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Abstract 
Penalized spline criteria involve the function of goodness of fit and penalty, which 

in the penalty function contains smoothing parameters. It serves to control the 
smoothness of the curve that works simultaneously with point knots and spline 
degree. The regression function with two predictors in the non-parametric model will 
have two different non-parametric regression functions. Therefore, we propose the 
use of two smoothing parameters in the bi-variate predictor non-parametric 
regression model. We demonstrated its ability through longitudinal data simulation 
studies with a comparison of one smoothing parameter. It was done on several 
numbers of subjects with repeated measurements. The generalized cross validation 
value which is a measure of the model's ability is poured through the box plot. The 
results show that the use of two smoothing parameters is more optimal than one 
smoothing parameter. It was seen through a smaller generalized cross validation 
value on the use of two smoothing parameters. Application of blood sugar level data 
for patients with two smoothing parameters produced a penalized spline bi-variate 
predictor regression model with several segments of change patterns. There are five 
patterns at the time of treatment and blood pressure with the number of smoothing 
parameters is two, namely 0.39 and 0.73. 
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Introduction 
The penalized spline estimator as one of the 

estimators in non-parametric regression model has 
advantages in visual and estimation. The ability of the 

estimator is caused by smoothing parameters and knot 
points simultaneously in controlling the smoothness of 
the curve [1]. The ability of the penalized spline to 
estimate the regression curve has been seen through the 
asymptotic properties of the estimator in the cross 
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section data [2, 3]. In addition, researchers have also 
developed robust penalized spline to overcome outliers 
in data [4, 5]. In further development, Islamiyati et al. 
[6, 7] have developed penalized spline estimators in 
longitudinal data. For the problem of smoothing 
parameters in the penalty function, it has become a 
separate topic of research in the non-parametric 
regression model. The penalty function in spline 
regression can refer to the ridge regression concept for 
time series data [8,9]. Heckman and Ramsay [10] have 
worked on the penalty function of a linear differential 
operator with possibly nonconstant coefficients. Yao 
and Lee [11] have used smoothing parameters derived 
from the variance loss function. Aydin and Yilmaz [12] 
used a modified spline estimator for non-parametric 
regression models with right-censored data. Chamidah 
and Lestari [13], Chamidah and Rifada [14], Lestari et 
al. [15] and Chamidah et al. [16] have selected 
smoothing parameters through the minimum 
Generalized Cross Validation (GCV) method. However, 
the study only used one smoothing parameter with one 
predictor in the model. 

There are several longitudinal data studies that have 
used multi-predictor. Lin and Zhang [17] used double 
penalized quasi likelihood and Ni et al. [18] used double 
penalized in semiparametric regression. Double 
penalized is intended as the use of two penalties to 
select significant variables in the model. However, the 
basis of its use in the study is not based on the predictor 
function that contains the knots. Lai and Wang [19] 
examined bi-variate penalized spline but they only used 
one smoothing parameter. Therefore, this article 
proposes the use of two smoothing parameters based on 
two predictors in the regression model. Each predictor 
function contains a truncated element that considers the 
optimal knot point. We will show the ability of two 
smoothing parameters through simulation studies by 
comparing GCV values from one smoothing parameter. 

Next, we describe the material and methods of the bi-
variate predictor non-parametric regression model of 
longitudinal data. After that, we describe the results and 
discussion about the estimation of bi-variate predictor 
regression model with the penalized spline estimator. In 
addition, we show the ability of two smoothing 
parameters in the penalized spline bi-variate predictor 
through simulation studies on polynomial function and 
sinus trigonometry. We simulate different predictor 
functions in longitudinal data and compare GCV values 
between one and two smoothing parameters. 
Furthermore, the model was applied to the blood sugar 
level data of diabetic patients based on the time of 
treatment and the blood pressure. 

