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Abstract 
In this paper, we report a simple and convenient method for the synthesis of α-Fe2O3 

nanoparticles via hydrothermal process followed by thermal decomposition using the 
new iron precursor, which was obtained by mixing of benzoic acid (BA) and 
Fe(NO3)3∙3H2O in water as solvent. Two products with almost similar morphologies 
and sizes were obtained by changing the calcination temperature (500 and 600ºC) for 2 
h in the air atmosphere. They were named as Fe-500 and Fe-600, respectively, and 
characterized by Fourier transform infrared (FT-IR) and ultraviolet-visible (UV-Vis) 
spectroscopy, X-ray powder diffraction (XRD), Energy dispersive spectroscopy (EDS) 
and transmission electron microscopy (TEM). FT-IR, UV-Vis, XRD and EDS results 
confirm the formation of α-Fe2O3 phase. Also, TEM images confirm that the size of the 
products is less than 100 nm. 
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Introduction 
The preparation of iron(III) oxide nanoparticles, 

such as α-Fe2O3, have attracted considerable attention in 
recent years due to its properties and application in 
various fields of technology [1-8]. Hematite (α-Fe2O3) is 
one of the most stable iron oxides and have good 
electrochemical [9], and photocatalytic properties 
[10,11] and is a good candidate for applications such as 
degradation of organic pollutants [10.11], gas sensing 
[12] and as anode in Li-ion batteries [9]. This iron oxide 
is a low-cost and eco-friendly n-type semiconductor 
with narrow band gap (2.0-2.2 eV) prepared via various 
techniques like hydrothermal [13], solvothermal [12], 
co-precipitation [14], direct calcination of ferric salt in 

air atmosphere [9], liquid phase-based ultrasonication 
[15], chemical bath deposition [16] and sol-gel [17]. 
The size and morphology of the α-Fe2O3 nanoparticles 
may be altered by changing the raw materials and also 
concentration, time and temperature in the thermal 
routes [12,13]. Kusior et al. [10] reported different 
shapes of α-Fe2O3 through ion-mediated hydrothermal 
technique. Li et al. [13] prepared different morphologies 
of α-Fe2O3 via hydrothermal method by changes in the 
time and temperature. Uniform nanodisks  of hematite 
α‐Fe2O3 catalysts are prepared via a simple 
hydrothermal route by chen et al [18]. Rhombohedron 
and plate-like hematite (α-Fe2O3) as potential 
biomedical applications for MRI has been prepared by 
Tadic et al [19]. Umar et al prepared cubic shaped 
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corresponds to the size calculated from XRD patterns.  
The size and morphology of synthetic nanoparticles 

differ from the size and morphology of hematite 
nanoparticles reported in similar articles. For example, 
the size of nanoparticles prepared by green synthesis 
method by Pallela et al. [39] is reported to be about 20 
nanometers. Rahman et al. [16] obtained different 
morphologies such as nanorods for hematite by 
changing the initial concentration of the precursor. 
Spherical shapes of α-Fe2O3 with average sizes of about 
19 nm were synthesized by Taghavi Fardood et al. [40] 
using Arabic gum as a biotemlate source. By one step 
pyrolysis method, Wang et al. [41] prepared various 
morphologies with average particle sizes between 30-
150 nm. The size and morphology of the products is 
analogous to nanomaterials prepared using co-
precipitation method [10]. These materials are 
characterized by irregular shapes and sizes of 20-40 nm. 
Also heat treatment method [7] provides at 300 °C 
resulted in porous -Fe2O3 cubes which are about 50 
nm. Nevertheless, with increasing temperature they are 
gradually substituted by smaller -Fe2O3 cubes which 
are predominant at 500 °C. Solvothermal and 
hydrothermal method [8, 6] produces nanomaterials of 
diverse morphologies depending on water bath 
temperature, urea concentration and hydrothermal 
temperature. The particle sizes ranges from tens of nm 
hollow-shaped particles to hundreds of nm (hollow-like 
rods, large agglomerated particles, and their mixtures).  

 
Conclusion 

From the calcination of the new iron precursor at 
two different temperatures, we prepared α-Fe2O3 
nanoparticles and characterized them. Results confirmed 
the formation of the high purity and single phase of 
hematite. Due to the appearance of an absorption band 
in the visible area, these compounds will be able act as 
photocatalytic for color removal. The TEM results 
confirm the nanostructured materials.  
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