
Journal of Sciences, Islamic Republic of Iran 31(3): 277 - 285 (2020) http://jsciences.ut.ac.ir 
University of Tehran, ISSN 1016-1104 
 

277 

 
Plasma Wave Acceleration of Electron in Bubble Regime in 

Presence of a Planar Wiggler 
 

A. Kargarian* 
 

Plasma and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, 
Tehran 14399‐51113, Islamic republic of Iran 

 
Received: 2 March 2020    / Revised: 23 May 2020    / Accepted: 24 June 2020   

 
Abstract 

The plasma wave acceleration of electron in the bubble regime is investigated in a 
new configuration containing a planar wiggler. The space-charge field of the laser-
created ion channel can focuse and stabilize the electron trajectory to guide it toward the 
acceleration region. The high-gradient plasma wave field can resonantly accelerate the 
trapped electron to higher energies in the presence of a planar wiggler compensating the 
electron dephasing. The results show that in the lower plasma wave amplitudes the 
planar wiggler plays a more significant role on the electron energy enhancement. The 
increment of the electron energy in this configuration is validated using a three-
dimension single-particle code. The energy gain of electron dependency on the planar 
wiggler, ion channel field, plasma wave angle and amplitude as well as the initial 
energy of electron has been investigated. The results of paper will be of importance in 
the optimization of electron energy and improving the quality of the accelerated 
electrons in the plasma wakefield accelerators. 
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Introduction 
The high-amplitude plasma wakefields are known as 

the new potential sources for the accelerating the 
charged particles. There are two main schemes for the 
acceleration of particles by plasma wakefield: particle 
beam-driven wakefield acceleration (PWFA) and laser-
driven wakefield acceleration (LWFA). In PWFA, the 
plasma wave is driven by the high energetic bunchs of 
particles, while, in LWFA, the driver is an intense laser 
pulse. The generated plasma wave can trap the 
electrons, either from the background of plasma or 
injected from the outside, and accelerates them to high 

energy levels. The electron acceleration by plasma wave 
in the bubble regime [1-3], where the axial field in the 
moving bubble is due to the excited plasma wave and 
the radial field is basically due to the ion space-charge, 
is one of the most interesting areas of research in the 
recent years. In LWFA, a high-intensity laser can drive 
a large-amplitude plasma wave (wakefield) due to the 
ponderomotive force. If 2 1a << , where a  is the 
normalized amplitude of the laser and has relation with 

the intensity by 
2

18 2 2
21.37 10 /

L

aI W cm mμ
λ

= × , the 

excited wakefield is weakly driven, and it is treated as 



Vol. 31  No. 3  Summer 2020 A. Kargarian. J. Sci. I. R. Iran 

278 

the small perturbation of plasma with a quiescent 
background, known as linear regime. In the linear 
regime, the electron density in the generated wakefield 
is just weakly perturbed and it may be written as 

0en n nδ= + , where 0n nδ << [4-5]. However, this 

cannot be more true when 2 1a ≥ . In fact, if 2 1a ≥ , the 
transverse component of the ponderomotive force is 
extremely strong that drastically acts as a snowplow for 
sweeping the electron density, and creates an ion cavity 
named ion channel [6-7]. This regime has been known 
as the bubble (or blow-out) regime [8]. In this regime, 
the plasma wakefield can accelerate the electrons to 
high-level energies [9] while the created ion channel 
acts as an alternative guiding and focusing device which 
confines the electrons and can significantly influence on 
the dynamics of the electrons and causes the electrons to 
be further accelerated by the plasma wave [10-11]. 