 

Material and Methods 
Given a pair of observation data ( )1 2, ,ij ij ijt t y , with 

1, 2, ,i n=  , 1, 2, ij m=  , for bi-variate predictor 
non-parametric regression models in longitudinal data is 
as follows:  

( )1 2, , 1, 2, , , 1, 2, ,ij ij ij ij iy f t t i n j mε= + = =   (1) 

where yij is the response to ith subject, jth 
measurement, tij1 is 1st predictor to ith subject, jth 
measurement, tij2 is 2nd predictor to ith subject, jth 
measurement and ijε  is error to ith subject, jth 

measurement.  
The bi-variate predictor non-parametric regression 

function in longitudinal data in equation (1) is expressed 
as the sum of the functions of each predictor, namely: 

( ) ( ) ( )1 2 1 2,ij ij ij ijf t t f t f t= +   (2) 

Based on equation (2), the model in equation (1) 
becomes: 

( ) ( )1 2ij ij ij ijy f t f t ε= + +  (3) 

The function of ( )1ijf t  and ( )2ijf t  in equation (3) 

is a spline function where the shape is unknown. Its 
functions are as follows: 

( ) ( ) ( )

( ) ( ) ( )

1 1
11

1 1 1 1
1 1

2 2
22

2 2 2 2
2 2

1 1 ( )1 1
0 1

2 2 ( )2 2
0 1

q d qu

ij u ij q v ij v
u v

q d qu

ij u ij q v ij v
u v

f t t t K

f t t t K

β β

β β

+ +
= =

+ +
= =


= + − 



= + − 

∑ ∑

∑ ∑

 (4) 

 
The spline function in equation (4) can be formed 

into ( )1 1 1ijf t = X β  and ( )2 2 2ijf t = X β . Matrix 1X  is 

the matrix X in the first predictor containing 1ijt  and 

knots point, 

( ) ( )( )111

11 1 1 1 11 1 1

qqq
dK K

+ +
= − −X 1 t t t t  . 

Vector 1β  is spline regression coefficient for 1st 

predictor. Matrix 2X  is the matrix X in the second 
predictor, 

( ) ( )( )222

22 2 2 2 12 2 2

qqq
dK K

+ +
= − −X 1 t t t t  . 

Vector 2β is spline regression coefficient for 2nd 

predictor. As a result the spline function ( )1 2,ij ijf t t  in 

equation (2) can be expressed as a vector as follows: 
( )1 2, =f t t Xβ           

 (5) 

where ( )1 2=X X X  and ( )1 2
T=β β β . 
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Based on equation (5), we can state the bi-variate 
predictor non-parametric regression model in 
longitudinal data in equation (1) in the form of a matrix, 
namely: 

y = Xβ + ε                (6) 
 

Results and Discussion 
Penalized Spline Estimator with Two Smoothing 
Parameters 

We estimate equation (6) using the penalized least 
squares (PLS) estimator. The PLS estimator combines 
the function of goodness of fit and the penalty function 
which we give a symbol with P, namely:  

( ) ( )
1 2

2 2

1 2

2 2* *
1 1 1 2 2 2P

b b
c cT

ij ij ij ij
a a

g t dt g t dtλ λ   = + +   ∫ ∫ε ε  (7) 

 
Equation (7) shows the estimation criteria of the 

penalized spline which contains two refining 

parameters. The component 
Tε ε  is a goodness of fit 

function of a bi-variate predictor non-parametric 
regression model in longitudinal data. That is the sum of 
quadratic errors obtained from equation (6) and it can be 
stated as follows. 

2T T T T T T= − +ε ε y y β X y β X Xβ . 

Furthermore, the component 
( )

1

2

1

2*
1 1 1

b
c

ij ij
a

g t dtλ   ∫
 

is a penalty function for the 1st predictor and 

( )
2

2

2

2*
2 2 2

b
c

ij ij
a

g t dtλ   ∫
 for the 2nd predictor. Both are 

expressed as a penalty function in the PLS criteria in the 
bi-variate predictor  non-parametric regression model, 

as shown in Theorem 1.  
 
