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Abstract 

The expression of heat shock protein 27 (Hsp27) as a chaperone protein, is 
increased in response to various stress stimuli such as anticancer chemotherapy. 
This phenomenon can lead to survive of the cells and causes drug resistance. In 
this study, a series of methanesulfonamide derivatives as dual Hsp27 and tubulin 
inhibitors in the treatment of cancer were applied to quantitative structure–activity 
relationship (QSAR) analysis. A collection of chemometrics methods such as 
MLR, FA-MLR, PCR, and GA-PLS was applied to make relations between 
structural characteristics and anti-proliferative activity of them against SKBR-3 
breast cancer cell line. The best multiple linear regression equation was obtained 
from GA-PLS. Concerning this model, new potent lead compounds were designed 
based on new structural patterns using in silico-screening study. To obtain their 
binding mode, binding site and types of their interactions to both tubulin and 
HSP27, molecular docking studies were also conducted on these compounds. The 
validity of docking protocol was also explored. The results obtained from this 
docking study indicate that the important amino acids inside the active site cavity 
that are in charge of essential interactions with HSP27 are Arg140, Thr139, 
Phe138, Cys137, Arg136, Phe104, His103, Val101, and Asp100. And this 
important amino acids in essential interactions with tubulin are Asn258, Val238, 
Cys241, Asn350, Leu255, Met259, Val315, Thr353, Arg221, Thr179 and Ser178.  
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Introduction 

The expression of heat shock proteins (Hsp) is 
increased in response to various stress stimuli such as 

anticancer chemotherapy [1-3]. Heat shock protein 27 
(Hsp27) as a small heat shock protein, shows a very 
close relationship with anticancer drug resistance [3, 4]. 
The Hsp27 has strong antiapoptotic properties which 
come from its molecular chaperone functions at 
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multiple steps of the apoptotic signaling pathways [5]. 
Large oligomers of Hsp27 which protect cells from 

oxidative stress, are required for the chaperone activity 
[6, 7]. It has been well investigated that inhibiting the 
formation of Hsp27 large oligomers can promote 
programmed cell death and decrease the chaperone 
activity [8]. Hsp27 causes a great limitation in the 
efficacy of cancer therapy due to its overexpression in a 
wide range of tumors cells and tissues [1, 2, 9-13]. 
Hence, targeting Hsp27 has a great importance in cancer 
chemotherapy, and it’s  a good anticancer target [5]. 

One of the great limitation in developing small 
molecule Hsp27 inhibitors is the absence of endogenous 
ligand for Hsp27 and hence lack of information about 
its binding site [5]. Recently, Methanesulfonamide 
derivatives show promising anticancer activities in 
preclinical models against a wide range of cancer cell 
line with high expression levels of Hsp27 [9, 14, 15]. 
These potent anticancer agents are dual ligands binding 
to Hsp27 and tubulin [16, 17]. These compounds 
interfere directly with the tubulin system and can inhibit 
tubulin polymerization with high potency [5]. 

In this work, for a series of Methanesulfonamide 
derivatives as dual Hsp27 and tubulin inhibitors, two 
different drug design methodologies have been applied: 
QSAR and molecular docking studies. In a plenary 

study, to describe the physicochemical properties of the 
molecules, we used a very large descriptor set such as 
geometrical, functional, charge, constitutional, 
topological, atom-centered fragments, 2D auto-
correlation, quantum, electrostatic, aromaticity indices, 
empirical and chemical. Also, to model the relationship 
between the structural characteristics and anti-
proliferative activity of the studied compounds against 
SKBR-3 breast cancer cell line, the different 
chemometrics methods were used: 1) multiple linear 
regression (MLR), 2) factor analysis-based multiple 
linear regression (FA-MLR), 3) principal component 
regression (PCR) and 4) partial least squared combined 
with genetic algorithm for variable selection (GA-PLS). 
A validated molecular docking simulation technique 
was also applied, on all compounds of the dataset and 
those designed from in silico screening, to achieve the 
detailed molecular binding site of them in interacting 
with major amino acids in the active site of Hsp27 and 
tubulin.  

 

Materials and Methods 

Data set 
A data set consisting of 49 methanesulfonamide 

derivatives as a series of dual Hsp27 and tubulin 

Table 1. Chemical structure of the compounds used in this study, experimental and cross-validated predicted activity as well as 
their docking binding energy on HSP27 and tubulin. 

                                           
1a-37a          38a-49a 

Name R1 R2 R3 Exp.pIC50 Pred.pIC50 
∆E1 (kcal/mol) 

Hsp27 Tubulin 

1a 
  

CH3 5.640165 5.71388 -8.31 -9.11 

2a 
  

CH3 6.309804 6.30659 -7.99 -9.11 

3a 
  

CH3 5.428291 5.56097 -7.59 -8.88 

4a 
  

CH3 6.180456 6.01277 -8.62 -9.75 

5a 
  

CH3 5.655608 5.56843 -9.08 -10.34 
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inhibitors were selected for the current study [18]. The 
structural features and biological activity details of these 
compounds are listed in Table 1. The anti-proliferative 

activity against SKBR-3 breast cancer cell line, as IC50 
values, were used for the QSAR modeling studies.  

