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Abstract

In this paper, we define a spatial skew and heavy-tailed random field by an extended
version of multivariate generalized skew Laplace distribution. The Bayesian spatial
regression model is developed to explain the spatial data. A simulation study is then
carried out to validate and evaluate the performance of the proposed model. The
application of this model is also demonstrated in an analysis of a geological real data

set.
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Introduction

Regression analysis of spatial data is an important
statistical method that is frequently used in a number of
fields such as agriculture, biology, geology, geography
and etc. Some methods for introducing the spatial
structure into regression models are presented by [1]
[2]. For an application of this model to filtering an
image, see [3]. The maximum likelihood estimation
procedure to estimate the parameters of these kinds of
models is applied by [4]. A necessary condition for the
consistency of the maximum likelihood estimator of
these models has been investigated by [5]. The Bayesian
analysis of regression models with spatially correlated
errors and missing observations are studied by [6].

The usual assumption in the regression analysis of
spatial data is that data come from a Gaussian Random
Field (RF). However, this assumption is often based on
the simplicity of the Gaussian structures and does not

hold true for the majority of the applications. In real
situations, data are often non-Gaussian but a suitable
Normalizing transformation for them exists. But
Normalizing transformation is usually unknown and
interpretation of the transformed data is also more
difficult than the original data as indicated by [8]. [9]
used Closed Skew-Normal (CSN) RF for spatial
regression with correlated errors and missing data,
where the distribution of data has an appropriate number
of similarities with Normal distribution but is
asymmetric. Although multivariate Extended Skew t
(EST) distribution can be used for this circumstance,
[10] showed both CSN and EST distributions have two
serious problems for defining an RF. An appropriate
choice for modeling the skew and heavy-tailed data is
the multivariate Generalized Asymmetric Laplace
(GAL) distribution introduced by [11]. [10] have used
this distribution to define GAL RF for spatial
prediction. However, GAL distribution is not closed
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under addition with a constant vector. This weakness
does not allow us to use the GAL RF for spatial
regression. So a version of multivariate GAL is defined
named the multivariate Extended Generalized
Asymmetric Laplace (EGAL) distribution to determine
an applicable RF. The problem of working with spatial
and skew data is not restricted to mentioned models. For
instance, [12] have been used GAL RF for spatial
prediction and [13] studied paned data models for skew-
normal data.

The paper is organized as follows. Section 2
introduces the multivariate EGAL distribution and
studies its main properties. The spatial EGAL RF based
on the multivariate EGAL distribution is defined in
Section 3, where a Bayesian spatial regression
(including missing observations) with correlated errors
follow from a Spatial Autoregressive and Moving
Average (SARMA) model is considered. Section 4 is
devoted to the prediction of missing values by using a
Bayesian estimation approach including the Monte
Carlo Markov Chain (MCMC) procedure to generate a
sample from the posterior distributions. A simulation
study and application to a real data set are presented in
Sections 5 and 6, respectively. Discussion and
conclusion remarks are given in Section 7.

Extended Multivariate
Laplace Random Variable

In this section, we introduce a multivariate skew
distribution named multivariate EGAL distribution as an
extension of the multivariate GAL distribution
introduced by [11].

Definition 1. A continuous p-dimensional random
vector X has an EGAL distribution, denoted by X ~
EGAL, (u, Z,q,v), if its characteristic function is given
by
$(E) = etV ()1 (1)

1+5tTE t-itTp

where g > 0 is a generalizing parameter, u € RP
controls both location and skewness, X is a non-negative
definite dispersion p X p matrix and v is the pure
location parameter. For v =0, we deal with GAL
distribution, denoted by X ~ GAL,(u, %, q). Clearly, if
X ~ EGALp(u,E, q,v) then X=Y +v, where Y ~
GALp(u, X, q). For v=0 and g = 1, it reduces to the
multivariate Asymmetric Laplace (AL) distribution,
denoted by X ~ AL,(u, X), introduced by [14]. When
q = 1, we obtain the multivariate Extended Asymmetric
Laplace (EAL) distribution denoted by X ~
EAL,(n, Z,v).