Theorem 1. 
If the penalty function for the 1st and 2nd predictors 

are stated by ( )
1

1

1

2( )*
1 1 1L

b
c

ij ij
a

g t dtλ  =  ∫
 

and 

( )
2

2

2

2( )*
2 2 2M

b
c

ij ij
a

g t dtλ  =  ∫ , then the penalty function in 

the penalized spline estimator in the bivariate predictors 
non-parametric regression model for longitudinal data 
are as follows: 

( ) ( )
1 2

1 2

1 2

2 2( ) ( )* *
1 1 1 2 2 2

b b
c c T

ij ij ij ij
a a

g t dt g t dtλ λ   + =   ∫ ∫ λβ D β
  

(8) 

 

where ( ) * *
1 2 1 1 1 2 2 2, , ,C Cλ λ λ λ λ λ= = =λ , 1λ  

and 2λ  are smoothing parameters for 1st and 2nd 

predictors, 1C  and 2C  are constant, 1a  and 2a  are 
lower boundary of the integrals of the functions ( )1ijg t  

and ( )1ijg t , 1b  and 1b  are the upper limits of the 

integrals of the functions  ( )1ijg t  and ( )1ijg t , functions 

( )1ijg t  and ( )1ijg t  are the first and second predictor 

functions contained in the Sobolev Space.  
 
Proof. 
The penalty function in the criteria for the penalized 

spline bivariate predictor contains smoothing parameter 
for each predictor function. It is known that the penalty 
function for the 1st predictor is stated by 

( )
1

1

1

2( )*
1 1 1L

b
c

ij ij
a

g t dtλ  =  ∫  and for the 2nd predictor 

stated by ( )
2

2

2

2( )*
2 2 2M

b
c

ij ij
a

g t dtλ  =  ∫ . If a penalty 

function from bi-variate predictor spline regression is 
symbolized by JF, then it can be stated the additive 
penalty of predictor function as follows: 

( ) ( )
1 2

1 2

1 2

2 2( ) ( )* *
1 1 1 2 2 2JF

b b
c c

ij ij ij ij
a a

g t dt g t dtλ λ   = +   ∫ ∫     (9) 

 

where *
1λ  and *

2λ  are smoothing parameter, ( )1ijg t  

and ( )2ijg t  is the element function of the Sobolev 

Space 2
hcW  which is formed from the spline function.  

The function of ( )1ijg t  in L is formed from the 

spline function as in equation (4) with the Dirac Delta 
function so we get: 
( ) ( ) ( ) ( ) 11 1

1 1 1 1 1

11

1 01 1 1 ( 1)1 1 11 ( )1 1 1

qq q

ij q ij q ij q d ij dg t t t K t Kβ β β β
++

+ ++ +
= + + + − + + − 

 (10) 
 

where truncated element of the function ( )1ijg t  is 

( ) ( ) 11

1

11

1 11 1 1, ,
qq

ij ij dt K t K
++

+ +
− − . 

Next, we get the function ( )2ijg t  in M is:  

( ) ( ) ( ) ( ) 22 2

2 2 2 2 2

11

2 02 2 2 ( 1)2 2 12 ( )2 2 2

qq q

ij q ij q ij q d ij dg t t t K t Kβ β β β
++

+ ++ +
= + + + − + + − 

(11) 
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where truncated element of the function ( )2ijg t  is 

( ) ( ) 22

2

11

2 12 2 2, ,
qq

ij ij dt K t K
++

+ +
− − . 

Next, we describe the functions in equations (10) and 
(11) at L and M so we get: 

( )

( )

1

1 1 1 1 1 1
1

2

2 2 2 2 2 2
2

2 2 2 2
1 ( )1 1 ( 1)1 ( 2)1 ( )1 1 1 1 1

1

2 2 2 2
2 ( )2 2 ( 1)2 ( 2)2 ( )2 2 2 2 2

1

d
T

q v q q q d
v

d
T

q v q q q d
v

C C C

C C C

β β β β

β β β β

+ + + +
=

+ + + +
=

= + + + =

= + + + =

∑

∑

β D β

β D β




   

(12) 
 
Based on equation (12), the penalty function on the 

1st predictor was symbolized by L is expressed as 
*
1 1 1 1L TCλ= β D β  and the penalty function on the 2nd 

predictor was symbolized M is expressed as 
*
2 2 2 2 2M TCλ= β D β , consequently the JF in equation (9) 

becomes: 
* *
1 1 1 1 1 2 2 2 2 2JF T TC Cλ λ= +β D β β D β

                          
(13) 

 
If *

1 1 1Cλ λ= , *
2 2 2Cλ λ= , the lambda value as a 

scalar is multiplied by the matrix D as the diagonal 

matrix (0,1) and expressed as λD , then we can express 
equation (13) as follows: 

( ) ( )
1 2

1 2

1 2

2 2( ) ( )* *
1 1 1 2 2 2

b b
c c T

ij ij ij ij
a a

g t dt g t dtλ λ   + =   ∫ ∫ λβ D β          (14) 

where ( )1 2,T T T=β β β , 1

2

λ

λ

 
=  
  

λ

D 0
D

0 D
, and  

 
 

1

2

β
β =

β
.  