 

Table 1. Cntd 

6a 
  

CH3 5.545155 5.59254 -8.69 -9.12 

7a n-C6H13 
 

CH3 4.398918 4.43685 -7.23 -9.04 

8a n-C6H13 
 

CH3 4.699405 4.81959 -6.81 -8.6 

9a n-C6H13 
 

CH3 3.998223 4.08720 7.15 -8.67 

10a n-C6H13 
 

CH3 4.897566 4.60381 -7.33 -9.71 

11a n-C6H13 
 

CH3 4.191721 4.15625 -7.66 -9.84 

12a n-C6H13 
 

CH3 4.541211 4.51461 -7.2 -9.18 

13a 
  

CH3 5.022734 4.84393 -7.65 -9.07 

14a 
  

CH3 5.692504 5.56468 -7.3 -8.47 

15a 
  

CH3 4.771087 4.92903 -7.37 -7.89 

16a 
  

CH3 5.455932 5.56469 -7.91 -9.86 

17a 
  

CH3 4.735182 4.95924 -8.56 -10.23 

18a 
  

CH3 4.832092 4.70962 -8.09 -8.62 

19a 
  

CH3 8.454693 8.39460 -7.87 -8.54 

20a 
  

CH3 8.59176 8.75116 -7.19 -6.5 

21a 
  

CH3 8.583359 8.41657 -7.23 -8.47 

22a 
  

CH3 8.917215 8.84899 -8.02 -8.7 

23a 
  

CH3 7.77963 8.24032 -8.16 -9.59 
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Molecular descriptors 
Using ChemBioDraw 12.0 software, two-

dimensional structures of the ligands were produced. 
Each ligand was optimized with different minimization 
methods including molecular mechanics (MM+) and 
quantum-based semi-empirical method (AM1) using an 

in-house TCL script [19-21] using Hyperchem. To 
calculate a large number of molecular descriptors, 
Hyperchem, Gaussian 98 [22] and Dragon packages 
[23] were applied. Also, to calculate chemical 
parameters such as molecular surface area (SA), 
molecular volume (V), hydration energy (HE), 

Table 1. Cntd 

24a 
  

CH3 8.123782 8.10676 -7.52 -7.98 

25a 
  

H 8.018634 7.77940 -7.78 -9.47 

26a 
  

H 7.872895 7.97442 -7.06 -9.03 

27a 
  

H 7.958607 7.67759 -7.38 -7.56 

28a 
  

H 7.927015 8.26384 -7.54 -8.68 

29a 
  

H 7.877129 7.69029 -7.98 -9.3 

30a 
  

H 7.452841 7.72158 -7.64 -8.52 

31a 
  

CH3 6.657577 6.58020 -8.56 -8.89 

32a 
  

CH3 6.823909 6.92608 -8.02 -8.79 

33a 
   

CH3 6.721246 6.65901 -7.71 -8.49 

34a 
   

CH3 6.886057 6.74699 -8.57 -9.38 

35a 
   

CH3 6.677781 6.22912 -9.09 -9.99 

36a 
   

CH3 6.69897 6.79937 -8.44 -8.67 

37a 
   

CH3 5.498941 5.93092 -8.03 -9.98 

38a 
   

CH3  6.327902 6.29100 -7.05 -8.16 

39a 
   

CH3  6.958607 6.89926 -6.37 -8.27 

40a 
   

CH3  6.259637 6.17080 -6.39 -7.31 
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hydrophobicity (LogP), and molecular polarizability 
(MP), Hyerchem software (Version 8, Hypercube Inc., 
Gainesville, FL, USA) was used. Similarly, Gaussian 98 
software was applied to calculate the most positive and 
the negative net atomic charges, highest occupied 
molecular orbital (HOMO) and lowest unoccupied 
molecular orbital (LUMO) energies, the average 
absolute atomic charge and molecular dipole moment in 
x, y and z direction. Using the equations developed by 
Thanilaivelan et al. quantum chemical indices including 
hardness (η = 0.5 (HOMO+LUMO)); softness (S=1 ൗߟ ), 
electrophilicity (ω = χ2⁄2η) and electronegativity (߯ ൌ
െ0.5) (HOMO-LUMO) were calculated [24]. Different 
geometrical, topological, empirical, charge and 
constitutional descriptors for each molecule and also 2D 
autocorrelations, aromaticity indices, atom-centered 
fragments and functional groups were calculated by 
Dragon. 

 
Model development 

In a data matrix with the number of molecules and 
descriptors as the number of rows and columns 
respectively, the calculated descriptors were illustrated. 
For producing QSAR equations, four different 
regression methods such as factor analysis as the data 
processing step for variable selection (FA-MLR), 
genetic algorithm-partial least squares (GA-PLS), 

principal component regression analysis (PCRA) and 
simple multiple linear regression with stepwise variable 
selection (MLR), were used. These known procedures 
are well explained in our previous QSAR studies [19, 
25, 26]. 

To develop QSAR models, stepwise selection and 
elimination of variables was done by SPSS software 
(version 21; SPSS Inc., IBM, Chicago, IL, USA). To 
check the predictability, validity, and robustness of the 
models, leave-one-out cross-validation procedure using 
MATLAB 2015 software (version 8.5; Math work Inc., 
Natick, MA, USA) was obtained.  

FA-MLR was also conducted on the dataset. To 
reduce the number of variables and to detect structure in 
the relations between them, factor analysis (FA) was 
performed. Also, to identify the important predictor 
variables and to avoid co-linearity among them, this 
data-processing step was used [27]. Along with FA-
MLR, PCRA, was also applied to database. Among X 
variables, co-linearities as a distributing factor are not 
included in PCRA and also the number of variables was 
not more than the number of observations [28]. Factor 
scores obtained from FA, are played the role of 
predictor variables. All descriptors in PCRA are 
important, and detecting the relevant descriptors is the 
end of factor analysis [25]. 

The PLS regression method was applied to the 

Table 1. Cntd 

41a 
  

CH3 6.29243 6.31578 -7.2 -6.52 

42a 
  

CH3 6.69897 6.34115 -7.46 -9.46 

43a 
  

CH3 6.148742 5.95048 -7.12 -6.86 

44a 
  

CH3 4.438422 4.53988 -7.8 -8.49 

45a 
  

CH3 5.274088 5.30246 -7.27 -8.23 

46a 
  

CH3 4.405829 4.74026 -7.51 -8.6 

47a 
  

CH3 4.869988 4.83518 -7.69 -8.16 

48a 
  

CH3 4.383 4.74955 -8.36 -9.55 

49a 
  

CH3 4.661942 4.41994 -7.69 -8.56 

1 docking binding energy 
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NIPALS-based algorithm existed in the chemometrics 
toolbox of MATLAB software. Also, to obtain the 
desirable number of factors, according to Haaland and 
Thomas F-ratio criterion [29, 30], leave-one-out cross-
validation procedure was applied. For PLS and GA 
modeling, MATLAB PLS toolbox was applied. 
Variable important in objection (VIP) process was done 
using XLSTAT 2017 software [31].  