Similar to GAL distribution, if the matrix X is
positive-definite, the EGAL distribution is truly p-

Generalized Asymmetric

t €RP,
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dimensional and has a probability density function (pdf)
of the form

Ty—1 _p
2er I ro(x-v)\972
fx(x) = K »(Q(x—
@@l ("’(E'”)) 1 2(
v, ¥, X)), )

where K, (+) is the modified Bessel function of type
3 with index u, Q(x,2) =VxTX~1x and Y(u,2) =

V2+uTE u

If X~EGAL,(u,%,q,v), then the following
representation for EGAL distribution holds
X=v+puG+ VGN, (3)

where G has a standard Gamma distribution with
shape parameter g, is independent of N~N,(0,X),
which in turn shows that EGAL distributions are
location-scale mixtures of the Normal distribution.
Stochastic representation (3) leads to many further
properties of GAL random vectors, including moments,
marginal and linear transformations. In the following
propositions, we study some of them.

Proposition 1. Let X ~ EGAL,(u, Z,q,v). Then,
the expectation and variance-covariance matrix of X
are given by E(X) =v+qu and Var(X) =q(Z +
puh).

Proof: For this end, (3) can be directly used.
However, it is more convenient to use the relation
between EGAL and GAL; X = Y + v. The proof is now
complete by using the same results for GAL random
vector Y given by [11]. m

Proposition 2. Let
X=Xy, Xp) ~ EGALp(u,E, q,v), and let A be a
real matrix £ X p and B be a real vector with dimension
£. Then

AX + B~EGAL,(Au,AXAT,q,Av + B).
Proof: The characteristic function of AX + B is

¢AX+B(t) — E(eitT(AX+B))

1

itT it™B aT)"
= eit B(l)x(ATl') —e eiaTt) v < T

1+5 (ATH)T X (ATt) — i (ATO)"u

- eitT(A v+B)( 1
1424T AL AT t—itTAp

). m

Proposition 3. Let X ~ EGAL,(u,%Z,q,v) and
consider the partition X7 = (X7, X7) with dim(X;) =
p1, dim(X,) = p,, p; + p, = p and the corresponding

;
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partition of the parameters (g, 2, v). Then
Xl ~ EGALpl (ﬂl; 2-"111 q, vl)'

Proof: Set B=0 and A somehow AX = X, in
Proposition 2. m

Following [12], the conditional mean and variance
of multivariate EAL distribution are given in the
following proposition.

Proposition 4. Let X ~ EAL,(p, 2, v) and consider
the same partition stated in Proposition 2. Then

E(X;1X1) = v, + 2211 (X1 — 1)

+(ny —
anﬁlul)%l?l_%(?’(ulln) QX, —
v1,211)), 4)
Var(X,X,) = W (Bp2 — T, 571E,,)
X Ry py (¥ (hy 21) QX
- 171'211))

+(p, — 2;212:1_11l‘-1)(l’-2 -
_ X1-v1,8
2:212:111”1)T (M) G(Xy — v, 11, Z11,01), (5)

‘I’(M}?n)( 4
_ RKgga(Xx
where R, (x) = P and

G(xq, 14,211, 01)
= Rl_%(ly(lh:zn) Q(xl,le))Rz_%(‘P(ul,le) Q(xlrzll))

2
- (Rl_l’z_l('l”(llp Z11) Q(xy, 211))> .

Proof: First, note that X =Y + v, where Y ~
AL,(p, X). By considering the same partition on ¥, we
have X; =Y, +v; and X, =Y, + v, Therefore,
E(X3|X1) = E(Y, +v,|Y; +v) = E(Y,|Yy) + vy,
and Var(X,|X,) =Var(Y, + v,|Y, +v)) =
Var(Y,|Y,).[Ohe Proof is now complete by substituting
the corresponding expressions of E(Y,|¥;) and
Var(Y,|Y,) from [14].