 
Parameter β  is the spline regression coefficient of 

bivariate predictor longitudinal data, 1β  is spline 
regression coefficient for 1st predictor and 2β  is spline 
regression coefficient for 2nd predictor. Parameter 

( )1 2,λ λ=λ  is smoothing parameter for 1st and 2nd 

predictor. Matrix λD  is a diagonal matrix (0, )λ  that 
contains D matrix for 1st and 2nd predictor. Matrix  

( )1 1 1 1 1 101 1 11 1 1 1 ( 1)1 1 ( 2)1 1 ( )1 1diag , , , , , , ,q q q q da a a a a aλ λ λ λ λ λ λ+ + +=D    is 

a diagonal matrix 1(0, )λ  for 1st predictor where 

101 11 1 0qa a a= = = =  and 

1 1 1 1( 1)1 ( 2)1 ( )1 1q q q da a a+ + += = = = . 

Matrix 
( )2 2 2 2 2 202 2 12 2 2 2 ( 1)2 2 ( 2)2 2 ( )2 2diag , , , , , , ,q q q q da a a a a aλ λ λ λ λ λ λ+ + +=D  

 is a diagonal matrix 2(0, )λ  for 2nd predictor where 

202 12 2 0qa a a= = = =  and 

2 2 2 2( 1)2 ( 2)2 ( )2 1q q q da a a+ + += = = = .   

 
The PLS criteria in equation (7) can be written in the 

form of vectors and matrices based on the penalty 
function in Theorem 1 as follows:  

P 2T T T T T T= − + + λy y β X y β X Xβ β D β  
 
Next, we get the estimation results from β  is : 

( ) 1ˆ T T−
= + λβ X X D X y

                                             
(15) 

Based on equation (15), the estimation of bi-variate 
predictors non-parametric regression function in 
longitudinal data based on the penalized spline 
estimator is as follows: 

( ) ( ) 1

1 2
ˆ ˆ, T T−

= = + λf t t Xβ X X X D X y
                     

(16)
  

where ( ) ( ) 11 1ˆ ˆT T−
− −= + λA λ X X Ω X D X Ω  is 

smoothing parameter matrix. Therefore, we can state the 
function estimation at (16) as an estimator of smoothing 

function is 
ˆ
λf , namely:  

( )ˆ =λf A λ y . (17)  

 
Furthermore, the value of GCV of bi-variate 

predictor non-parametric regression model is based on 
the penalized spline estimator is as follows:  

( )( ) ( )( )
( )( )( )

1 2 1 2

1
2

1

ˆ ˆ, ,
GCV( )

T

n

i
i

m tr
−

=

− −
=

  − 
 
∑

y f t t y f t t
λ

I A λ

               (18) 

where 
( )1 211 12 1 21 22 2 1 2, , , , , , , , , , , ,

n

T

m m n n nmy y y y y y y y y=y     . 

 
Simulation Study 

In this section, we simulate longitudinal data in the 
form of experimental functions in the 1st and 2nd 
predictors are quadratic and sinus trigonometry. The 
smoothing parameters used in this simulation are two 
parameters that correspond to different predictor 
functions at each predictor. The regression model is: 

( ) ( )1 2ij ij ij ijy f t f t ε= + +  , 

where functions in each predictor are: 

( )
( ) ( )

2
1 1 1

2 2

2.5 4 0.2

3sin 2

ij ij ij

ij ij

f t t t

f t tπ

= − + −

=
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We simulate data of observations from N = 80 to 

1511 with the size of subjects, i.e. n = 5, 10, 20, 50 and 
100, each subject measured from 10-20 times the 
measurement. We selected two smoothing parameters 
on the 1st and 2nd predictors based on minimum GCV 
values. Next, we show GCV values from the use of two 
and one smoothing parameter. We show the results in 
the box plots for various types of observations. Figure 1 
shows the GCV value of using two smoothing 
parameters giving smaller values compared to one 
smoothing parameter. This means that the bi-variate 
predictor non-parametric regression model should 
involve two smoothing parameters. In a small subject, 
we see a significant difference in GCV values.  