In the few past decades, the electron acceleration 
mechanism by plasma wave has been investigated both 
theoretically and experimentally.The scheme in which 
the ponderomotive force of the laser field excites a 
plasma wave propagating with the velocity close to the 
light speed was proposed by Tajima and Dawson [12] in 
1979 for the first time. In 1994, Everett et al. [13] 
observed the electron energy enhancement by the 
plasma wave derived using two laser beams beated in a 
hydrogen plasma. In 1999, the Multi-MeV electrons in 
plasma using a femtosecond laser pulse were 
experimentally observed and verified by three-
dimension PIC simulation method [14]. In 2002, Shvets 
et al. [15] studied the plasma wave excitation using 
counter-propagating beams. Moreover, in 2003, Singh 
and Gupta [16] proposed a model based on the wake-
field electron acceleration in the presence of an 
azimuthally magnetic field illustrating the electron 
energy increment. Also, the acceleration of electrons by 
a laser pulse in presence of a magnetic wiggler in 
vacuum and plasma was investigated by Singh and 
Tripathi [17] in 2004.  In 2006, Faure et al. [18] 
investigated the acceleration of the injected electrons in 
plasma wave excited by the colliding laser pulses. Also, 
in 2009, Leemans et al. [19] experimentally observed 
the high-quality electron bunches in the presence of an 
ion channel. The more completed investigation on the 
laser-created ion channel was done by Arefiev et al. [20] 
in 2014. They indicated that the  radial  component  of  
the  ponderomotive  force  of  laser  expels  the  plasma  
electrons from the axial region resulting in creation an 
alternative guiding and focusing device to  confine  the  
electrons. In 2015, it was shown by Mehdian et al. [21] 
that the energy gain of electron in an ion channel 
increases by applying an oblique magnetic field. In 

addition, in 2016, Gupta et al. [22] proposed a model 
based on the electron acceleration by the plasma wave 
in an azimuthally magnetized ion channel that illustrates 
that the energy gain of electron increases in the 
magnetized ion channel. In 2017, Kaur and Gupta [23] 
studied the enhancement of the acceleration of electron 
using a laser pulse with the radial polarization in 
presence of an ion channel. Yadave et al. [24] also 
studied the increment of the electron acceleration by the 
plasma wave in the presence of an imposed magnetic 
field in absence of the ion channel field. Furthermore, in 
2018, Kargarian et al. [25] studied the laser-driven 
wakefield acceleration in an ion channel created in the 
hydrogen pair-ion plasma using PIC simulation. 

In this paper, we investigate the relativistic electron 
energy enhancement by a high-gradient plasma 
wakefield in the bubble regime in the precence of a 
planar wiggler. The radial force of the ion channel 
confines the electrons and injects them towards the 
acceleration region for gaining more energy. In the 
presence of a planar wiggler the large-amplitude plasma 
wave can resonantly accelerate the electrons to the high-
energy levels. The planar wiggler magnetic field also 
causes the electron to sustain in the resonance 
conditions for more time resulting in increasing the 
interaction time with the plasma wave. In other words, it 
reduces the electron dephasing which limits the energy 
gain of the electron. It is demonstrated that, in the 
presence of the wiggler, to transfer the more energy to 
the  electrons, the resonance condition can be written by 

2 2(1 ) / 2L ω ωλ β λ γ≈ + , where Lλ  is wavelength of the 
laser , ωλ  is wavelength of the wiggler, ωβ  is  
amplitude of the wiggler, and γ  is the Lorentz factor 
[26]. In this configuration, it is necessary the 
optimization of the planar wiggler amplitude for 
attaining an appropriate energy gain of electron because 
the detour of the resonance condition restricts the 
energy gain of the electron. We emphasize that the 
electron acceleration by the plasma wave can replace 
the mechanisms of the electron acceleration by laser 
pulse to overcome the crucial limitations related to the 
lasers such as laser diffraction and particle dephasing. 

The paper is organized as follows: In section 2, the 
electron dynamics using three-dimension Lorentz 
equations is analytically investigated. A three-
dimension single-particle simulation code containing 
the Ronge-Kutta numerical algorithm is used to validate 
our theoretical model. In section 3, the effects of the 
various parameters such as wiggler magnetic field 
amplitude, plasma wave’s amplitude and phase, the ion 
channel field, and the initial electron energy on the 
acceleration of relativistic electron has been 
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investigated. Finally, the summary and conclusion is 
given in section 4. 

 
The Relativistic Analysis 

Here, we investigate the acceleration of the 
relativistic electron affected by the plasma wave in a 
laser-created ion channel in the presence of a planar 
wiggler. In our configuration, the approach in which the 
plasma wave is excited and accelerates the electron is 
LWFA. In this approach, by passing a short-pulse high-
power laser (with amplitude 1a ≥  ) in a plasma, the 
laser axial ponderomotive force can bunch the electrons 
and generate a plasma wavkfield behind the laser pulse. 
Furthermore, in this mechanism, an ion channel can be 
created by pushing the electrons in radial direction via 
the action of the radial component of the 
ponderomotive force of the high-intensity laser (bubble 
regime) [27]. 