Spatial Regression Model

In the current work, we consider the multivariate
EGAL distribution in a spatial setting. Therefore, the
spatial EGAL RF is defined based on the multivariate
EGAL distribution.

Definition 2. A RF {Z(s):s € D € R%} is termed a
EGAL RF if

Z= (Z(81),--,2(sy)) ~ EGAL,(,%,q,v) for all
configurations (Sq,...,S,) € D X ..X D and all n €N,

where v+ q u = E(Z) andE=VL(Z)—uuT.
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These choices for v, u and ¥ are based on
Proposition 1. These choices lead to Var(Z) = C, in
defined RF. All the RF properties, especially its
stationarity, are entirely similar for GAL RF, which has
been proved in [10].

Based on half plan (unilateral) order, [7] studied
the following spatial regression model
yij = x5 B+ z; i=1,...m, j=1,..,n, (6)

on two dimensional regular lattice {(i,j):i =
1,..,m, j=1,..,n}, where Yij is response variable,
x;j is an r-dimensional vector of explanatory variables,
B is the vector of regression coefficients and z;;s are
auto-correlated random variables follow a first order
Spatially ~ Autoregressive and Moving Average
(SARMAC(1,1)) model. Based on the quarter plan order,
[6] considered the regression model (6), when z;;s are
auto-correlated random variables follow a first order
Multiplicative  Spatial ~ Autoregressive (MSAR(1))
model. They studied a Bayesian approach to the
parameter estimation problem of the model for Gaussian
data. The same issue for CSN RF is considered by [9].
Based on the quarter plan order, we consider a 2-

dimensional lattice for z;via the following
SARMA(1,1) model
Zij =6012i4; + 605251 + 05244 +
Q18i-1j T Q2851 + P3 &i_qj-1 T Eij, 7
where |60,| <1, |pl <1, i=1,...,m, j=1,..,n,

k=123
Let Y = (Y10, Y120 ) Vo) ' »
X = (%11, X12) ) Xmn) " z = (211, Z12) - Zmn) s
€= (e11, €12 &mn)">  Zo = (200, Zo1, - Zmo)" and
€0 = (00, €01s ++»Emo)T- Then (3.1) and (7) can be
written as the following matrix form
Y=XB+2z
Zz=B,z+ A zy+B,e+ A, g5+ &

(®)
)

where 2, is unobserved primal values vector of z;j,
B, is a down triangular mn X mn matrix, A; is an
upper triangular mn X (m + n + 1) matrix which their
components are zero and functions of 6,, 6, and 6;.
The matrices A, and B, are defined similar to 4, and

B, with replacing 6,, 8, and 65 by ¢, ¢, and @3,
respectively. Note that (9) can be written as
(I-By)z=A,zy+(I+B,) e+ A, &,.
(10)
Define £* = (€T, £,7)T and replace W = (I — B;)™!
to lead (10) to
z=WA,z,+WDe¢", (11)

where D = [I + B, | A;].
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Theorem 1. Consider the regression model (6)

with autocorrelated errors @) and let
& ~ GALy+-(n, 2, q). Then
Y ~ EGALmn (I"’Y! EY! q, Vy),
where N '=mn+m+n+1, uy = WDy,

Xy =WDXED"W Tand vy = XB + W A, z,.

Proof. From (8) and (11), we have Y = Xf +
WA, zy+WDe. Now we conclude that Y ~
EGAL,,,( WDu,WDED™WT,q,XB+W A, z,) by
Proposition 2.