Next, we perform another simulation with the same 
predictor function form t1 and t2. The function that we 
created is a polynomial function like the following: 

( )
( )

2
1 1 1

2
2 2 2

2.50.7 1.5

2.5 3 0.2 

ij ij ij

ij ij ij

f t t t

f t t t= +

+

−

− −=
 

The number of subjects that were tried was the same 
as the first simulation, n = 5, 10, 20, 50, 75, and 100, 
where each subject was measured repeatedly starting 3-
10 times. We do the iteration process up to 50 times for 
each number of subjects by recording the GCV value 
for each iteration. The GCV values shown from various 
simulations of the number of subjects are shown 
through the box plot in Figure 2. The purpose of this 
simulation is to show the ability to use two smoothing 
parameters better than one smoothing parameter in the 
bi-variate predictor case as seen in the previous 
simulation. Figure 2 shows the same conditions as the 
first simulation. We can see in the plot box, the GCV 
value for two smoothing parameters is smaller than the 
use of one smoothing parameter. This means that the 

 

 
 

Figure 1. Box plot of GCV values of two and one smoothing parameter for first simulation, n = 5, N = 80; n = 10, N = 153; n = 20, 
N = 289; n = 50, N = 735; 

n = 75, N = 1133; n = 100, N = 1511. 
 



Vol. 31  No. 2  Spring 2020 A. Islamiyati, et al. J. Sci. I. R. Iran 

180 

use of two smoothing parameters in the bivariate 
predictor case is better than one parameter. Next, we 
can see in the box plot about the range of GCV values 
for each number of subjects. For n = 5, 10, 20, 50, 75, 
100 each has a range of GCV values starting from 0-
250, 0-80, 0-20, 0-4.9, 0-4.5, 0-3.0. This shows that as 
the number of subjects increases, the difference in GCV 

values for two and one smoothing parameter gets 
smaller. However, the use of two smoothing parameters 
still provides a minimum GCV value. 

For example, we show the estimation of the 
regression curve in a plot of the smoothing parameter. 
That gives a minimum value for each predictor in 
Figure 3. This shows each predictor the function has a 

 

 
 
Figure 2. Box plot of GCV values of two and one smoothing parameter for second simulation, n = 5; n = 10; n = 20; n = 50; n = 75; n = 100. 
 

 
 

Figure 3. The plot of GCV with smoothing parameters for the 1st and 2nd predictors. 
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different smoothing parameter value, which is 0.05 and 
0.02 for the 1st and the 2nd predictor function. This 
means that the non-parametric regression models of two 
predictors get better estimation results when using two 
smoothing parameters. Next, the estimation of the 
regression curve is shown in Figure 4 with different 
smoothing parameters for each predictor function, 0.05 
for the first predictor and 0.02 for the second predictor. 
The bi-variate predictor non-parametric regression 
model obtained has GCV = 3.567 with R2 = 90.54% .

 

 

Application of model for fasting blood sugar level data 
based on time of treatment and blood pressure of 
diabetic patients 

In this article, we apply the model to data from 
diabetic patients. The factor we measured was fasting 
blood sugar levels based of treatment time and blood 
pressure. The blood sugar level of a diabetic patient is 
unpredictable, it can go up or down at a very fast time. 
Therefore, we model the pattern of data changes with 
bi-variate predictor non-parametric regression through 
the penalized spline estimator. Patients as subjects 

 
 

Figure 4. Estimation of bi-variate predictor non-parametric regression curves for the 1st and 2nd predictors. 
 