All calculations were run on a core i7 personal 
computer (CPU at 16 MB) with Windows 7 operating 
system. 
 
Variable importance in the projection (VIP) 

To investigate the relative importance of the variable 
in the final model in GA-PLS method, variable 
important in objection (VIP) was applied [32]. The 
importance of variables in PLS method is represented 
by VIP values. According to Erikson et al. it is possible 
for X-variables (predictor variables) to be categorized 
regarding their relevance in explaining y (predicted 
variable). Then, VIP>1.0 and 0.8<VIP<1.0  are highly 
and moderately influential and VIP<0.8 is less 
influential [33].   
 
Model validation 

To validate the regression equation, statistical 
parameters including correlation coefficient (R2), root 
mean square error of cross-validation (RMScv), leave-
one-out cross-validation correlation coefficient (Q2), 
and the variance ratio (F) with certain degrees of 
freedom were applied. 20% of the molecules were 
selected as test set (prediction set) molecules to test the 
developed model performance. The predictive value of a 
QSAR model that has not been taken into account 
during the process of developing the model should be 
tested on an external set of data.  
 
Applicability domain 

Precise prediction ability of QSAR model for new 
compounds has been made it widely used studies [19, 
25]. It should be noted that no matter how significant 
and validated a QSAR may be, it cannot be expected to 
predict the modeled property for the entire space of 
chemicals reliably. Hence, the domain of application of 
QSAR before it is put into use for screening chemicals 
must be defined and predictions should be considered 
reliable for only those chemicals that fall in this domain. 
The applicability domain is appraised by the leverage 
values for each compound of our dataset. A Williams 
plot (the plot of standardized residuals versus leverage 
values (h)) can then be used for an immediate and 
simple graphical detection of both the response outliers 
(Y outliers) and structurally influential chemicals (X 

outliers) in our model. The applicability domain for the 
graph is defined in a squared area within ±x (standard 
deviations) and leverage threshold h*.   

The certain features of the numerical value of 
leverage include 1) being greater than zero and 2) the 
lower the value, the higher is the confidence in the 
prediction. Value of 1 equals to very poor prediction, 
and value of zero equals to perfect prediction that will 
not be reached. The other factor to analysis the results is 
warning leverage (h*). The threshold h* are centered on 
3(k + 1) ⁄n, with k = the number of model parameter and 
n= number of training set (calibration set) compounds 
while x=2 or 3. Prediction of high leverage value (h > 
h*) compounds may not be reliable. If leverage is higher 
than warning leverage h*, it means the predicted 
response is the consequence of substantial extrapolation 
of the model. So, it is unreliable. In other perspective, 
being lower the compound leverage value than the 
threshold one means possibility of agreement between 
the values observed and predicted for compounds is as 
high as for the calibration set of compounds [34, 35]. 
 
Docking procedure 

Molecular docking was carried out using an in house 
batch script (DOCKFACE) [25, 36] of AutoDock 4.2; 
each ligand was subjected to MM+ and AM1 
minimization methods using Hyperchem 8 package. 
With Gasteiger-Marsili procedure implanted in the 
AutoDock Tools program [37], the partial charges of 
atoms were calculated. Having non-polar hydrogens of 
compounds merged and the rotatable bonds assigned, 
the output structures were changed to PDBQT using 
MGLtools 1.5.6 [38]. 

The three-dimensional crystal structure of Hsp27 
(PDB ID: 4MJH) and tubulin (PDB ID: 4YJ2) were 
retrieved from protein data bank 
(http://www.rcsb.org/pdb/home/home.do). All water 
molecules were removed, missing hydrogens were 
added, and after determining the Kollman united atom 
charges, non-polar hydrogens were merged into their 
corresponding carbons using AutoDock Tools [37]. 
Finally, desolvation parameters were assigned to each 
protein atom. Among the three different search 
algorithms performed by AutoDock 4.2, the commonly 
used Lamarckian Genetic Algorithm (LGA) was applied 
[39-41]. Subsequently, the enzymes were converted to 
PDBQT using MGLTOOLS 1.5.6. 

A maximum number of 2,500,000 energy 
evaluations, 150 population size, 27000 maximum 
generations, 100 runs, a gene mutation rate of 0.02 and 
a crossover rate of 0.8 were used for Lamarckian GA. 
The grid maps of the receptors were calculated using 
AutoGrid tools of AutoDock 4.2. The size of grid 
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includes both the active site and considerable proteins of 
the encircling surface. A grid box of 82×66×94 and 
60×60×60 points in x, y, and z directions was built and 
centered on the center of the ligand in the complex with 
a spacing of 0.375 Å for 4MJH and 4YJ2, respectively. 
A number of points for 4MJH in x, y and z were 10.26, 
27.197 and 40.918, and for 4YJ2 was -14.704, 6.403 
and 25.505, consequently. Using AutoDock Tools the 
grid and docking parameter files, gpf and dpf was 
produced. With a root mean square deviation (RMSD) 
tolerance of 2Å, cluster analysis was done on the 
docked results. All the docking protocols were done on 
validated structures with RMSD values below 2 Å. 

According to docking results, ligand-receptor 
interactions were detected using AutoDock tools 
program (ADT, Version 1.5.6), VMD software [42] and 
PyMOL molecular graphics program [43].  

  

 

Results and Discussion 

Here, we developed a detailed QSAR study using a 
combination of chemical, electronic, quantum, 
geometrical, topological, 2D autocorrelation, and 
substituent constant, to explore structural parameters 
affecting anti-proliferative activity of 
methanesulfonamide derivatives as potent dual Hsp27 
and tubulin inhibitors against SKBR-3 breast cancer cell 
line. Among the different chemometrics tools available 
for modeling the relationship between the biological 
activity and molecular descriptors, four methods (i.e., 
stepwise MLR, FA-MLR, PCRA, and GA-PLS) were 
applied. 

