HF)
approximation, we determine the dependence of OPA cross section on the applied bias
voltage, the strength of effective electron-electron interaction, and level spacing of QD.
Our numerical results reveal a unique property that there are two distinct regimes for
OPA. We find that for values of level spacing of QD smaller than half the strength of
effective electron-electron interaction and all values of applied bias voltage, the
absorption is due to the excitation of the plasmon modes of the system with low cross
section, but for the values of level spacing larger than the aforementioned value, within
a finite range of the applied bias voltage, set by the values of level spacing and the
strength of electron-electron interaction, the OPA is due to electron transition between
the two orbitals of QD with an order of magnitude larger cross section than the former
case. This property results in an almost square shape cross section as a function of
applied bias, for peak values of absorption at resonance frequencies.

Keywords: Two-orbital Quantum dot; Polaron regime; Bias-induced absorption; OPA cross section.

* Corresponding authot: Tel: +982122431666; Fax: +982122431663; Email: amir.eskandari.asl@gmail.com

Introduction
In recent years, we have been witnessing great

advances in nanotechnology, especially nano-
electronics [1]. One of the challenging issues about
nano devices is concerned with their interaction with
external electromagnetic fields when they are driven out
of equilibrium with external bias. In recent years,
extensive works have been done to understand the
interaction of light with nano structures for developing
nano scale electro-optical devices [2-5].

A multi-orbital QD, connected to two leads and
subjected to a voltage bias, is the simplest nano circuit
which can be used as an electro-optical element. In such
a nano-structure, the effect of electron-phonon
interaction can not be ignored, especially when the
coupling is strong. It is well known that strong electron-
phonon coupling results in the formation of polarons in
the QD which attract each other [6]. Another effect of
electron-phonon interaction in the QD which must be
considered is bi-stability. Several theoretical results
seem to confirm the existence of bi-stability in such
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systems [6-11] and there are experimental results
confirming them [12]. So, it is important to understand
the effects of external bias and electron-phonon
interaction, especially in the strong coupling regime
(polaron regime), on the optical properties of such nano
structures.

In this work, using non-equilibrium self-consistent
HF approximation, we determine the dependence of
OPA cross section on the level spacing, strength of
effective electron-electron interaction and applied bias
voltage of a two-orbital QD connected to two leads and
subjected to external bias with strong electron-phonon
interaction (polaron regime). We find that in terms of
the aforementioned parameters there are two distinct
regimes of OPA, where their cross sections differ by an
order of magnitude. Based on our HF numerical results,
we determine these two non-equilibrium regimes of
OPA.

The paper is organized as follow: In the second
section, the model Hamiltonian and the non-equilibrium
self-consistent HF approximation is described and the
necessary formulas for polarization, OPA cross section
and the current are presented. In the third section, we
report our numerical results and in the fifth section,
discuss them. The non-equilibrium Green functions(GF)
for the non-interacting two-orbital QD system are
presented in the appendix.

Materials and Methods
Our system consists of a QD with two orbitals with

different parities, connected to two leads. Each orbital is
spin degenerate and strongly coupled to phonon modes
of the QD. The strong electron-phonon interaction
produces an attractive electron-electron interaction by
forming polarons in the QD. Using the Lang-Firsov
transformation[13] in the static limit, the Hamiltonian of
the model in the presence of the external
electromagnetic field is

ˆ ˆ ˆ ˆ ˆ .T dot leads tun e pH H H H H     (1)

The first two terms are, respectively, the effective
Hamiltonian of a two-orbital QD and non-interacting
isolated leads, given by
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
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where  is the spin index, îc  ( †
îc  ) and ˆka  ( †ˆka 

)

are, respectively, the annihilation (creation) operators of
electron with spin  of the i-th orbital of QD and k-th

level of leads and i is the energy of i-th orbital.

Moreover, ˆin  is the number operator ( †ˆ ˆi ic c  ) and

0U is the strength of effective electron-electron
interaction caused by the electron-phonon interaction.

