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Abstract 

The hybrid density functional theory (B3LYP) and ab initio molecular orbital (HF) 
based methods and Natural Bond Orbital (NBO) interpretation were used to analyze the 
conformational behaviors of 2,5,5-trimethyl-1,3,2-dioxaphosphinane 2-selenide 
(compound 1), 2,5,5-trimethyl-1,3,2-dithiaphosphinane 2-selenide (compound 2) and 
2,5,5-trimethyl-1,3,2-diselena phosphinane 2-selenide (compound 3). The results 
explained that the axial conformations had a preference of compounds 1-3. The relative 
energies ∆E0 and Gibbs free energy difference values (ΔGeq-ax) between the ax and eq-
conformations were calculated and showed the decrease from compound 1 to 3. Stereo 
electronic effect (SE) for 1 to 3 has been calculated by the NBO analysis. Therefore, in 
this study, other factors such as stereo electronic effects, electrostatic and steric 
interactions of compounds 1 to 3 conformational behavior have been evaluated. One 
examined whether the stereo electronic effect is the only factor affecting the 
conformational behavior or not? The electronic properties such as the HOMO and 
LUMO energies were also determined to investigate the reactive sites of the 
compounds. Structural-relative activities of compounds are also evaluated. 
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Introduction 
Organophosphorus compounds have been widely 

used for agriculture for crop protection and pest control, 
over one hundred of them have been marketed for these 
purposes [1]. These compounds possess enzyme 
inhibition properties and as a result they can provide 
antibacterial and anticancer drugs [2-5]. Several studies 
of  the conformation and structure of 1, 3, 2-
dioxaphosphorinanes have been reported. These 
researches contain conformational analysis of 1,3,2-

dioxaphosphorinane derivatives by 1H, 13C and 31P 
NMR, X-ray, IR and also solid-state NMR studies [6], 
crystal and molecular structure determination of cis- and 
trans-2-morpholino-2-thioxo-4-methyl-1,3,2-dioxapho-
sphorinane and the 2-oxo analogue [7]. The isomer of 2-
seleno-1,3,2-dioxaphosphorinane was virtually one 
chair conformer with equatorial 4-methyl and benzyl 
groups. A considerable population of the conformer 
with axial 4-methyl and seleno groups was indicated for 
this compound by NMR studies (in CDCl3) [8]. 

The stabilization energies (SEs) related to electronic 
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acceptor orbitals and S is the orbital overlap. The SE 
associated i→j delocalization is explicitly estimated by 
following Eq. 1:  

22

*

*
=- ijFF

SE n n
Eσ σ

σ σ

σ σ< >
= −

∈ − ∈ Δ
                     (Eq.1)  

Where Ɛσ and Ɛσ* are the energies of σ and σ* NBOs, 
<σ/F/σ*> or Fij is the Fock matrix element between the i 

Table 1. Ctd 
 Endo-Anomeric 
 (n1X→σ*P-Se)×2 (n2X→σ*P-Se)×2 (n2X→σ*P-C)×2 (σX-C6→ σ*P-C)×2 (σX-C6→ σ*P-Se)×2
 

  
  

1-eq  

 

 

    
SE 0.94 1.34 13.08 0.00 2.50 

│Sij│ 0.0633 0.0482 0.1985 0.0057 0.1468 
Fij

 0.016 0.016 0.053 0.002 0.031 
2-eq  

 

 

 
SE 0.12 0.34 10.18 0.18 3.76 

│Sij│ 0.0163 0.0243 0.1744 0.0361 0.1252 
Fij

 0.006 0.007 0.041 0.007 0.032 
3-eq  

 

 

  

 

 
SE 0.50 0.36 8.54 0.16 3.94 

│Sij│ 0.0099 0.0267 0.1689 0.0400 0.1131 
Fij

 0.013 0.007 0.037 0.007 0.032 
 Exo-Anomeric 
 (n1Se→σ*P-X)×2 (n1Se→σ*P-C8)×2  (n1Se→σ*P-X)×2 (n1Se→σ*P-C8)×2 
 

  

 

 

1-ax  

 

 

 

1-eq 

 
SE 1.80 2.82 SE 2.04 2.42 

│Sij│ 0.0389 0.0464 │Sij│ 0.0674 0.0773 
Fij

 0.027 0.033 Fij 0.031 0.031 
2-ax  

 

 2-eq 

  
SE 2.82 3.20 SE 2.60 2.56 

│Sij│ 0.0608 0.0756 │Sij│ 0.0716 0.0759 
Fij

 0.032 0.036 Fij 0.031 0.032 
3-ax  

 

 3-eq 

  
SE 3.14 3.32 SE 2.86 2.64 

│Sij│ 0.0624 0.0767 │Sij│ 0.0701 0.0736 
Fij

 0.033 0.037 Fij 0.032 0.033 
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and j NBO orbitals and σ* is the population of the donor 
S orbital. Comprehensive explanations of the NBO 
calculations are accessible in the papers [9-17]. In this 
work, the conformational behavior of compounds 1-3 
using NBO and HOMO/LUMO analysis, the SE, 
electrostatic interactions, structural and chemical 
parameters and MEP surfaces by B3LYP in 6-311+G** 
level were studied. 