  
MLR modeling 

In the first step, separate stepwise selection-based 
MLR analyses were performed using different types of 
descriptors, and then, an MLR equation was obtained 
utilizing the pool of all calculated descriptors. The 

Table 2. The results of different QSAR models with different type of dependent variables. 
Model Eq MLR Equation N R2

C F Q2 RMScv SE R2
P 

MLR 1 PCI50=-2.928GATS1e(±0.736)-
5.828GATS6v(±0.396)-

80.895MATS3m(±6.459) 
+68.014PW5(±11.944)-

15.936MATS8p(±1.343)-
6.429MATS2e(±0.702)-

24.570G(N..N)(±9.796)+26.809MATS8m(
±7.562)-

1.328ASP(±0.625)+206.913(±57.987) 
 

39 0.93 223.19 0.82 0.26 0.19 0.91 

FA-
MLR 

2 PCI50=89.213PW5(±8.929)-
24.410MATS8v(±0.996)+53.444X0Av(±2.

472)-
208.490X4Av(±15.104)+13.790MATS6p(±
1.684)+2.971MATS3v(±0.704)+0.004VOL

(±0.001) +3.585ElectroNEG(±0.933)-
1.411ASP(±0.562)-29.366(±1.986) 

39 0.96 199.06 0.80 0.28 0.19 0.94 

PCR 3 PCI50=0.805FAC4(±0.063)-
0.748FAC8(±0.069)+0.555FAC3(±0.060)-

0.293FAC2(±0.058)-
0.167FAC9(±0.067)+0414FAC14(±0.080)-
0.316FAC7(±0.073)+0.215FAC5(±0.059)-

0.239FAC11(±0.105)+6.214(±0.063) 

39 0.91 60.532 0.78 0.35 0.36 0.93 

GA-
PLS 

4 PCI50=210.547PW5(±14.859)-
90.006MATS3m(±4.650) 

+17.837MATS6v(±1.229)-
95.430PW2(±5.648)-

4.180GATS8e(±0.326)-1.454TI2(±0.187)-
2.107ASP(±0.496)+0.561nN(CO)2(±0.160) 
+3.056HARDNESS(±0.978)+146.819(±6.3

18) 

39 0.98 195.22 0.89 0.31 0.21 0.98 

1 Number of molecules of training set used to derive the QSAR models 
R2: Regression Coefficient for Calibration set 
Q2: Regression Coefficient for Leave One Out Cross Validation 
RMScv: Root Mean Square Error of cross validation 
R2p: Regression Coefficient for prediction set 
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results of QSAR models are summarized in Table 2. 
The statistical parameters calculated for each target such 
as R2, correlation coefficient (R2p) of the test set, 
standard error (SE), F at specified degrees of freedom, 
Q2 and RMScv were used for validating the goodness of 
fit of the resulted QSAR equations are represented in 
Table 2. Equation 1 (in Table 2) was selected as the best 
equation in the MLR model. The selected variables in 
Table 2 demonstrate that topological (PW5), 2D 
autocorrelations (GATS1e, GATS6v, MATS3m, 
MATS8p, MATS2e, MATS8m) and geometrical 
(G(N..N), ASP) descriptors affect the anti-proliferative 
activity of the studied compounds against SKBR-3 
breast cancer cell line. 

 
FA-MLR and PCRA 

Table 3 shows the nine-factor loadings of the 
variables (after VARIMAX rotation) for the compounds 
based on their anti-proliferative activity on SKBR-3 
(factor 2, 3, 4, 5, 7, 8, 9, 11 and 14). As it is observed in 
the table, about 68% of variances in the original data 
matrix could be explained by selected nine-factors. 

Table 3 revealed that descriptors such as PW2, 
MATS8m, MATS8p, GATS6v, GATS1e and ASP are 
the highest loading values for factor 2. The highest 
loading values for factor 3 are associated with TI2, 
MATS2e and PW5 whereas GATS1e, PW2 and 
nN(CO)2 are the highly loaded descriptors of factor 4. 
As it was shown in Table 3, the highest loading values 
for factor 7 is associated with MATS3m, for factor 8 is 
associated with MATS8v, for factor 9 is associated with 

MATS6p whereas ASP, G(N..N) and hardness are the 
highly loaded descriptors of factor 11. Table 3 revealed 
that factors 2 and 3 are moderately loaded with the anti-
proliferative activity of the studied compounds against 
SKBR-3 cell line. Interestingly, the former possessed 
the highest loadings from 2D autocorrelations 
(MATS8m, MATS8p, GATS6v, GATS1e), topological 
(PW2) and geometrical (ASP) whereas the latter is 
containing the information from topological (TI2, PW5) 
and 2D autocorrelations (MATS2e) descriptors. The 
subsequent FA-MLR equation using highly loaded 
descriptors is shown in Table 2, Eq.2.  

 
PCRA 

Equation 3 is obtained from factor scores as predictor 
parameters in multiple regression equations via 
forwarding selection method (PCRA). Unlike selected 
descriptors, factor scores include information from 
different descriptors. Thus the risk for data missing is 
reduced. By principle component method, nine factors 
scores (Table 3) were used as independent parameters 
for developing QSAR equations. The variables used in 
Eq. 3 shows statistical quantities similar to those 
obtained by the FA-MLR method. But, it indicates 
partly higher calibration and lower cross-validation 
statistics concerning Eq.2.  

