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Abstract 

The Lar igneous suite (LIS), in southeastern Iran, is part of post collisional alkaline 
magmatism in Sistan suture zone. Shonkinite and kersantite are the only two high-Mg, 
K-rich olivine bearing rocks in the LIS. We study major and some compatible trace 
elements in the Lar shonkinite and kersantite (LSK) olivines to define mantle 
mineralogy and metasomatic processes. Olivines in shonkinite have higher Fo (83-90), 
compared with those in kersantite (Fo76-80). Ca and Ni contents in the olivines are 
relatively low, whereas their Mn and Ti contents are high and variable, respectively. 
Low Ni contents exhibit olivine crystallization at igneous conditions from a magma 
originated by partial melting of an olivine-rich mantle source. Geochemical date reveal 
that magma evolution is responsible for high-Mn and low Fo contents in kersantitic 
olivines. In contrast, high Mn, Mn/Fe and Fo contents in shonkinitic olivines indicate an 
existence of Mn-rich and Ca-Si-poor metasomatic agents in the source. So, considering 
the Middle Oligocene-Miocene post-collision nature of the Lar igneous suite, melts or 
fluids derived from upwelling asthenosphere in the form of magnesitic-carbonatite 
melts, had great potential in metasomatism of subcontinental lithospheric mantle. This 
CO2 and K-rich liquid then reacts with peridotite to produce new mineral assemblages 
including low-Ca clinopyroxene, olivine and phlogopite. Partial melting of such 
metasomatized source region was responsible for producing the undersaturated, K-rich 
shonkinite and kersantite in the LIS.   
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Introduction 
Olivine is the first liquidus silicate phase, which 

crystallizes from mantle derived mafic magmas, with a 
liquidus phase field that expands at low-pressures [1-6]. 
So, the olivine composition in term of major and trace 

elements has enormous potential for deciphering the 
nature and evolution of the mantle, its melting history 
and early crystallization of the resulted magmas [1, 3, 4, 
7-11]. Olivine Mg-value (Fo= 100*Mg/(Mg+Fe) is 
another major compositional factor that provides useful 
information on the mineralogy of the mantle sources 
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Olivine major and minor element compositions 
The results of olivine phenocrysts (core, mantle and 

rim) and microphenocrysts (core and rim) analyses in 
the LSK are given in Table 1. It has been argued that the 
forsterite (Fo) content of olivine is commonly attributed 
to magma fractional crystallization [29]. Olivine grains 
in the LSK are not primitive (Fo<93) and display nearly 

large range of Fo compositional variations, with Fo76-80 
in kersantite and Fo83-90 in shonkinite. So, the olivine in 
kersantite is distinctly more evolved than those in 
shonkinite. Noteworthy, olivine as rare inclusion in host 
clinopyroxene in kersantite shows high content of 
forsterite (Fo80); which may point to their preservation 
from further differentiation effects.  

 
Table 1. Representative electron microprobe analyses of olivines in the Lar shonkinite and kersantite rocks. Micro inp: 
Microphenocryst of olivine in pyroxene. Number of ions on the basis of 4 oxygens. 

Sample Shonkinite Shonkinite Shonkinite Shonkinite Shonkinite Shonkinite Shonkinite Shonkinite Shonkinite Shonkinite
Type Phenocryst Microcryst Phenocryst Microcryst Microcryst 
Analysis 1 2 3 4 5 