The third term in Eq.1 describes the hybridization
between the orbitals of QD and the two leads. For spin
independent hybridization it has the form

 
 

†

, , ,

ˆ ˆ ˆ . . ,tun ik k i
k R L i

H t a c h c 


   (4)

where ikt s are hopping integrals where we consider
them in the wide-band limit.

Finally, the last term in the Hamiltonian represents
the interaction of external classical electromagnetic
fields with the QD in the electric-dipole approximation.
In terms of creation and annihilation operators of the
QD, it is given by

  †
1 2

ˆ ˆ ˆ. . . ,e pH E t c c h c 


   
 (5)

where  is the electric-dipole matrix element
between the two orbitals of QD and  E t

 is the

external electric field.
The bias voltage, V , is applied symmetrically to

the right and left leads, thus their Fermi energies are,
respectively, / 2L eV  and / 2R eV   .
Moreover, the system is considered at zero temperature
and we choose the system of units that 1e   .

The HF Approximation
To determine the optical properties of our model, we

use the Keldysh formalism of non-equilibrium (contour-
ordered) Green's functions (NEGF) which is an
extremely useful method for studying the non-
equilibrium properties of many-body systems. Within
the various approximations, we limit ourselves to the
HF self-consistent method. This method is sufficiently
simple and computationally less demanding and at the
same time produces semi quantitative results.

Green's functions provide us with expectation
values of all one-body observables such as polarization,
density and the current. They satisfy the Dyson
equations [14]

0 0 ,c c c c cG G G G   (6)
where

cG and 0
cG are, respectively, the contour-

ordered exact and non-interacting GFs which for the QD
are defined as
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      †
, , ,ˆ ˆ, , , 1,2c ij c H i H iG i T c c i j       

(7)
and

      0 †
, , , 0

ˆ ˆ, , , 1,2c ij c H i H iG i T c c i j        (8)

where
c is the proper self-energy and  ,ˆH ic   s

(  †
,ˆH ic   s) are the annihilation (creation) operators in

the Heisenberg representation on the Keldysh time
contour.

Using the analytical continuation of Langreth[14],
we can express the Dyson equations in terms of
standard retarded ( 0, ,r r rG G  ), advanced ( 0, ,a a aG G  ),

lesser ( 0, ,G G   ) and greater ( 0, ,G G   ) GFs
and proper self-energies. Since for the Hamiltonian,

ˆ
TH , the GFs and self-energies are diagonal in spin

space, we have dropped the spin indices. Within the HF
approximation the resulting equations for the GFs when

ˆ
e pH 

is ignored, are

    
110ˆ ˆ ˆ ,r r r

HFG G 
     

(9)

   †ˆ ˆ ,a rG G  (10)

and

       ˆ ˆ ˆˆ ,r a
leadsG G G      (11)

where  ˆ
leads 
 is the lesser self-energy due to the

leads which is defined in the appendix and ˆ r
HF , the

HF retarded self-energy, is given by
 

 
0 1 2

0 2 1

2ˆ ,
2

r
HF

U n n r
r U n n
  

  


  
     

(12)

where

 , , ,
2i ii
dn i G
  


    (13)

and

    0 12 12 .
2

rdr iU G G
  


   (14)

Using the relation

   †
12 1 2ˆ ˆ, 0,

2 2
rd iG c c 

 



  (15)

in Eq.14, we have

 0 12 .
2
dr iU G
 


   (16)

Furthermore, r is real, so r r 
 .

Polarization and Linear Polarizability
The polarization of QD is defined by

         † †
,1 ,2 ,2 ,1ˆ ˆ ˆ ˆ .H H H HP t c t c t c t c t   



 
  (17)

Using equal time anti-commutation properties of
annihilation and creation operators, Eq.17 can be
written as[3]

    124Im , ,P t G t t 
   (18)

where  12 ,G t t is the lesser GF between the two

orbitals of QD when ˆ
e pH 

is taken into account.