In Table 2, Factor score 2 signifies the importance of 
PW2, MATS8m, MATS8p, GATS6v, GATS1e and 
ASP descriptors. Factor score 3 indicates the importance 
of TI2, PW5, MATS2e descriptors. Factor score 4 
indicates the importance of GATS1e, PW2, nN(CO)2 

Table 3. Factor loadings of some significant descriptors after VARIMAX rotation. 
Descriptor F2 F3 F4 F5 F7 F8 F9 F11 F14 Communalities 

Vol. -0.301 -0.061 0.159 0.402 0.036 0.196 0.055 0.017 0.007 0.980 
TI2 -0.439 0.536 0.153 -0.063 0.198 0.198 0.020 -0.016 -0.057 0.994 

X0Av 0.443 -0.110 0.269 0.271 -0.136 0.041 0.093 0.053 0.016 0.996 
X4Av 0.309 -0.317 -0.106 0.322 -0.048 -0.011 -0.038 -0.181 0.111 0.987 
PW2 0.569 -0.067 -0.448 -0.087 -0.272 -0.067 0.003 -0.002 -0.024 0.997 
PW5 -0.211 0.813 0.381 0.212 0.085 -0.016 -0.051 -0.047 -0.042 0.990 

MATS3m 0.235 0.053 -0.437 -0.426 0.551 0.328 -0.071 -0.251 0.049 0.989 
MATS8m 0.761 -0.250 -0.121 -0.229 0.327 0.148 0.073 0.127 -0.052 0.989 
MATS6v 0.231 0.301 0.224 -0.197 0.030 -0.415 -0.492 -0.064 0.247 0.982 
MATS8v 0.414 0.013 -0.172 -0.048 -0.020 0.581 0.185 0.015 -0.533 0.993 
MATS2e 0.373 -0.445 -0.751 0.150 0.088 -0.029 -0.035 -0.041 -0.076 0.994 
MATS6p 0.103 0.394 -0.035 -0.370 -0.095 -0.212 -0.508 -0.121 0.225 0.966 
MATS8p 0.594 -0.084 -0.138 0.068 -0.105 0.478 0.145 0.019 -0.242 0.986 
GATS6v -0.735 -0.151 -0.180 -0.146 -0.176 0.427 0.278 0.000 -0.128 0.989 
GATS1e -0.560 0.185 0.685 -0.288 0.049 -0.208 0.132 0.098 -0.001 0.989 
GATS8e -0.422 0.086 0.188 0.234 -0.082 0.173 -0.076 -0.018 -0.100 0.959 

ASP 0.546 0.042 -0.058 0.425 0.050 -0.209 0.014 0.363 0.022 0.834 
G(N..N) 0.044 0.252 -0.252 -0.067 -0.270 0.007 0.172 0.268 0.213 0.548 
nN(CO)2 0.171 -0.292 -0.433 0.085 -0.470 0.314 0.264 0.138 0.187 0.992 
Hardness 0.194 0.397 0.029 -0.021 -0.086 -0.350 -0.228 -0.205 -0.182 0.984 

ElectroNeg 0.293 0.310 -0.065 -0.068 -0.121 -0.278 -0.183 -0.191 -0.188 0.979 
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descriptors. Factor score 5 indicates the importance of 
VOL, MATS3m and ASP descriptors. Factor score 7 
indicates the importance of MATS3m. Factor score 8 
indicates the importance of MATS8v. Factor score 9 
indicates the importance of MATS6p. Factor score 11 
indicates the importance of ASP, G(N..N) and hardness 
descriptors. Factor score 14 signifies the importance of 
MATS8v descriptor. 

 
GA-PLS 

In PLS analysis, the descriptors data matrix is 
decomposed to orthogonal matrices with an inner 
relationship between the dependent and independent 
variables. Therefore, unlike MLR analysis, the multi-
colinearity problem in the descriptors is omitted by PLS 
analysis. Since a minimal number of latent variables are 
used for modeling in PLS; this modeling method 
coincides with noisy data better than MLR. So, many 
different GA-PLS runs were done using the different 
initial set of populations. The statistical parameters 
calculated for this model are shown in Table 2.  

Table 2 represents that a combination of 2D 
autocorrelations (MATS3m, MATS6v, GATS8e), 
topological (TI2, PW2, PW5), geometrical (ASP), 
quantum (hardness) and functional (nN(co)2) descriptors 
have been selected by GA-PLS to account for the anti-

proliferative activity of the studied compounds against 
SKBR-3 cell line. In this table, Eq.4 with high statistical 
quality parameters was obtained from the pool of 
calculated descriptors (i.e., R2 = 0.98 and Q2 = 0.89) 
and, the predictive R2 value for the test set was found to 
be 0.98. Table 2 shows that none of the suggested 
QSAR models were obtained by chance and the best set 
of calculated descriptors was selected by genetic 
algorithm because of its greatest statistical parameters. 
Therefore the best predictive results were observed from 
this model.  

The most convenient GA-PLS model that resulted in 
the best fitness contained 62 indices. The PLS estimate 
of coefficients for the descriptors are given in Figure 1. 
As it observed, a combination of chemical, topological, 
geometrical, quantum, 2D-autocorrelations and 
functional descriptors have been selected by GA-PLS to 
account the anti-proliferative activity of 
methanesulfonamide derivatives against SKBR-3 cell 
line. VIP was calculated for each descriptor to 
determine the importance of 62 selected GA-PLS 
descriptors. Figure 2 shows the VIP analysis of PLS 
equation. VIP shows that 25 descriptors with VIP>1.0 
such as PW5, nRORph, MATS3m, MATS6v, X2sol, 
logP, GATS7v, MATS2v, X5sol, nNCO2, MATS8m, 
MATS7v, GATS8v, X3Av, GNar، pol, LP1, GATS6v, 

 
 

Figure 1. Regression coefficients for the variables used in GA-PLS model. 
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hardness , IVDM, Ti2, ATS6e and MATS1v are the 
most important indices in the QSAR equation derived 
by PLS analysis. Also, descriptors such as IC4, ATS5v, 
PW2, MATS4v and DDr06 with 0.8<VIP<1.0 are 
moderately influential and descriptor with VIP<0.8 
which was shown in Figure 2 are less influential. 

The brief description of the descriptors which were 
inserted in the QSAR models is listed in Table 4. 

