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Abstract 

The pillared-layer metal-organic framework of Ni2(BTEC)(bipy)3.3DMF.2H2O  
(BTEC = 1,2,4,5-benzenetetracarboxylate; bipy = 4,4́-bipydine; DMF =N,Ń-
dimethylformamide) was prepared, characterized and used as a precursor for 
preparation of NiO nanoparticles. The morphology and structure of NiO nanoparticles 
were characterized by XRD, SEM, FT-IR and EDX techniques.  It was found that the 
synthesized   MOF and NiO nanoparticles catalyze the aromatization of 4-substituted 
Hantzsch 1,4-dihydropyridines (R= Ph, Me, H) with 100% conversion and 100% 
selectivity toward the desired products. 
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Introduction 
1,4-dihydropyridines (1,4-DHPs) are class of N-

heterocyclic compounds have been gained great interest 
as pharmaceuticals in the field of medical chemistry [1].  
These compounds are analogs of NADH coenzymes and 
widely used as calcium channel blockers to treat 
cardiovascular diseases [2]. The metabolic route of 
these drugs involves their oxidation to the 
corresponding pyridine derivatives by the action of 
cytochrome P-450 in the liver [3]. Additionally, the 
oxidation of Hantzsch 1,4-dihydropyridines provide an 
access to pyridine derivatives which are important as 
class of bioactive compounds and organic chemistry 
intermediates [4]. Pyridines display a considerable 
biological and pharmacological properties such as 
antitumor [5], Antiplasmodial [6], anti-inflammatory 

[7], anti-proliferative [8] and antimicrobial [9]. 
Therefore, much attention has been devoted to 
aromatization of 1,4-dihyropiridines. 

Numerous reagents and procedures have been 
developed for these purposes such as KMnO4 [10], SeO2 
[11], KBrO3/SnCl4_5H2O [12], H2O2/MoO3 [13],  
H2O2/Co(OAc)2 [14], Co-naphthenate/O2 [15], 
nicotinium dichromate [16], H2O2/Si-Zr-Mo [17], S-
nitrosoglutathione [18], NO [19], palladium catalyst 
[20] and peroxydisulfate–cobalt (II) [21], graphite 
oxide[22], radical cation salt [23], cupric bromide [24], 
acetic acid [25], human hemoglobin [26], iodobenzene 
diacetate [27], trinitratocerium (IV) bromate [28], 
molecular iodine [29],  

Metal-organic frameworks (MOFs)  have potential 
applications in gas separation and storage, sensors, drug 
delivery [30-31] and catalysis for a variety of organic 
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spherical nanoparticles with average diameter of 80 nm. 
Investigation of catalytic activity revealed that NiO 
nanoparticles are more active than the prepared NiMOF 
as catalyst for  aromatization of Hantzsch 1,4-
dihydropyridines toward the corresponding products 
with 100% conversion and 100% selectivity.  
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