Since, we are interested in the OPA cross section,
we determine  P t


to first order in  E t


. The

contour-ordered GF to first order in ˆ
e pH 

is

       1 1 1 1
ˆ ˆˆ ˆ, , , ,e pG d G h G           (19)

where all the  s lie on the Keldysh time contour, Ĝ
represents the HF GFs of the QD, and ê ph 

is

   
 

0 .ˆ .
. 0e p

E
h

E
 


 

 
    




(20)

Using the Langreth rules and doing the Fourier

transformations, the first order polarization for E


in
the direction of  could be written as

       (1) 22 , , ,P i E             
(21)

where  E  is the Fourier transform of the electric

field and
(22)

         
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G G G G
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     

 

 


       

      



In terms of  ,   , the frequency dependent OPA

cross section is

     
28 Re , , .

c
            

(23)

Furthermore, the total current in the absence of the
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last term in the Hamiltonian has the form

    ˆ ˆˆ ,
2

L

R

r aie dI Tr G G




  


    
(24)

where the trace is taken over the orbital degrees of
freedom of the QD, a factor of 2 is already taken into

account for spin, and ̂ is given by[14]

   2 ,ij ik jk k
k

t t       (25)

which in the wide-band approximation is
independent of  . Furthermore, we take all ij equal

to  .

Results
In this section we present and discuss our results.

Within the HF approximation, it is well known that the
Hamiltonian, ˆ

TH , shows bi-stability [7]. Our numerical
results in the sequel belong to the lower branch of
bi-stability curve for two distinct cases, the
degenerate ( 1 2  ) and non-degenerate ( 1 2  )
QDs.

Degenerate QD
For simplicity, we take 1 2 0   . It would be

more convenient to use another single particle orbitals
for QD. Doing the following transformation on the
annihilation and creation operators of the QD,

   † † †
1 1 2 1 1 2

1 1ˆ ˆˆ ˆ ˆ ˆ, ,
2 2

d c c d c c         (26)

and

   † † †
2 1 2 2 1 2

1 1ˆ ˆˆ ˆ ˆ ˆ, ,
2 2

d c c d c c         (27)

The Hamiltonian of the QD, ˆ
dotH , retains its form,

but the left and right leads decouple from the
transformed second orbital of the QD. This decoupling
makes the Fock term, Eq.16, identically zero. The first,
third and the last terms of the total Hamiltonian in the
new basis are, respectively,

 0
,

1ˆ ˆ ˆ 1 ,
2dot i j ij

ij
H U n n  



  


     (28)

 
 

†
1

, ,

ˆ ˆˆ2 . . ,tun k k
k R L

H t a d h c 


   (29)

and

  1 2
ˆ ˆ ˆ. ,e pH E t n n 



   
   (30)

where it is assumed that 1 2k k kt t t  and
†ˆ ˆ ˆ

i i in d d   for  i=1,2  and ,   .

In the new basis, the GFs in the Hartree
approximation can be determined analytically. It is a
straight forward calculation to show that the non-zero
GFs are

     11 11
1 2 0

1 ,
2

r ag g
n n U i 

 


 
    

(31)

     22 22
1 2 0

1 ,
2 0
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 



 

   

(32)

 
 

 

 
,

11 2 2
1 2 0

,
2

R L
i

g
n n U




 

  





 

     


 

(33)

     
 

22 1 2 0
,

2 ,
R L

g i n n U  


     



       
(34)

and the greater GFs are given by
        , 1,2r a

ii ii ii iig g g g i        (35)

where     is the Heaviside step function

and ˆ
in  s are the solutions of the following coupled

integral equations:

 , 1,2, , ,
2i ii
dn i g i
  


     (36)

For 2n  , the integral can be done and we have

 2 1 2 0
1 1 2 , , .
2 2

Vn n n U               
  

(37)

Furthermore, the polarization, Eq.17, becomes
     11 222 , , .P t i g t t g t t     
  (38)