 

Materials and Methods 
All the structures were totally optimized by the 

Gaussian 03 package at HF and B3LYP methods (with 
6-311+G** basis set) [18]. After that, the B3LYP/6-
311+G** level for the ax and eq-conformer were used 
by the NBO5.G program through the PC-GAMESS 
interface for achieving the NBO analysis [19, 20]. The 
SEs associated with Endo-Anomeric (n1X→σ*P-Se, 
n2X→σ*P-Se, n2X→σ*P-C, σX-C6→ σ*P-C and σX-C6→ σ*P-

Se) and Exo-Anomeric (n1Se→σ*P-X and n1Se→σ*P-C8) 
electronic delocalization was computed using the NBO 
analysis (Table 1) [19]. The NBO analysis was used to 
study the electronical structures of the compounds 
models. The energies of hyper conjugative interactions, 
Sij and Fij matrix elements related to the orbital 
interactions, the hybridization and energies of donor and 
acceptor orbitals were estimated by using the NBO 5.0 

program [19, 14, 20].  
 

Results and Discussion 
Conformational Preferences 

The chair conformers of compounds 1-3 are more 
stable than their related twist-boat ones according to the 
HF and B3LYP methods with fully geometry 
optimization. The B3LYP/6-311+G**//B3LYP/6-
311+G** and HF/6-311+G**//HF/6-311+G** 
computed zero-point energies ZPE, total energies E0 and 
relative energies ΔE0 (in kcal.mol-1), for the maximum 
and minimum geometrical energeis of compounds 1-3 
are shown in (Table 2). The total energies (E0) of all ax-
conformers are lower than the corresponding eq-
conformers. Based on the results, the ax-conformers of 
compounds 1-3 have priority and the calculated 
(∆Eeq−ax) amounts are shown in (Table 2). Also, The 
value of the thermodynamic functions H, S, G and the 
ΔG, ΔS and ΔH parameters are shown in (Table 3). The 
calculated ΔS values are relatively small, so that the 
calculated ΔH and ΔG parameters are close to the ΔE0 
values. 

  According to the results of ΔGeq-ax values are shown 
in Table 3 the conformation stability of the axial relative 
to the equatorial counterpart change by changing the 
heteroatom in the ring. It means that ax-conformer 

 
Table 2. Calculated total energies (E0) (in hartree), zero-point energies (ZPE) and relative energies (∆E0) (in kcal 
mol-1), for the energy-minimum and energy maximum geometries of compounds 1-3. 

HF/6-311+G**//HF/6-311+G** B3LYP /6-311+G**// B3LYP /6-311+G**  
ΔE0

a E0 Eel ZPE ΔE0
a E0 Eel ZPE Conformer 

4.35 -3125.016178 -3125.205 0.202708 3.80 -3129.635141 -3129.8244 0.189279 1-eq 
0.00 -3125.023111 -3125.2130 0.203077 0.00 -3129.641198 -3129.8311 0.189867 1-ax 
1.91 -3770.312576 -3770.4962 0.196208 2.02 -3775.584691 -3775.7683 0.183607 2-eq 
0.00 -3770.315625 -3770.4994 0.196346 0.00 -3775.587917 -3775.7717 0.183828 2-ax 
0.36 -7774.840722 -7775.0219 0.193696 0.77 -7782.261767 -7782.4430 0.181233 3-eq 
0.00 -7774.841298 -7775.0228 0.193811 0.00 -7782.262987 -7782.4445 0.181507 3-ax 

a Relative to the ground state 
 

Table 3. Thermodynamic Properties [∆H, ∆G (in kcal mol-1) and ∆S (in cal mol-1K-1)] at 25ºC and 1 atm pressure for 
the axial and equatorial conformations of compounds 1-3. 