 

In silico screening  
Instead of time-consuming and expensive in vivo 

experiments, it is possible to apply in silico screening in 
initial steps of drug development because it can 
accelerate the speed of discovery, anticipate and explore 
new pharmaceutical agents. To explore and detect active 
compounds among molecular databases, a strong 
technique, virtual screening, may be used. This 
technique is used through deletion, insertion, and 

 
Figure 2. Variable importance in the projection (VIP) for the variables used in GA-PLS model. 
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Table 4. Definitions of molecular descriptors present in the models 
Descriptors Brief description 

MATS2e Moran autocorrelation - lag 2 / weighted by atomic Sanderson electronegativities 
MATS3m Moran autocorrelation- lag 3 / weighted by atomic masses 
MATS8m Moran autocorrelation - lag 8 / weighted by atomic masses 
MATS6p Moran autocorrelation - lag 6 / weighted by atomic polarizabilities 
MATS8p Moran autocorrelation - lag 8 / weighted by atomic polarizabilities 
MATS3V Moran autocorrelation - lag 3 / weighted by atomic van der Waals volumes 
MATS6V Moran autocorrelation - lag 6 / weighted by atomic van der Waals volumes 
MATS8V Moran autocorrelation - lag 8 / weighted by atomic van der Waals volumes 
GATS1e Geary autocorrelation - lag 1 / weighted by atomic Sanderson electronegativities 
GATS8e Geary autocorrelation - lag 8 / weighted by atomic  Sanderson electronegativities 
GATS6v Geary autocorrelation - lag 6 / weighted by atomic van der Waals volumes 

PW2 Path/walk 2- Randic shape index 
PW5 Path/walk 5- Randic shape index 

G(N..N) Sum of geometrical distances between N..N 
ASP Asphericity 
TI2 Second Mohar index TI2 

Nn(CO)2 Number of imides 
X0Av Average valence connectivity index chi-0 
X4Av Average valence connectivity index chi-4 

Hardness Quantum chemical indices of hardness 
VOL Molecular volume 

ElectroNeg Electronegativity 
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substitution of different substitutes on the parent 
molecules and it is able to investigate the influences of 
the structural modifications on the biological activity 
[19, 25].  

For the use of the model in screening new 
compounds, the domain application of QSAR model 
was determined. The applicability domain (AD) of 
QSAR model was applied to verify the prediction 
reliability, to recognize the troublesome compounds and 

to predict the compounds with an acceptable activity 
that falls within this domain. We employed the 
important descriptors selected from GA-PLS model (as 
the best-studied model because of its greatest statistical 
parameters) for designing new active compounds. 

According to the analysis done on AD model in the 
Williams plot of the MLR model (Figure 3) using the 
whole dataset, it was demonstrated that neither one of 
compounds is an obvious outliner. As it was depicted in 

 
Figure 3. Williams plot for the calibration set and external prediction set. 

 

Table 5. Designed compounds based on in silico screening and their predicted activities and docking binding energies on Hsp27 and 
Tubulin. 

 
 

Name R1 R2 R3 pIC50 pred leverage Hsp27 
∆E (kcal/mol) 

Tubulin 
∆E (kcal/mol) 

1b - 9.047 0.286 -6.98 -8.74 

2b 

 

- 9.051 0.356 -8.24 -8.20 
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Figure 3, none of the compounds have leverage (h) 
values greater than the threshold leverages (h*). The 
warning leverage (h*), was found to be 0.76. To the best 
of our knowledge, the compounds that had a 
standardized residual more than three times of the 
standard deviation units were considered to be outliers. 
For both the calibration set and test set of targets, the 
presented model matches the high-quality parameters 
with good fitting power and the capability of assessing 
external data. Moreover, almost all of the compounds 
were within the applicability domain of the proposed 
model and were evaluated accurately. While chemicals 
with a leverage value higher than h* were considered to 

be influential or high leverage chemicals [29, 30]. 
In the studied QSAR model, the in silico screening 

should be used to design new lead compounds with 
improved the potential anti-proliferative activity against 
SKBR-3 cell line. Then, the in silico screen was applied 
by substituting diverse groups in different places using 
bioisosterism rules. Table 5 shows the results of in silico 
screening. 25 novel compounds were designed, and 
their predicted activities for anti-proliferative activity 
based on GA-PLS equation, as well as their docking 
binding energies on HSP27 and tubulin were obtained 
(Table 5). Leverage values show that all of the designed 
compounds were within the applicability domain. 

Table 5. Cntd 
3b 

 

- 9.062 0.395 -6.97 -7.93 

4b CH3 CH3 9.021 0.787 -7.96 -6.93 

5b n-C6H13 CH3 CH3 8.001 0.749 -7.09 -7.23 
6b CH3 CH3 8.195 0.672 -7.73 -6.17 

7b 

 

CH3 CH3 11.979 0.735 -7.49 -6.06 

8b 

 

CH3 H 11.254 0.702 -7.37 -6.17 

9b 

 

CF3 CH3 7.433 0.537 -7.20 -5.91 

10b CF3 CH3 5.932 0.655 -7.97 -6.02 

11b CF3 CH3 9.974 0.351 -6.85 -6.07 

12b 

 

CF3 H 12.478 0.383 -6.54 -5.28 

13b CH3 CH3 9.075 0.337 -7.57 -8.32 

14b 

 

CH3 CH3 12.012 0.373 -7.10 -7.40 

15b 

 

CH3 H 10.924 0.384 -6.89 -7.16 

16b CH3 CH3 10.015 0.361 -7.45 -7.83 

17b 

 

I CH3 9.473 0.359 -7.87 -6.75 

18b n-C6H13 I CH3 8.894 0.418 -6.77 -6.40 
19b 

 

I CH3 8.414 0.336 -7.56 -6.30 
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Among these molecules, 9 compounds such as 7b, 8b, 
12b and 20-24b showed the highest pIC50 and hence are 
the best anti-proliferative compounds. These 
compounds have a good potentially for becoming 
potential anticancer agent.  

In Figure 4, the data for predicted activities are 
plotted against experimental ones to be taken into 
account the cross-validated prediction results. As it was 
mentioned above, the least scattering of data was 
obtained from GA-PLS model. High regression ratio (R2 

= 0.9796) in this plot shows good agreement between 
the experimental activity and cross-validated predicted 
values of activity. 