Using the self-consistent solutions of Eqs.36 and 37
with Eq.24 for the current, we have depicted the
populations of the two orbitals , 1n and

2n , of the QD
and the current, I, as functions of external bias, V , for
three values of

0 / 2.0,4.0U   and 6.0 in Figs. 1a and
1b. The OPA cross section for 0 / 4.0U   and

/ 20.0eV   as a function of /  is depicted in
Fig. 2. The peaks are due to the excitation of plasmon
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modes of the system. Since the polarization in the
transformed basis, Eq.38, is proportional to the
difference between the electron populations of the two
transformed orbitals and ˆ

e pH 
(Eq.30), couples the

incoming electric field to the electron populations of the
orbitals, to linear order in the electric field the change in
the polarization is proportional to the density-density
response function of the QD, whose collective
excitations are the plasmon modes of the system. So the
absorption peaks in Fig. 2 are due to excitations of
plasmons.

Non-Degenerate QD
In this case, we set 1 2     and for any

values of 0U and V , we solve Eqs. 9-13 and 16 self-
consistently. In Figs. 3a, 3b and 3c, the populations of
the two orbitals of QD and the current as functions of
external bias voltage are depicted for 0 / 4.0U   and

/ 1.5   and 3.0. For / 1.5   , the I-V curve has
a step shape, but for / 3.0   it consists of two steps.
This behavior of I-V curve is due to the electron
populations of the two orbitals of QD. For values of

Figure 1. (a)The electron populations and (b)the currents, for the degenerate case, for
0 / 2.0,4.0U   and 6.0, as functions of

the bias voltage.

Figure 2. The OPA cross section of the degenerate case, as a function of frequency  for
0 / 4.0U   and / 20.0eV   . The

arrows indicate the resonance frequencies and c is the speed of light.
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0 / 2U  , when the bias voltage is increased, the two
orbitals get populated almost with the same number of
electrons, Figs. 3a and 3b. For / 18.82eV   the two
orbitals are almost filled and small current can pass
through the dot. For / 18.82eV   the two orbitals are
almost half filled and the dot can pass larger current. As
the  increases above

0 / 2U , the electron populations

of the two orbitals as functions of applied bias voltage
become different. This behavior could be explained by
noticing that for an orbital to be filled, its effective
energy ,that is, its energy plus the Hartree energy (see
Eq.12), should lie below the Fermi energy of the right
lead. The effective energies of the higher and lower
orbitals of the QD are, respectively,

 0 1 22U n n    and  0 2 12U n n    . If we

Figure 3. (a), (b) and (c) are, respectively, the electron populations of the two orbitals of QD and  the current as functions of the bias
voltage for 0 / 4.0U   and / 1.5   and 3.0.

Figure 4. The OPA absorption cross section for 0 / 4.0U   , / 1.5   and / 18.0eV   as a function of the
frequency. The arrows indicate the resonance frequencies and  c is the speed of light.
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roughly assume that the filled orbitals are completely
filled, the higher orbital would remain filled up to the
bias voltage for which the Fermi energy of the right lead
is approximately equal to its effective energy, 03U  .
Therefor, at applied bias approximately equal to
 02 3U  , the first step emerges. Increasing the

applied bias, the higher orbital becomes almost half
filled and up to applied bias of  02 2U  , where

   0 02 2 2 3U U    , the lower orbital remains

approximately filled. At the above applied bias the
Fermi energy of the right lead becomes equal to the
effective energy of the lower orbital where the second
step emerges. Increasing the applied bias further, the
two orbitals of QD become almost half filled.

The relation    0 02 2 2 3U U    can be

satisfied only for
0 / 2U  . Therefore, 0 / 2U  is a

threshold for the I-V curve to have two steps. From the
above consideration, we conclude that for level spacing
above the threshold, the range of applied bias, eV ,
where the lower orbital is almost filled and the other
orbital approximately half filled is
   0 02 3 2 2U eV U     .