Prediction of the Missing Values

For predicting of the missing values ¥,,;s given the
observed values Y,,s, we consider the square loss
function. Therefore, the best predictor of Y,,;s given
Yousis E(Yuusl¥Yops). In order to splitting missing
values Y,;; from observed values Y,,s, suppose
Y' = (Yops" Yis”) =QY, where Q is an
appropriate orthogonal matrix. By using Proposition 2,
we have
Y* ~ EGALy,(Quy, QZyQ", q, Quy),

where QﬂY = (ﬂobsT '#misT)Ts QvY =

Wobs” »Vmis' )T and QZy = EOO Eom . In general
mo mm

the conditional expectation E(Y ,;s|Y,ps) has not closed
form, so we generate samples from the conditional
distribution

fy(y )

meis|Yobs(' |y0b5) = IYopsYobs)

where by Proposition 3,
Yops ~ EGALNobS (Hobs) Z00) @) Vops)-

This conditional density has not closed form and
so the Metropolis-Hastings (MH) algorithm is now
applied to generate data from this conditional
distribution, where the proposal distribution
ymis P): Ny, Vimis» diag(h?) ) is used. For every
missing value, we generate a sample with size k. Mean
and variance of these samples are considered as the
predicted value and variance of prediction, respectively.

For the case of ¢ = 1, we have

Y* ~ EALyn(Quy, QZy, Quy). (12)

Therefore E(Y,i5|Yops) and Var(Y,,|Y,,s) are
computed by Proposition 4. In the following theorem,
the best predictor of ¥ ,,;5 given Y ;¢ with its variance is
given for the special case of ¢ = 1, when we deal with
EAL distributed errors.

Theorem 2. Consider the regression model (6)
with autocorrelated errors (7) and let € ~ ALy+(u, X).
Let the partition Y7 = (Y7, ¥T.) with dim(Y,ps) =
N,ps, and the corresponding partition of the parameters
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P
(1, Z,v) where X = [2‘,‘ 00
mo
Then
E(Ymislyobs) = Unis + Emo 2501 (Yobs - vobs)

+ (ﬂmis - ):mo 25(} ﬂobs)

Zom]

me

Q(Yops—VobsiZoo) R
¥Y(HobsEoo) 1

Vobs» 200))3
and

_M(lp( Hobs, z‘oo) Q(Yobs -
2

Q(Yobs B vobs'zoo)

l’U( Hobs, 2—"oo)

= Zmo Egt}zom)
X Rl_%(lp( Hobs, 2-“oo)Q(Yobs — Vobs» 2-“oo))
+ (ﬂmis — Zmo ):;(} ﬂzszs)

X (Hmis - 2-"mo Zz;z} uobs)T (%) G(Yobs -
Vobs: Hobs, 2-“oo' Nobs)~

Proof. The theorem is simply proved by Proposition
4 and Equation (12).

In applications, the regression coefficients and

spatial correlation parameters are unknown and have to
be estimated. In this work, a Bayesian approach is

used to estimate model parameters. We assume pu =
(@i Ji,s i Jy, )" for having k different skewness

Var(Yos|Yops) = (Znm

where ¥, N; = N, and J is an N-dimensional unite
vector. Also, let £ =021 and q is known. By this
assumption, we have an appropriate reduction in size of
computations. Let n = (BT,02,a”,07,9™)T be vector
of unknown parameters, where af = (ay,...,ay),
0" = (91' 02, 93) and ‘PT = ((pl' P2, (P3) By
considering independence of parameters, the joint prior
distribution of 1 can be written as

n(n) = n(P) n(o) n(a) m(0) n(e).

Choosing the priors B~N,(Bo,Zo), 02~IG(Ay, 0p),
a~Ni (g, diag(t3)), 6;~TN(—1,1,6,;,¥?) and
©i~N(@oi, {7), where TN (—1,1, 0;,1? ) is a truncated
Normal distribution to (—1,1) with mean 6; and
variance 17, the posterior density of 1 is then given by

T(MYobs) % f YVops|Mm(M).