We consider a laser-created ion channel with a radial 
field affecting the dynamics of the electron, hence, the 
electrostatic force generated by the performed ion 
channel can be written as [28] 

2 2
0 2

0
[ (1 ) )] 2c

rE r r r
r

ϕ ϕ ϕ= ∇ = ∇ − = −0 0


                 
(1) 

where 0ϕ  is the ion channel potential amplitude and 

0r  is the channel radius. The generated plasma wave 
could have a nonlinear profile as [22-23, 29], 

2 2
02

2 2
0

2ˆ exp( )sin( )

exp( )cos( )

= − − +

+ − − +

E



p p
p

p p

xxA x r t kz
kr

zA x r t kz

ω θ

ω θ        

(2) 

where pA  is the plasma wave amplitude, pr  
is the 

wakefield radius and 0θ  is the initial wave phase. The 
acceleration of the electrons in this ion channel is 
investigated in presence of a planar wiggler as 

 
sin( )p p pk z xβ= Β

                                            
(3) 

 
where pβ  is the planer wiggler amplitude and pk  is 

the wavenumber of the planar wiggler. The value of the 
parameter, pk , has been optimized by the resonance 
condition which indicates a unique relation between the 
wavelength of the wiggler, the amplitude of the wiggler, 
the wavelength of laser, and the energy gain of the 
electron. Therefore, the energy gain of the electron is 
intensively limited due to the detour of the the 
resonance condition. 

In this configuration, the governing  equations for 
electron momentum and energy are given by 

 

 
( )d e Ecdt c

×= − + +p V BE
                                           

(4) 

2
0

( ).d e Ecdt m c
γ −= +E V

                                            
(5) 

 
where p=Β Β  and P vm= γ  with 

2 2 2 2 2) /x y zp p p m cγ =1+(( + + )
 

is the electron 
momentum. Substituting the electric field of the plasma 
wave, ion channel field, and the wiggler field from 
equations (1) - (3) in equations of momentum and 
energy and writing them in three components, we have 
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(9). 

 
 
We normalize these equations using the 

dimensionless physical quantities as follows:
 

0/→p pa eA m cω , 2
0 0 0/e m cϕ ϕ→ , / mc→p' p , 

k k /c ω→' , z kz→' , xx k→' , 2 2 2
2 pr k r→ , 

2 2 2
1 0r k r→ , t tω→' , 0/p pe mβ ωΩ → , /p pk kκ → . 

 
Thus, the equations (7)–(9) can be written as follows 
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Conclusion 
In summary, we studied the electron acceleration by 

a high-amplitude plasma wave in bubble regime with a 
new configuration containing a planar wiggler. The 
effects of ion channel space-charge field, the plasma 
wave, the planar wiggler and the electron initial kinetic 
energy on electron energy enhancement is numerically 
investigated using a three-dimension simulation code. 
The radial field of the ion channel significantly affects 
the energy gain of electron. In presence of the ion 
channel, the energy gain of electron is improved 
because the space-charge field stabilizes and 
concentrates the electron motion and causes the electron 
to maintain in the accelerating region. A combined 
influence of the ion channel electric field and the 
plasma wave field provides the electron energy 
enhancement. In this configuration, the can gain energy 
while confined in the the plasma wave accelerating 
phase. The results show that the energy gain of the 
electron increases for the smaller plasma wave initial 
phases. Furthermore, the energy gain of the electron 
increases by increasing the plasma wave amplitude 
because of the scattering reduction and also the 
electrons trapped in the high-amplitude plasma wave 
can experience a more strong longitudinal force. It is 
demonstrated that the electrons are more accelerated by 
the additional resonance which is provided by a planar 
wiggler that decreases the electron dephasing. In the 
presence of the wiggler the electron longitudinal 
momentum increases due to the force component 
appeared in the propagation direction of the plasma 
wave which can resonantly accelerate the electrons. As 
results show the planar wiggler have a significant role 
on the regime of the electron acceleration by low-
amplitude plasma waves. However, there is an optimum 
strength of the planar wiggler for attaining the 
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