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Abstract 

In this study, we used a simple green method for preparing tellurium nanoparticles 
and mainly evaluated their toxicological effects. The nanoparticles were synthesized 
using lactose and characterized with different instrumentation methods. The in vitro and 
in vivo cytotoxicity of tellurium nanoparticles and its effect on lipid profile were also 
evaluated. Hydroxyl-capped tellurium nanoparticles were successfully fabricated by 
lactose. The results showed spherical tellurium nanoparticles with a mean size of 89 nm. 
The toxicological study showed that the tellurium nanoparticles did not exhibit any 
toxicity on the primary cells. The LD50 values for the nanoparticles were 327 and 295 
mg/kg for oral and intraperitoneal administrations, respectively. Also, the results 
showed a significant reduction in liver enzymes at the 16, 24, and 40 mg/kg doses. 
Hematological parameters indicated no significant suppressive changes between the 
animals that were administered tellurium nanoparticles and the control group. In 
addition, the effects of tellurium nanoparticles on hypercholesterolemic risk factors in 
mice fed with cholesterol demonstrated the depletion of triglyceride, cholesterol, and 
low-density lipoprotein. This study showed that the toxicity of tellurium nanoparticles 
was lower than tellurium ions. Furthermore, tellurium nanoparticles decreased the 
cholesterol and triglyceride levels in the animal model. 
 
Keywords: Tellurium; Nanoparticles; Green synthesis; Toxicity; Cholesterol. 
 

                                                        
* Corresponding author: Tel: +982166482706; Email: shahverd@sina.tums.ac.ir 

Introduction 
Biomedical use of metallic nanoparticles, including 

antibacterial, antilishmaniasis, anti-inflammatory 
antioxidative activity, anti-atherosclerotic, and 
immunomodulatory, is undergoing significant 
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expansion. Also tellurium is applicable as a 
photothermal and photo dynamic, antioxidative activity 
and reactive oxygen species (ROS) therapy, ROS 
sensing, and bioimaging agent. However, increasing the 
range of types and applications of these novel materials 
necessitates more investigations on the toxicity and 
health effects of exposure to nanoparticles (NPs) [1–4]. 
Tellurium (Te) is not an essential biological trace 
element, which is why this NP is neglected in biology 
[5]. Te is a common substance in electronics, 
metallurgy, and fluorescent CdTe quantum dots [3, 5, 
6]. In medicine, bactericidal activity, inhibition of 
cytokine production, cancer therapy by 
immunomodulatory properties, antisickling activity, 
induction of hair growth, and as a protection agent in 
Parkinson’s disease and Te compounds have been 
recognized. However, few studies have examined the 
biological and toxicological properties of Te NPs in vivo 
and in vitro [7-9].  

Recently, various forms of Te NPs such as nanorods, 
spherical particles, stars, and nanotubes were 
synthesized by different biological and chemical 
methods [10-15]. Most frequently method for the 
preparation of inorganic NPs is treating metal salts with 
chemical-reducing agents like hydrazine, fructose, 
sodium borohydride, and citric juice [1, 10-15]. In the 
the green synthesis method different plant extracts or 
natural compounds has been used as an environmental-
friendly approach for the synthesis of different 
nanoparticles [16]. During past years, the ability of 
saccharides to reduce Au and Ag ions to nanoparticles 
has been reported [16-19]. The oxidation of the 
hydroxyl residues of the saccharides to carbonyl groups 
facilitates the reduction of metallic ions to elemental 
metallic form [20, 21]. Fructose and starch are used to 
reduce Te ions to Te nanotubes and nanowires [22, 23]. 
However, no report has been published on the synthesis 
of Te NPs using different saccharides such as lactose. 
On the other hand, some studies reporting the depletion 
effect of Te ions on the triglyceride content of mice 
[24,25]. But no reports have been published on different 
biological effects of Te NPs fabricated by carbohydrates 
in literature. This study is the first report on the in vivo 
and in vitro toxicity and anti-hyperlipidemia effects of 
hydroxyl-capped Te NPs fabricated by lactose as a 
natural reducing agent. 