This posterior density has also a complicated form,
and so the MCMC method is used to generate a sample
from the posterior distribution. To use Gibbs sampler,
the derived full conditional distributions of § as an
arbitrary component of 1 are given by

T[(Eb’obs' '1-{) & f(yobsln) T[(E):

where 7)_¢ is a § which § is deleted from it. These
distributions do not have closed forms. For generating
data from these densities, MH algorithm in Gibbs
sampler is applied. The considered proposal
distributions for e {B al, o? and
6 €{01,0,,05, 01,02, 3} are g{() N (§, dlag(bg) )
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9,2 (): Gamma(a, ,Giz) and gs():TN(-1,1,6,b3),
respectively. Here b, a and b} are suitable numbers
that control efficiency in MH sampling.

Remark 1. There is no concern about non-
identifiable parameters. The EGAL density function (2)
is determined uniquely by its parameters. On the other
hand, in Theorem 2 we need to py, Xy and vy which are
identifiable parameters of an EGAL distribution.
However, there does not seem to be a guarantee that the
parameters B, pand X are identifiable, which
fortunately we do not need to estimate.

Simulation Study

In order to study the performance of the EGAL
model in Bayesian estimation of model parameters and
Bayesian prediction, a simulation study is performed
with calculations done in R (R Development Core
Team, 2003). Also, the accuracy of the model is
compared with the Gaussian model. Let m =n = 8,
q=1, k=2, Ny=40, N, =41, a, =2, a, =1,
BT =47, ¢2=1, 6, =04, 0,=0.8, 6;=009,
@1 =05, ¢, =06, p; = 0.8, x;;7 = (1,i) and z, are
m+n+1 random samples with standard Gaussian
distribution. After generating €* from GALg;(u,1,1), we
generate z by (3.6) and then Y by (8). The nine random
locations are chosen for missing values Vs =
(V3, Y14, Y27, Y38) Yaar Ya7, Y51, Y59, Y1) The histogram
and Q-Q plot of simulated data given in Figure 1, show
that data are skewed and not Gaussian. The small p-
values of the Kolmogorov-Smirnov test and the
Shapiro-Wilk test for simulated data confirm that data
are not Gaussian even at the level of 0.01. The values of
skewness and kurtosis coefficients are 1.14 and -0.89,

Miu=150,Sigma=220,q=1.22,Nu=10

I

0.002 0.003 0.004
1

0.001
1

0.000
L

I T T T 1
0 200 400 600 800

Sample Quantiles

respectively.

The parameters = (BT, o2, a7, 87, ") Tare firstly
estimated by using Gibbs sampler with iteration 20000.
Parameter estimates are B = (3.94,7.02), 6% = 0.86,
@& =191, @& =098, 6, =039, §,=0.63, 0;=
0.84, ¢, = 0.61, p, = 0.64 and p; = 0.76.

The plots of convergence for the mean of the
simulated parameters given in Figure 2 show that the
Bayes estimators are converging to the real parameters.
Besides, the Gellman-Rubin test, as a convergence
criterion, was accomplished for all parameters. Table 1
shows that all test statistic values were approximately
close to 1, which confirm the convergence of the
MCMC algorithms.

In the second stage, we are going to predict the
missing values by two EGAL and Gaussian models. For
the Gaussian model, (6)-(11) remain valid. The only
difference is in the assumption of distribution errors
which is € ~ Ny (0, X). Therefore,

Y" ~ Npn (Quy, QZy),

E(Y s Y obs) = Vrmis + Zmo £o0 (Yobs — Vobs)

and

Var(¥Ymis|¥obs) = Zmm — Zmo £o0 Zom-

(13)

The Bayesian prediction of missing values and
standard deviations of predictions by two EGAL, when
q = 1, and Gaussian models are shown in Table 2. The
results show that EGAL model is more efficient than the
Gaussian model, however the predicted values for two
models are very near together. The Prediction Mean
Square Errors (PREMS) computed by

Zle'S(}’i PO Vo .)2
PREMS(¥;;5) = ==L m”:L m22 ) are illustrated
in Table 2.