 
 

Figure 5. The plot of GCV with smoothing parameters for treatment time and blood pressure predictors for diabetes data. 
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numbered 54 people with a total of 374 data. The data 
plot of treatment time and blood pressure are in Figure 
5. Furthermore, the results of data analysis with 
quadratic penalized spline found the optimal smoothing 
parameters for treatment time were 0.39 and blood 
pressure 0.73 as in Figure 5. This provides a minimum 
GCV value of 5367,156 (5374,169 for one smoothing 
parameter). The penalized spline bi-variate predictor 
regression model for blood sugar levels that corresponds 
to Figure 6 is as follows: 

 
( ) ( )

( ) ( ) ( )
( ) ( ) ( )

2 22
1 1 1 1

2 2 22
1 1 2 2 2

2 2 2

2 2 2

ˆ 226.86 79.04 103.34 99.20 4.6 119.34 8.2

69.81 11.8 36.49 15.4 55.26 28.45 11.86 104

35.39 128 22.14 152 17.93 176

ij ij ij ij ij

ij ij ij ij ij

ij ij ij

y t t t t

t t t t t

t t t

+ +

+ + +

+ + +

= − − − − − − −

+ − − − + + + −

+ − − − − −

The results of the estimation of fasting blood sugar 
regression curves based on time of treatment in Figure 6 
show that there are five quadratic changes in the pattern 
of fasting blood sugar in diabetic patients. Of the five 
patterns, the fourth pattern must receive attention 
because it shows an increase in blood sugar, which is 
about 12-16 days of treatment (from the knot point 11.8-
15.4). Furthermore, in Figure 6 for blood pressure 
shows five patterns of change and the third pattern that 
must receive attention. We see an increase in blood 
sugar at blood pressure intervals around 128-152 mm 
Hg.  

For a comparison of this real data, the difference in 

GCV values with the use of one and two smoothing 
parameters, we analyzed 10 patients with an overall data 
amount of 73. Optimal smoothing parameters were 0.27 
and 0.66 with GCV values of 8102,887 (8120,424 for 
one smoothing parameter). Next, we analyzed 20 
patients with a total of 135 data taken at random. The 
GCV value of the penalized spline bi-variate predictor 
regression model for the use of two smoothing 
parameters is 6156,039 (6178,879 for one smoothing 
parameter). These results are consistent with the 
analysis of simulation data that the number of 
smoothing parameters in the penalized spline estimator 
for the bi-variate predictor longitudinal case is optimal 
uses two parameters. Furthermore, for diabetes data 
problems, we still need to study the case in larger data 
dimensions and consider other factors that are 
considered to affect blood sugar. 

 
Conclusion 

The penalized spline estimator in the bi-variate 
predictor non-parametric regression model involves a 
smoothing parameter in the estimation. The choice of 
smoothing parameters is very important in the non-
parametric regression model through the penalized 
spline estimator because it is related to the smoothness 
of the regression curve. In this article, we have 
simulated the use of two and one smoothing parameter. 

 

 
Figure 6. Estimation of bi-variate predictor non-parametric regression curves for treatment time and blood pressure predictors for 
diabetes data. 
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The selection of two smoothing parameters is based on 
different predictor functions from each other. The 
results of this article have shown the small GCV values 
found on two smoothing parameters. Therefore, we 
suggest the use of two smoothing parameters in the bi-
variate model in the penalized spline estimator to obtain 
more accurate estimation results.  

Another interesting result of this study is the GCV 
value for small subjects, where the GCV value is very 
different from the two and one smoothing parameter. 
Next, we can see the results of the box plots on the 
number of subjects 50, 75 and 100, where the GCV 
values of the two smoothing parameters remain smaller 
than one parameter. However, the difference in GCV 
values is not too large compared to the use of small 
subjects. Therefore, we can also advise to develop the 
study by adding larger subjects and variables. Our hope 
is that computationally expensive in a penalized spline 
can be minimized through the study of parameter 
smoothing. For the application of fasting blood sugar 
data from diabetic patients shows two optimal 
smoothing parameters on the time treatment factor and 
blood pressure. For diabetes research, we still need 
further research to get the best recommendations about 
the care of diabetic patients with an emphasis on 
patterns of blood sugar levels. The many factors 
involved medically cause the data to be extended to a 
larger dimension. 
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