 

Docking Studies 
Here, molecular docking simulations were performed 

on 49 compounds of the dataset as well as 25 designed 
compounds, to elucidate their interactions and to gain 
some insight into their molecular binding mode with 
Hsp27 and tubulin. The results obtained from molecular 
docking containing the estimated free binding energy 
values (ΔGbind) for the best position of the docked 
compounds expressed in Kcalmol-1, which are 
summarized in Table 1 for data set compounds and 
Table 5 for designed compounds, along with the 
corresponding favorable interactions with the key amino 
acid residues at the active site of Hsp27 and tubulin are 
depicted in Figures 5-9. 

Table 5. Cntd 
20b 

 

I CH3 13.184 0.314 -7.22 -5.54 

21b 

 

I H 12.245 0.450 -7.19 -5.96 

22b I CH3 11.156 0.472 -7.63 -6.63 

23b 

 

OCH3 CH3 11.395 0.405 -6.83 -7.59 

24b 

 

OCH3 H 11.155 0.368 -6.87 -7.38 

25b OCH3 H 9.490 0.422 -7.21 -5.67 

 

 
Figure 4. Plots of cross-validated predicted values of activity by GA-PLS against the experimental values 
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Table 1 shows that, the ΔGbind values of the best-
docked poses of these compounds are within the range 
of -6.37 to -9.09 Kcal.mol-1 for Hsp27 and -6.52 to -
10.34 Kcal.mol-1 for tubulin binding. The best docking 
binding energies in binding to Hsp27 belongs to the 
compound 35a, whereas the compound 5a shows the 
great docking binding energies in binding to tubulin in 
compared to the others. As it was shown in Table 5, the 
best docked poses of designed compounds are within 
the range of -6.54 to -8.24 Kcal.mol-1 for Hsp27 and -
5.54 to -8.74 Kcal.mol-1 for tubulin. Here, The best 
docking binding energies in binding to Hsp27 is belong 

to the compound 2b, whereas the compound 1b shows 
the great docking binding energies in binding to tubulin. 

Types of the interaction of these compounds to both 
of these targets were also explored. As it was shown in 
Figure 5A, the methyl group attached to sulfonamide 
moiety of compound 7a is involved in hydrophobic 
interaction with residue Phe104 in the active site of 
Hsp27. The oxygen groups of sulfonamide moiety 
interact via acceptor hydrogen bonds with residues 
Val101, and His103. The NH group of the amide bond 
of this compound is involved in hydrogen bond 
interaction with residue Cys137. The methyl attached to 

 
Figure 5. A) The structure of 5a surrounded by the key residues in the active site of HSP27. B) Molecular docking simulation 
studies of the interaction between 5a and tubulin. 

 

 
Figure 6. A) The structure of 20a surrounded by the key residues in the active site of HSP27. B) Molecular docking simulation 
studies of the interaction between 20a and tubulin. 
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the nitrogen of sulfonamide is involved in an interaction 
with residue His103. The chloro group on the phenyl 
ring is involved in a weak hydrogen bond with Thr139. 
The most favorable energetically conformation of the 
docked pose of 7a in interaction with tubulin is shown 
in Figure 5B. The carbonyl group of this compound 
interacts via acceptor hydrogen bonding with Cys241. 
The methyl group attached to sulfonamide moiety of 
this compound is involved in interaction with residue 
Val315. The oxygen group of sulfonamide moiety 
interacts via acceptor hydrogen bonds with residues 
Met259 and Asn258. There also exist a weak hydrogen 
bonds between chloro group on the phenyl ring with 
Thr353. 

Types of interactions of compound 20a with both 
targets are depicted in Figure 6. The oxygen groups of 
sulfonamide moiety interact through acceptor hydrogen 
bonding with residues Phe138 and Arg140. The 
carbonyl group of the amide bond of this compound is 
involved in hydrogen bond interaction with residues 
Val101, and His103. The NH group of the amide bond 
interact via hydrogen bonding with residue Asp100. The 
π-π (arene-arene) interaction between the phenyl 
bearing sulfonamide moiety and residue Phe138 is also 
observed. Figure 6B shows the interaction of compound 
20a with tubulin. The methyl group attached to 
sulfonamide moiety of this compound interacts with 
residue Met259. The oxygen group of sulfonamide 
moiety is involved in acceptor hydrogen bonding with 
residue Asn258. The carbonyl group of the amide bond 
of this compound is involved in hydrogen bond 
interaction with residues Cys241. The methyl attached 

to the nitrogen of sulfonamide interacts with residue 
Val315. 

As indicated in Figure 7A, the oxygen groups of 
sulfonamide moiety of compound 36a interact with 
residues Arg136 in the active site of Hsp27. The NH 
group of the amide bond interact via hydrogen bonding 
with residue Cys137. There existed an arene-hydrogen 
bond interaction between the benzodioxole group with 
residue Thr139. The π-π interaction between the phenyl 
of benzyloxy moiety and residue Phe138 is also 
observed. The most favorable energetically 
conformation of the docked pose of 36a in interaction 
with tubulin is shown in Figure 7B. It interacts via the 
oxygen group of sulfonamide moiety with residues 
Asn258 and Leu255. The methyl attached to the 
nitrogen of sulfonamide is involved in an interaction 
with residue Met259. 

The carbonyl group of the amide bond of this 
compound is involved in hydrogen bond interaction 
with residues Thr353. The oxygen of dioxolane group is 
forming a hydrogen bond with residue Arg221. 

Types of interaction of the designed compounds 
based on in silico screening using GA-PLS model with 
both targets were also determined. 