 

Materials and Methods 
1- Preparation of Te NPs 
Respecting to synthesize Te NPs, potassium tellurite 

was subjected to reduction with different saccharides, 
and lactose was chosen for this purpose. Te NPs were 

synthesized by adding 1 g of lactose (Merck, Germany) 
to 100 ml of potassium tellurite solution (400 µg/ml). 
Potassium tellurite (K2TeO3) was purchased from 
Sigma-Aldrich (United States). The mixtures were then 
kept in an autoclave at 15 psi pressure, 121 °C for 15 
minutes. The liquid color changed from colorless to 
black, which indicated the reduction of Te4+ions to 
metalloid Te NPs [7, 8]. The generated NPs were 
collected with sequential centrifugation at 12,000 ×g for 
15 min, followed by dispersion of the pellet in deionized 
water to eliminate the excess lactose. For all 
experiments, the nanoparticles were washed and 
resuspended in deionized water and stored at four °C. 

 
2- Characterization of Te NPs 
The Te NP analysis was performed using different 

techniques. The UV-Vis spectrum of the nanoparticles 
was monitored with a UV-Vis Double Beam PC 
Scanning spectrophotometer (Labomed Model UVD-
2950), with a resolution of 1 nm in the range of 200–
600 nm. The particle size distribution pattern was 
determined with the laser light-scattering method using 
a Malvern Zetasizer MS2000 (UK). For the study of the 
functional groups on the surface of the NPs, the infrared 
spectrum of the dried pellet of nanoparticles was 
analyzed with Fourier transform infrared (FTIR) 
spectroscopy (Bomen MB-154). In the aim to examine 
the sample by transmission electron microscopy (TEM), 
one drop of the Te NP solution was placed on a carbon-
coated copper grid and dried slowly at room 
temperature. Micrographs were obtained by using a 
Zeiss 902A TEM operated at 80 kV. The energy 
dispersive X-ray (EDX) microanalyzer was used to 
determine the elemental composition of the Te NPs. The 
crystalline structure of the Te NPs was checked with the 
XRD (X-ray diffraction) technique using an X-ray 
diffractometer (Philips PW1710) with CuKα radiation 
(λ = 1.5405 Å) over a scanning range of Bragg angles 
from 20° to 80°.  

 
3- MTT assay 
Splenic and hepatocyte cells were isolated according 

to Crawford’s [28] and Fry’s [29] methods, 
respectively. RPMI medium was supplemented with 
10% (v/v) FBS and 100 μg and 100 IU of antibiotics 
(Pen-Strep) and used for cell culture. Cells were 
cultured in mentioned medium and then incubated at 37 
°C, 5% CO2, and 95% humidity for 24 h. Cellular 
growth with and without Te NPs was tested by 
measuring the degree of mitochondrial function and 
reduction of the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide) to formazan crystals [26]. 
In the next step, we harvested the rapidly growing cells. 
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Then, the concentration of cells was adjusted to 1×106 
cells per ml and seeded into a 96-well plate with 100 μl 
in each well. All plates were incubated for 24 h. 
Thereafter, Te NPs were applied to the culture wells to 
reach the final concentrations of 0–100 µg/ml. After 24 
h of incubation, the cells were treated with 20 µl of the 
MTT reagent at a 5 mg/ml concentration in PBS and 
incubated for a further four h. Consequently, the 
medium was discarded, and 150 µl DMSO was added to 
solubilize the formazan crystals. The optical densities 
were determined at 550 nm after 5 min shaking to mix 
the formazan in the solvent. An MTT assay was 
performed in triplicate. 

 
4- Animals 
Six- to eight-week-old male BALB/c mice, each 

weighing 25–30 g, were obtained from Tarbiat Modares 
University (Iran). The mice were housed in plastic cages 
at controlled temperature (22 ± 1 °C) and humidity (50 
± 10%) for a 12/12 light and dark cycle, and all mice 
were allowed free access to water and food and fed a 
standard mouse pellet diet. The experimental procedures 
were performed in accordance with the guidelines of the 
Tehran University of Medical Science (Iran). 

 
5- Acute Toxicity 
One hundred mice were randomly divided into 20 

different groups, with five mice in each group. The 
animals in groups 1 to 18 were separately exposed to 
K2TeO3 and Te NPs diluted in 0.9% apyrogenic NaCl 
solution with different Te concentrations listed in Table 
1 by a single oral gavage or intraperitoneal (i.p.) 
administration. In similar conditions, groups 19 and 20 
were the control and received 0.9% sterile NaCl orally 
or i.p. The clinical signs of toxicity were observed for 
14 days. Regarding determining the median lethal dose 
(LD50), the mortality in the first 24 h was used. 