HF/6-311+G**//HF/6-311+G** B3LYP/6-311+G**//B3LYP/6-311+G** Conformer 
ΔGa 

 
ΔSa 

 
ΔHa

 
ΔGa 

 
ΔSa 

 
ΔHa (Hartree) 

4.43 0.62 4.61 4.02 0.83 4.27 1-eq 
0.00 0.00 0.00 0.00 0.00 0.00 1-ax 
2.08 0.07 2.10 2.19 -0.01 2.16 2-eq 
0.00 0.00 0.00 0.00 0.00 0.00 2-ax 
0.60 0.06 0.62 0.84 0.40 0.96 3-eq 
0.00 0.00 0.00 0.00 0.00 0.00 3-ax 

a Relative to the ground state 
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stability is declining from compounds 1 to 3. When 
oxygen is in the ring as a heteroatom, the ax-conformer 
shows better stability compared to compounds 2 and 3. 
The dipole moment of ax and eq-conformers of 
compounds 1-3 calculated by B3LYP/6-311+G** 
(Table 4). The results obtained from the values of the 
dipole moment show that  μax<μeq (Table 4), that the 
placement of P=Se in an equatorial form causes the 
dipole moment of ax-conformer reduce relative to eq 
one. Because P=Se is a polar group and its axial or 
equatorial orientation can affect on the amount of dipole 
moment  of compounds 1-3. Using Van′t Hoff ratio 
method, Shagidullin have showed that the enthalpy 
difference between the axial and equatorial conformers 
of compound 1 in the liquid phase is 0.2 kcal mol-1 in 
favor of the axial form. Also, these results showed that 
the polarity of the 1-ax conformer is less than the 1-eq 
conformer [21]. Therefore, the results collected in 
Tables 1 and 4 are consistent with the data reported by 
Shagidullin and co-workers. According the calculated 
values of μ, the Δμeq-ax values were calculated for 
compounds 1-3 (Table 4).  

According to the NBO analysis stabilization energy 
associated with electron transfer n2X→σ*

P-C in eq-
conformers and electron transfer n2X→σ*

P-Se in ax-
conformers have the highest energy values, because the 
lone pair (n2X) placement with P-C anti-bonding orbital 
in eq-conformers of compounds 1-3 is in the form of 
antiperiplanar (ap). Also, due to the difference in energy 

levels between donor bonding and acceptor anti-
bonding orbitals of these transfers we found that 
ΔEorb[σp-c - n2X] (in eq-conformer) and ΔEorb[σp-Se - n2X] 
(in ax-conformer) for compounds 1-3 have the lowest 
amount compared to other ΔEorb of the other 
transformations (Table 5).  

Two factors due to the high SE of these compounds, 
One of them is the orbital orientation which should be 
ap, the other one is the vicinity of donor-acceptor 
energy levels. Again, the orbital orientation (ap) for two 
transfers σX-C6→σ*

P-C8 and σX-C6→σ*
P-Se in eq- and ax-

conformers for compounds 1-3 could be studied. 
According to the results of the NBO, we found that 
these two electrons transfer that is due to the proper 
orientation between donor and acceptor orbitals, have a 
significant energy since donor and acceptor orbitals be 
as an ap form. The donor and acceptor orbitals in 
Synclinal arrangement (SC), does not have a significant 
energy any more (Figure 2). In a way that the values of 
electronic transfer energy (σX-C6→σ*

P-C8 and σX-C6→σ*
P-

Se) in ax-conformers of compounds 1 to 3 are not 
significant.  

Based on the results of the NBO, the ΔEorb increase 
for σX-C6→σ*

P-C in ax-conformers of compounds 1-3 and 
they are close together and are approximately the same 
as eq-conformers. In the other words, their resonance 
energy domain is in a range. The SE do not have a wide 
range of changes by changing the heteroatom in the ring 
in eq-conformers, but stabilization energy of electron 

Table 4. Calculated dipole moment of compounds 1-3 at B3LYP/6-311+G** level 
Compounds 1-ax 1-eq 2-ax 2-eq 3-ax 3-eq 
µ (Deby) 4.21 6.54 3.48 6.64 3.41 6.45 
∆µ(eq-ax) 2.33 3.16 3.04 

 
Table 5. The NBO calculated non-bonding and anti-bonding orbital energies, based on the calculated geometries using B3LYP/6-
311+G** level of theory, for the axial and equatorial conformations of the chair and boat forms of compounds 1-3. 