core mantle rim core core mantle rim core core rim 
MgO 47/65 47/85 46/65 44/78 46/92 46/47 46/87 46/36 46/68 46/64 
SiO2 40/58 40/75 40/80 39/73 40/64 40/06 39/95 40/32 40/37 39/87 
CaO 0/01 0/05 0/04 0/06 0/09 0/40 0/00 0/06 0/04 0/03 
MnO 0/44 0/39 0/46 0/60 0/46 0/46 0/54 0/48 0/41 0/48 
Al2O3 0/03 0/03 0/00 0/01 0/03 0/04 0/00 0/00 0/02 0/01 
TiO2 0/01 0/02 0/00 0/04 0/02 0/00 0/02 0/00 0/02 0/00 
Cr2O3 0/02 0/00 0/00 0/01 0/00 0/01 0/00 0/00 0/02 0/01 
FeO 11/56 12/24 12/09 15/65 12/79 12/57 12/86 12/99 12/53 13/02 
NiO 0/16 0/18 0/17 0/17 0/21 0/17 0/23 0/22 0/17 0/18 
Na2O 0/03 0/11 0/07 0/08 0/08 0/08 0/06 0/07 0/07 0/11 
Sum 100/49 101/62 100/29 101/12 101/24 100/27 100/54 100/50 100/33 100/34 
Mg 1/749 1/743 1/718 1/667 1/720 1/721 1/733 1/714 1/724 1/729 
Si 0/999 0/996 1/008 0/993 0/999 0/995 0/991 1/000 1/000 0/992 
Ca 0/000 0/001 0/001 0/001 0/002 0/011 0/000 0/001 0/001 0/001 
Mn 0/009 0/008 0/010 0/013 0/010 0/010 0/011 0/010 0/009 0/010 
Al 0/000 0/000 0/000 0/000 0/000 0/001 0/000 0/000 0/000 0/000 
Ti 0/000 0/000 0/000 0/001 0/000 0/000 0/000 0/000 0/000 0/000 
Cr 0/000 0/000 0/000 0/000 0/000 0/000 0/000 0/000 0/000 0/000 
Fe 0/238 0/250 0/250 0/327 0/263 0/261 0/267 0/269 0/260 0/271 
Ni 0/003 0/003 0/003 0/003 0/004 0/003 0/005 0/004 0/003 0/004 
Na 0/001 0/003 0/002 0/002 0/002 0/002 0/001 0/002 0/002 0/003 
Sum 3/000 3/004 2/993 3/007 3/001 3/004 3/009 3/001 2/999 3/009 
Mg# 0/880 0/875 0/873 0/836 0/867 0/868 0/867 0/864 0/869 0/865 
Fo 87/60 87/05 86/83 83/01 86/21 85/94 86/17 85/91 86/50 85/99 
Sample Shonkinite Shonkinite Shonkinite Shonkinite Shonkinite Shonkinite Shonkinite Shonkinite Shonkinite Shonkinite
Type Phenocryst micro inp Phenocryst Microcryst Microcryst 
Analysis 6 7 8 9 10 

core mantle rim core core mantle rim core core rim 
MgO 50/06 49/25 48/99 49/51 49/68 49/85 49/57 49/36 49/65 49/53 
SiO2 41/55 41/36 40/57 40/61 41/10 40/95 40/72 40/66 41/38 40/61 
CaO 0/09 0/10 0/06 0/09 0/09 0/07 0/08 0/07 0/28 0/07 
MnO 0/41 0/41 0/38 0/39 0/44 0/38 0/40 0/38 0/39 0/38 
Al2O3 0/02 0/02 0/01 0/04 0/07 0/01 0/02 0/04 0/03 0/02 
TiO2 0/02 0/01 0/01 0/00 0/03 0/00 0/01 0/02 0/00 0/00 
Cr2O3 0/00 0/01 0/02 0/00 0/01 0/01 0/01 0/00 0/01 0/01 
FeO 9/47 9/36 9/39 9/68 9/37 9/45 9/35 9/82 9/12 9/17 
NiO 0/18 0/15 0/17 0/19 0/22 0/22 0/16 0/26 0/26 0/18 
Na2O 0/15 0/09 0/12 0/10 0/08 0/06 0/07 0/10 0/10 0/11 
Sum 101/96 100/75 99/71 100/61 101/08 101/00 100/39 100/70 101/21 100/09 
Mg 1/794 1/784 1/796 1/802 1/796 1/804 1/804 1/796 1/790 1/808 
Si 0/999 1/005 0/998 0/991 0/997 0/994 0/994 0/993 1/001 0/994 
Ca 0/002 0/003 0/002 0/002 0/002 0/002 0/002 0/002 0/007 0/002 
Mn 0/008 0/008 0/008 0/008 0/009 0/008 0/008 0/008 0/008 0/008 
Al 0/000 0/000 0/000 0/001 0/001 0/000 0/000 0/001 0/000 0/000 
Ti 0/000 0/000 0/000 0/000 0/000 0/000 0/000 0/000 0/000 0/000 
Cr 0/000 0/000 0/000 0/000 0/000 0/000 0/000 0/000 0/000 0/000 
Fe 0/190 0/190 0/193 0/198 0/190 0/192 0/191 0/200 0/184 0/188 
Ni 0/004 0/003 0/003 0/004 0/004 0/004 0/003 0/005 0/005 0/004 
Na 0/003 0/002 0/003 0/002 0/002 0/001 0/002 0/002 0/002 0/003 
Sum 3/002 2/995 3/003 3/008 3/002 3/006 3/005 3/007 2/999 3/006 
Mg# 0/904 0/904 0/903 0/901 0/904 0/904 0/904 0/900 0/907 0/906 
Fo 89/92 89/87 89/87 89/65 89/92 89/95 89/96 89/52 89/97 90/15 
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Furthermore, the average content of Ca in olivines in 
the LSK (Ca=694 ppm) is less than those in MORB 
(Ca=2000ppm) and arc settings (Ca=1000ppm) but 
slightly higher than those in peridotite xenoliths 
(Ca=276-233 ppm) [11, 30, 31]. But the average content 
of Mn in olivines in the LSK (Mn=3895 ppm) is higher 
than those from mantle-derived rocks (MnO= 0.09-0.17 
wt % or Mn= 700-1300 ppm; [3]).  