As depicted in Figure 8A, the oxygen groups of 
sulfonamide moiety of compound 7b interact with 
residues Phe138 and Thr139 in the active site of Hsp27. 
The nitrogen of phenanthridine ring in this compound is 
involved in acceptor hydrogen bonding with Arg140. 
The hydroxyl group attached to the phenanthridine ring 
of this compound interacts via hydrogen bonding with 
Asp100. The π-π interaction between the pyridine ring 

 
Figure 7. A) The structure of 36a surrounded by the key residues in the active site of HSP27. B) Molecular docking simulation 
studies of the interaction between 36a and tubulin. 
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of phenanthridine moiety and residue Phe138 is also 
observed. The interaction of 7b with tubulin is shown in 
Figure 8B. The oxygen group of sulfonamide interacts 
with residues Asn258. The methyl group attached to 
sulfonamide moiety of this compound interacts with 
residue Thr179. The methoxy group on its benzyloxy 
group is involved in hydrogen bonding with Val238. 
The hydroxyl group attached to the phenanthridine ring 
interacts via hydrogen bonding with Asn350. 

As it was shown in Figure 9A, the oxygen groups of 
sulfonamide moiety of compound 14b interact with 
residues Phe138 and Thr139. The hydroxyl group on its 

quinoline ring interacts via hydrogen bonding with 
Asp100. There existed an arene-hydrogen bond 
interaction between the benzyloxy group with residue 
Arg140. The π-π interaction between the pyridine of 
quinoline moiety with residue Phe138 is also observed. 
The most favorable energetically conformation of the 
docked pose of 14b in interaction with tubulin is shown 
in figure 9B. There existed a hydrogen bond interaction 
between the oxygen group of its sulfonamide moiety 
with residue Cys241. The methyl attached to the 
nitrogen of sulfonamide is involved in an interaction 
with residue Cys241. 

 
Figure 8. A) The structure of 7b surrounded by the key residues in the active site of HSP27. B) Molecular docking simulation 
studies of the interaction between 7b and tubulin. 

 
Figure 9. A) The structure of 14b surrounded by the key residues in the active site of HSP27. B) Molecular docking simulation 
studies of the interaction between 14b and tubulin. 
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The hydroxyl group on the quinoline ring interacts 
via hydrogen bonding with Ser178. The methoxy group 
on the benzyloxy group is involved in hydrogen 
bonding with Asn258. 

The results obtained from this docking study indicate 
that the important amino acids inside the active site 
cavity that are in charge of essential interactions with 
HSP27 are Arg140, Thr139, Phe138, Cys137, Arg136, 
Phe104, His103, Val101, and Asp100. And the most 
important amino acids inside the active site cavity being 
responsible for essential interactions with tubulin are 
Asn258, Val238, Cys241, Asn350, Leu255, Met259, 
Val315, Thr353, Arg221, Thr179 and Ser178.  

One of the great importance steps in a molecular 
docking studies should be exploring the validity of the 
process. The application of relative operating 

characteristic curve (ROC) as a helpful metric tool to 
weigh the validity of docking procedures was first 
reported by Triballeau et al. in computational medicinal 
chemistry [44]. Nowadays, it was widely used as a 
validating procedure [45]. First of all, about 71 Hsp27 
inhibitors and 65 tubulin inhibitors were retrieved from 
ChEMBL database as SMILES format [46-48]. The 
structures based on their experimental activities 
categorized into two subsets of ligands (active) and 
decoys (inactive). 19 ligands and 52 decoys for Hsp27 
and 21 ligands and 44 decoys for tubulin were 
generated. Subsequently, through a shell script using 
openbabel 2.3.2, the primary 3D generation of the 
structures as the mol2 format was provided [49]. For all 
structures, the ionization states at PH=7 were also 
calculated. Using batch scripting in windows operating 

 

 
Figure 10. A) ROC and EF diagrams for docking with HSP27. B) ROC and EF diagrams for docking with tubulin. ROC value 
is the area under the curve (AUC) for the plot of the true positive rate (TPR or sensitivity) against the false positive rate (FPR or 
1- specificity) at various threshold settings. 
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system, the shell script was obtained. A valid docking 
should be able to discriminate between inactive decoys 
and active ligands. ROC value is the area under the 
curve (AUC) for the plot of the true positive rate (TPR 
or sensitivity) against the false positive rate (FPR or 1- 
specificity) at various threshold settings. The ROC 
curve is thus the sensitivity as a function of 1- 
specificity. The AUC for ROC is calculated by 
trapezoidal integration method as implemented in our in 
house ROC application [45]. The more ROCAUC value 
means that the docking protocol is more able to 
discriminate between ligands and decoys. As it was 
shown in Figure 10, the AUC of 0.782 for Hsp27 and 
0.809 for tubulin shows that our applied docking 
protocol was a validated protocol. 

Another tool which was used to evaluate the 
efficiency and validity of docking protocol was 
Enrichment Factor (EFmax). Its calculations were based 
on the Li et al. work [50]. EFmax factor in comparison to 
ROC curves is highly dependent to the number of 
actives in a data set [44]. It means that early enrichment 
can be easily obtained if the number of active ligands is 
increasing in a dataset. Hence, the ROC should be 
considered most importantly in the validation of 
docking methods. 

 
Conclusion 

Here, with the aim of comparative QSAR analysis 
such as MLR, GA-PLS, FA-MLR and PCRA, 
quantitative relationships between molecular structure 
and anti-proliferative activity against SKBR-3 breast 
cancer cell line for a series of methanesulfonamide 
derivatives as dual HSP27 and tubulin inhibitors were 
acquired. Using different criteria such as cross-
validation, validation through Y-randomization and root 
mean square error of cross-validation (RMSECV), the 
reliability, accuracy, and predictability of the proposed 
models were assessed. The role of different descriptors 
such as charge, geometrical, topological, functional, 2D 
autocorrelations, quantum and chemicals on anti-
proliferative activity was obtained. A comparison 
between the different statistical methods employed 
indicated that GA-PLS represented superior results. 
According to the developed QSAR model, in silico 
screening was applied and new compounds such as 7b, 
8b, 12b and 20-24b with potential anti-proliferative 
activity were designed and suggested for synthesis. 
Molecular docking simulations were also performed on 
these compounds to elucidate their interactions and to 
gain some insight into their molecular binding site and 
binding mode with HSP27 and tubulin as their targets. 
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