 1 2 3 
Energies (a.u.) eq ax eq ax eq ax 
n1X -0.57277 -0.59931 -0.66838 -0.67772 -0.74790 -0.75776 
n2X -0.34227 -0.33916 -0.26095 -0.25686 -0.24541 -0.24012 
n1Se -0.76318 -0.76746 -0.80185 -0.80671 -0.81036 -0.81448 
σX-C6 -0.84490 -0.83236 -0.60613 -0.60135 -0.55307 -0.54903 
σ*P-X 0.37446 0.15481 0.02301 0.01904 -0.00545 -0.01009 
σ*P-Se 0.11951 0.10904 0.08557 0.07850 0.08417 0.07928 
σ*P-C 0.17572 0.18547 0.14080 0.14825 0.13915 0.14452 
ΔEorbital (a.u.)       
∆E(σ*P-Se -n1X) 0.69228 0.70835 0.75395 0.75622 0.83207 0.83704 
∆E (σ*P-Se -n2X) 0.46178 0.4482 0.34652 0.33536 0.32958 0.3194 
∆E (σ*P-C8-n2X) 0.51799 0.52463 0.40175 0.40511 0.38456 0.38464 
∆E (σ*P-C8 -σX-C6) 1.02062 1.01783 0.74693 0.7496 0.69222 0.69355 
∆E (σ*P-Se -σX-C6) 0.96441 0.9414 0.6917 0.67985 0.63724 0.62831 
∆E (σ*P-X -n1Se) 1.13764 0.92227 0.82486 0.82575 0.80491 0.80439 
∆E (σ* P-C8 -n1Se) 0.9389 0.95293 0.94265 0.95496 0.94951 0.959 
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these parameters for compounds 1-3 have been listed in 
Table and global reactivity described as [21-25] (Table 
8). 

Chemical potential (μ) = - χ, Electronegativity (χ) = -
1/2 (EL+EH), Global hardness (η) = 1/2 (EL- EH), Global 
softness (S) = 1/(2η), Global electrophilicity (ω) = 
μ2/(2η) (Eq. 2) 

For more chemical hardness, the small 
HOMO/LUMO gap means a soft molecule and a large 
HOMO/LUMO gap means a hard molecule. The 
molecular stability can be related to the hardness, which 
means that the molecular with the least the 
HOMO/LUMO gap is more reactive the utility of the 
global electrophilicity index has been recently 
illustrated in perception of the toxicity of several 
pollutants in terms of their reactivity and site selectivity 
[26-27]. 

According to the results of HOMO/LUMO energy 
gap in compounds 1-3, it seems that HOMO/LUMO gap 
amounts of ax-conformers are more than eq-conformers 
(Figure 4). 

The results show that eq-conformers are more 
reactive than ax-conformers, in other words, ax-
conformers are more stable than eq-conformers. 
Moreover, by changing the heteroatom in the ring the 
amount of ΔEL-H is declining from compound 1 to 3 in 
ax and eq-conformers. This reduction in ΔEL-H  amounts 
shows that due to the change of heteroatom (O→S→Se) 
in the ring, increase the reactivity of compounds 1-3 and 
the stability of ax-conformers are declining from 
compound 1 to 3. These facts are in agreement with  the 
conformational behavior of compounds 1-3, which has 
been studied in the conformational priority section (the 
ΔGeq-ax values). 
 
Conclusion 

In this study, investigated the stability of 
corresponding to the equatorial and axial conformers of 
2,5,5-trimethyl-1,3,2-dioxaphosphinane 2-selenide 
(compound 1), 2,5,5-trimethyl-1,3,2-dithiaphosphinane 
2-selenide (compound 2) and 2,5,5-trimethyl-1,3,2-
diselena phosphinane 2-selenide (compound 3) were 
investigated by using the quantum mechanical methods. 
These compounds have been analyzed by means of DFT 
and HF techniques and natural bond orbital (NBO) 
interpretation. The axial chair conformation of 
compounds 1-3 are more stable than their corresponding 
equatorial conformations. Thermodynamic properties 
show that steric effects have any role in justification of 
the conformational behaviors of compounds 1-3 and 
stereoelectronic effects are dominant on steric effects in 
justification of conformational behaviors. Therefore, the 
greater stability of the concerned conformation was 

attributed to the stereo electronic effect. In other words, 
conformational preference is better explained in terms 
of stereo electronic effect rather than electrostatic and 
steric effects. The HOMO/LUMO energy gap and other 
related molecular properties are also calculated. 
According to the results of HOMO/LUMO energy gap 
in compounds 1-3 it seems that HOMO/LUMO gap 
amounts of ax-conformers are more than eq-conformers. 
Moreover, by changing the heteroatom in the ring the 
amount of ΔEL-H is declining from compound 1 to 3 in 
ax and eq-conformers. This reduction in ΔEL-H  amounts 
show that due to the change of heteroatom (O→S→Se) 
in the ring, increasing the reactivity of compounds 1-3 
and the stability of ax-conformers are declining from 
compound 1 to 3. So, using above mentioned 
parameters, This work represents the conformational 
and chemical behaviors of mentioned compounds. 
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