Normal Q-Q Plot

800
|

600
|

400
1

Theoretical Quantiles

Figure 1. Histogram and Normal Q-Q plot for simulated data.
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Figure 2. The plot of convergence for parameters
Table 1. The Gellman-Rubin statistics for convergence test.
Estimator ﬁl BZ 32 ﬁl &2 al 92 63 (/ﬁl (/ﬁz (/ﬁg
Test’s statistics 1.18 1.29 1.07 1.02 1.05 1.12 1.12 1.09 1.25 1.14 1.004

The results show that not only the variances of
predictions by the EGAL model are less than the
Gaussian model but also the prediction values by the
EGAL model are nearer to real values than these values
for the Gaussian model. The prediction by the EGAL
model for the case g # 1 cannot be done by Theorem 1,
as we mentioned in the previous section. Therefore, we
do simulate with ¢ = 3 and let all other parameters be
similar to the case of ¢ = 1. The same results hold as
the case g =1 for the histogram, Q-Q plot, and
Bayesian estimation of parameters. Bayesian prediction
of missing values and standard deviations of predictions
for two models EGAL when q = 2 and Gaussian have
shown in Table 3. The results are approximately similar
to the case of ¢ = 1.

As we expected, the estimation in the EGAL
model for q = 1 has less error than EGAL model for
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q # 1. Indeed, for q = 1, the conditional expectation
E(Y,islYops) has a closed-form but for q # 1 this
conditional expectation has to be computed by MCMC
algorithms. We finish this section by noting the
following immediate consequence of simulation.

Note 1. The computational time in this case, is
considerably more than the case g =1, since the
prediction by EGAL model for the case g # 1 cannot be
done by Theorem 1 and have to be done by the MCMC
method. The results show that for g € (0,1), the
prediction is even better than of prediction obtained by
the MCMC and is very exact. For g € (1,5), the results
are approximately good. Table 4 shows the maximum
PREMS for prediction by Theorem 1 for some different
values of q. Simulation has been done 10 times in 9
locations that had been randomly selected.

Note 2. In order to have knowledge about sensitivity
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Table 2. Real values, predictions and variances for two models Gaussian and EGAL for g = 1.

Real value EGAL Gaussian
Prediction Variance Prediction Variance

10.462 10.450 0.009 11.139 1.602
16.187 16.112 0.008 16.007 3.165
27.778 27.737 0.004 27.731 3.971
33.995 33.984 0.009 33.967 4511
39.744 39.739 0.008 39.737 4312
39.824 39911 0.009 39.921 4.561
45.405 45.398 0.001 45.386 3.840
51.196 51.195 0.011 51.304 2.123
51.833 51.799 0.011 51.788 4.028
PREMS 0.00278 0.05747

Table 3. Real values, predictions and prediction error for two models Gaussian and EGAL for g # 1.

Real value EGAL Gaussian

Prediction Variance Prediction Variance
23.512 21.189 2.530 20.517 1.602
34.066 34.518 2.037 34.191 3.465
54.683 56.515 1.965 56.349 3.971
64.802 64.219 2.842 63.319 4511
62.923 64.721 2.089 64.413 4312
68.105 68.061 2.150 67.774 4.561
61.452 60.728 2.170 60.672 3.840
67.394 67.256 3.732 65.830 4.503
74.030 73.128 2.157 71.867 4.128
PREMS 1.543 2.670

Table 4. PREMS for some values g # 1 by (12)

q 0.1 0.5 0.9 4 10
PREMS 0.00014 0.02887 1.75417 4.82543 11.35119

of prediction with respect to the estimated parameters,
we predicted Y,,;s by assuming parameters which have
remarkable difference with real parameters. The results,
not given here for the reason of space, show that this
prediction has a very weak sensitivity to the values of
estimated parameters.