 
6- Evaluation of Subacute Toxicity and Evaluation 

of Hepatic Enzymes and Hematological Parameters  
To evaluate the subacute toxicity, we measured 

hepatic enzymes and hematological parameters. For this 
purpose, 30 mice were prepared for each test. The mice 

were randomly divided into five groups, four Te NPs-
treated mice groups and one control group. For subacute 
profiling, four different doses of Te NPs suspended in 
saline solution (8, 16, 24, and 40 mg/kg) were 
administered orally by gavage, once per day for 14 
days. The control group received only normal saline. To 
evaluate the hepatic enzymes, we anesthetized animals 
involved in the subacute toxicity test after overnight 
fasting, using ketamine-xylazine. The blood samples 
were collected from the heart and then incubated at 25 
°C for 10 min so clotting would occur. The serum was 
separated from the blood clot by centrifugation at 2,500 
×g for 20 min at four °C. Aspartate aminotransferase 
(AST) and alanine aminotransferase (ALT) activities 
were measured using Ellitech diagnostic kits (France). 
Hematological analysis was carried out on whole blood 
collected in EDTA-containing tubes. The biochemical 
parameters, including red blood cells (RBC) count, 
white blood cells (WBC) count, platelet count, 
hematocrit percentage, and hemoglobin level, were 
examined with a hematology analyzer (Technicon H1; 
Bayer Medical Systems, USA). 

 
7- Evaluation of Antihyperlipidemic Effect 
The experiment was carried out in accordance with 

the method described by Hasimun et al. [31]. Twenty-
four Balb/c mice were divided into four groups. Three 
groups received 10 mg/kg propylthiouracil (PTU) orally 
by gavage once per day and 0.01% PTU in drinking 
water once per day. Group 4 was the control group and 
did not receive any treatment. After seven days, two 
drops of blood were drawn from the preorbital cavity to 
evaluate the initial cholesterol level with Cardio Check 
PA (USA). Then, groups 1 and 2 received Te NPs (16 
mg/kg) and lovastatin (5 mg/kg; Abidi Pharmaceutical 
Co., Iran), respectively, and group 3 was the negative 
control and received only PTU. After one h, a single 
dose of cholesterol (400 mg/kg) in vegetable oil was 
gavaged to all groups except group 4. Three hours later, 
the animals were sacrificed to obtain blood samples 
from the heart. The serum was separated from the blood 
clot by centrifugation at 2,500 ×g for 20 min. The serum 
samples were used to assess the lipid profile with 

 
Table 1. Acute lethal effect of tellurium dioxide and Te NPs in mice 

Mouse 
mortality (%) 

Oral Te NPs  
(mg kg-1) 

Mouse mortality 
(%) 

IP Te NPs  
(mg kg-1) 

Mouse 
mortality (%) 

K2TeO3 Dose oral 
(mg kg-1) 

0 10 0 50 0 10 
0 100 0 100 12.5 25 
0 140 0 140 33 40 
33 225 0 225 67 60 
33 370 33 370 100 100 

100 600 67 600 100 1000 
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NPs at 89 nm. The Te NPs solution was stable for two 
months at room temperature. Aggregation reduces the 
nanoparticle’s surface area. So stabilizing of NPs and 
reducing their aggregation are essential properties for 
their specific activities. The hydroxyl groups of the 
saccharides provided an extensive network of hydrogen 
bonds, which act as a protective agent against the 
aggregation of nanoparticles. Carbonyl and hydroxyl 
groups can impoverish particles to engage in hydrogenic 
interactions between outer aqueous solutions and a 
possible additive stabilizing agent such as starch or 
hyaluronic acid [14, 20-23, 30, 31, 43]. UV-visible, 
TEM, and EDX analysis of nanoparticles confirmed the 
presence of elemental Te with a spherical structure. The 
prepared Te NPs showed much less toxicity than Te 
ions in the in vivo and in vitro tests, which might be 
because Te NPs do not lead to oxidative stress and 
antioxidant properties of elemental Te vs. pro-oxidant 
properties of Te ions. Indeed, Te ions induce ROS and 
decrease enzymes like GSH, CAT, and SOD which 
have antioxidant duties. Furthermore, Te NPs reduced 
the cholesterol and triglyceride levels in the animal 
model [28, 35, 44-45]. 
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