In Fig. 4, we show the OPA cross section for the
case where

0 / 2U  ( 0 / 4.0U   , / 1.5   and
/ 18.0eV   ). Since the populations of the two

orbitals are almost equal, see Figs. 3a and 3b, the

absorption peaks are due to the plasmon excitations.
In Fig. 5, the OPA cross section for 0 / 4.0U   ,
/ 3.0   (above threshold 0 / 2U  ) and

/ 18.0eV   is depicted and the inset shows one-
particle spectral density of QD,

   2 Im r
ii

ii
A G 


     . The OPA cross section has

a main peak at / 4.25   with a height which is
one order of magnitude larger than the previous case
where 0 / 2U  , and its energy is approximately
equal to the energy difference of the two peaks in the
one-particle spectral density (see the inset of Fig. 5).
This peak is due to the absorption of a photon by the
electrons in the low energy orbital of the QD, making
transition to the other orbital. The reason that such a
transition occurs in this case and not in the former case
(Fig. 4) is that the level populations of the two orbitals
of the QD differ substantially, see Figs.3a and 3b.  In
Fig.6, for

0 / 4.0U   and / 2.5   and 3.0, we have
plotted the heights of main peaks of OPA cross sections
as functions of external bias voltage. In this regime, the
resulting curve has an almost square shape with an
approximate width of

04 2U  . Considering the
orbitals populations and the currents as functions of
bias, we observe large absorption for the range of
applied bias voltage that lies between the two steps of
the  I-V  curve. Also, within this range of applied bias
the electron populations of the two orbitals of QD show

Figure 5. The absorption cross section for 0 / 4.0U   , / 3.0   and / 18.0eV   as a function of the frequency. The
inset is the one particle spectral function for the two levels of QD.  c is the speed of light.
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maximum difference. We have also calculated the OPA
cross section on the upper branch of bi-stability curve,
the results do not differ significantly from the reported
lower branch.

Discussion
We have investigated the OPA properties of a current

carrying two-orbital QD in the limit of strong electron-
phonon interaction (polaron regime). Our numerical
results which are based on the non-equilibrium self-
consistent HF approximation, show that this simple
nano-structure has two distinct regimes of OPA, where
their cross sections differ by an order of magnitude.
Furthermore, based on our numerical results for OPA
cross sections and their dependence on the applied bias
voltage, strength of effective electron-electron
interaction and the level spacing of QD, we have
determined in terms of the aforementioned parameters
the two regimes of OPA, where one is associated to the
plasmon excitations of system and the other one to the
inter-dot transition of electrons.

We conclude our work by noting that such an
intriguing optical property which is the manifestation of
non-equilibrium state of system, could be of great
practical interest for electro-optical elements at nano-
scale.

Appendix. The Non-Equilibrium Green Functions of
the Non-Interacting Two-Orbital QD

In this appendix, we present the expressions for
different non-equilibrium GFs of two-orbital QD in the
non-interacting case.

The retarded and lesser self-energies of the leads in
the wide band approximation are, respectively [14],

, , , 1,2,
2

r
leads ij ij

i i j     (A.1)

and

   
 

,
,

, , 1,2.
2leads ij ij

R L

i i j


   



     (A.2)

The retarded, advanced and lesser GFs can be
determined using the following equations:

    10 ˆˆ ˆ0 ,r r
dot leadsG i I h 


      

(A.3)

   †0 0ˆ ˆ ,a rG G  (A.4)

and
       0 0 0ˆ ˆ ˆˆ ,r a

leadsG G G      (A.5)

where all the GFs and self energies are two by two

matrices and d̂oth is

Figure 6. The heights of the main peaks in OPA cross sections for 0 / 4.0U   and / 2.5   and 3.0, as functions of the bias

voltage. c is the speed of light and the widths of curves are approximately equal to 04 2U  .
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1

2

0ˆ .
0doth



 
  
 

(A.6)
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