Application

In this section, we briefly describe the analysis of a
geological real data set. The data consist of 45 chemical
elements in 110 locations in a region near Darab city of
Iran which has been shown in Figure 3. The histogram
and Normal Q-Q plot of all elements show the
skewness, heavy tail, and non-Gaussian behavior of the
data. However, due to the limited space, we do not
include all diagrams. An element that has remarkable
similarities with EGAL distribution is Barium (Ba)
which has been measured in ppm. In order to predict
this element over the whole of the region, we consider a
15 x 15 regular lattice on the region which has been
shown in Figure 4. The Histogram and Q-Q plot of data
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given in Figures 5, show that the data are really non-
Gaussian. The skewness and kurtosis coefficients are
1.7 and 0.51, respectively. Also, the small p-values of
the Kolmogorov-Smirnov test and the Shapiro-Wilk test
confirm that the data are not Gaussian. Figure 5 shows
that the EGAL density function has good fitness to data,
where the parameters are estimated by using the
maximum likelihood estimation method. The scatter
plot of data given in Figure 5 also shows the possibility
of a harmonic trend in data.

By using regression based on its coordinates, we see
a trend in data in the form of Bag,s,)~L(s1,S2),
where L(s;,s,) = 5.6e + 14 (s72) + 5.5e + 15(s; ).
The data are detrended.

by Baj; = Ba;; — L(si,sj). Consider q = 1.3, k =
2, N; =110 and N, = 115. Now, (8) is written in the
modified form Y = J,,s fu +2, and other equations
will be changed according to (13). We consider an
observation on lattice if its distance with lattice is less
than 0.1 lattice width. Here it is about 440. By this
assumption, we have 13 observed values on a lattice.
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Figure 3. The geographical position of the studied region and considered lattice.

The Gibbs sampler with 10000 iterations in order to
estimate parameters is also applied. Estimated
parameters by MCMC method are S, = 15200,
62=194, @; =11, @, = 6.3, 6; = 0.73, 6, = 0.61,
B; =036, ®; =0.15 @, =054 and @; = 0.93.
Because g is 1.3, by Note 1, we did prediction by
Theorem 1. The graph of surface prediction and its
contour plot is shown in Figures 6 and 7. From Figure 7,
one can see the spatial structure in the predicted value of

Ba in the whole of the region. This point comes from
the fact that contour lines with near numbers are in a
neighborhood. Figure 8 shows less prediction error for
inner locations. This result has a logical justification
from the statistical point of view. There is more
information for prediction in an inner location than a
marginal site by considering the number of observations
with a basic rule in prediction at the mentioned location.
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Figure 4. The observed values
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Figure 8. 3D plot of surface for prediction errors
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Results and Discussion

In order to define an RF in terms of the multivariate
skew distributions, we proposed the multivariate EGAL
distribution. We used the EGAL RF in spatial
regression for skew and heavy-tailed data. The proposed
RF can also be used for many spatial goals such as
spatial prediction and spatial generalized mixed linear
models which have been previously studied by SN RF
and CSN RF. Although the work has been done only for
the first order SARMA model, the results can be
extended for the general model SARMA(p, q) with
higher-order, in a similar manner. In spite of the basic
difference in (7) for the general case, but other
equations remain valid without any changes. The
structure of matrices A4; and B;, i=1,2 in
SARMA(1,1) differ from SARMA(p, q) models. In the
second case, these matrices are more complicated.
Throughout the paper, a 2-dimensional lattice was
considered. This assumption can be also generalized by
considering a d-dimensional lattice. However, more
complicated relations are expected to obtain for the
general cases. For instance, a model SARMA(1,1) on a
3-dimensional lattice has the following form analogue
with (6)

Zijk = 012;1 5 +02Z1j 1k + 03258
+ 0421 1k t05Zi_1jk1
+ 062 j_14-1 +072Zi_1j14-1 T
P1€i-1jk T P28 j-1k T P3Eijr-1

tT @4 E-1j-1k T P5Ei-1,jk-1 T Peij-1k-1 T
P7€i-1,j-1,k-1 T Eijic»

where i =1,..,nq, j=1,...,n,, k=1,..,n3 and
6,1 <1, |pe] <1 for £ =k =1,...,7. A combination
of these two generalizations may be needed in some
circumstances; however, it is out of the scope of this
study.
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