The average concentration of Cr in olivines of 

kersantite (Cr=110ppm) is almost twice than those in 
shonkinites (Cr=56ppm) but lower than those in OIB 
(Cr=~400-700 ppm) and MORB (Cr=~350-550 ppm) 
[11]. In contrast, the average Ni abundances in olivines 
of shonkinite (Ni=1457 ppm) is higher than those in 
kersantite (Ni=663 ppm). Ti and Al concentrations in 
olivines of shonkinite are 0-240 ppm and 0-361 ppm, 
respectively.  Also, Ti and Al concentrations in olivines 
of kersantitic rocks are 0-192 ppm and 0-155 ppm, 

Table 1. Ctd 
Sample Shonkinite Shonkinite Shonkinite Shonkinite Shonkinite Shonkinite Shonkinite Shonkinite Kersantite Kersantite 
Type Microcryst     Phenocryst   Microcryst Microcryst   Microcryst   
Analysis 11   12     13 14   15   
  core rim core mantle rim core core rim core rim 
                      
MgO 48/12 49/62 49/99 49/07 49/43 49/31 49/73 49/50 42/11 41/86 
SiO2 40/79 40/90 41/08 40/20 40/96 40/38 40/67 41/06 38/05 39/18 
CaO 0/84 0/12 0/07 0/32 0/03 0/08 0/12 0/10 0/02 0/04 
MnO 0/33 0/43 0/38 0/31 0/40 0/50 0/34 0/41 0/74 0/78 
Al2O3 0/06 0/02 0/00 0/03 0/01 0/02 0/02 0/04 0/01 0/03 
TiO2 0/01 0/00 0/00 0/00 0/01 0/00 0/02 0/03 0/00 0/00 
Cr2O3 0/00 0/00 0/00 0/00 0/00 0/06 0/01 0/00 0/01 0/00 
FeO 10/17 9/59 9/25 9/68 9/60 9/53 9/19 9/56 18/22 18/18 
NiO 0/14 0/14 0/22 0/16 0/15 0/17 0/14 0/21 0/04 0/12 
Na2O 0/11 0/04 0/06 0/09 0/06 0/08 0/08 0/07 0/08 0/10 
Sum 100/56 100/86 101/06 99/86 100/64 100/13 100/30 100/99 99/28 100/29 
                      
Mg 1/757 1/799 1/806 1/801 1/795 1/804 1/811 1/792 1/621 1/591 
Si 0/999 0/995 0/996 0/990 0/998 0/991 0/993 0/997 0/983 0/999 
Ca 0/022 0/003 0/002 0/009 0/001 0/002 0/003 0/003 0/000 0/001 
Mn 0/007 0/009 0/008 0/006 0/008 0/010 0/007 0/008 0/016 0/017 
Al 0/001 0/000 0/000 0/000 0/000 0/000 0/000 0/001 0/000 0/000 
Ti 0/000 0/000 0/000 0/000 0/000 0/000 0/000 0/001 0/000 0/000 
Cr 0/000 0/000 0/000 0/000 0/000 0/000 0/000 0/000 0/000 0/000 
Fe 0/208 0/195 0/187 0/199 0/196 0/196 0/188 0/194 0/394 0/388 
Ni 0/003 0/003 0/004 0/003 0/003 0/003 0/003 0/004 0/001 0/003 
Na 0/003 0/001 0/001 0/002 0/001 0/002 0/002 0/002 0/002 0/002 
Sum 3/000 3/005 3/005 3/010 3/002 3/009 3/007 3/002 3/018 3/001 
Mg# 0/894 0/902 0/906 0/900 0/902 0/902 0/906 0/902 0/805 0/804 
Fo 88/11 89/68 90/16 89/37 89/77 89/66 90/16 89/72 79/80 79/68 
                      
Sample Kersantite Kersantite Kersantite Kersantite Kersantite Kersantite Kersantite Kersantite     
Type   Phenocryst   Microcryst micro inp Microcryst Microcryst       
Analysis 16     17 18 19 20       
  core mantle rim core core core core rim     
                      
MgO 41/58 41/92 41/36 40/56 41/82 40/54 40/41 39/29     
SiO2 39/13 39/51 38/24 38/83 38/16 38/49 38/47 37/57     
CaO 0/01 0/01 0/06 0/01 0/04 0/02 0/01 0/01     
MnO 0/72 0/78 0/79 0/84 0/73 0/63 0/61 0/73     
Al2O3 0/00 0/02 0/02 0/00 0/00 0/02 0/03 0/03     
TiO2 0/00 0/00 0/00 0/03 0/01 0/00 0/00 0/00     
Cr2O3 0/00 0/05 0/04 0/00 0/01 0/01 0/01 0/03     
FeO 18/47 18/23 19/10 19/86 17/91 20/29 20/56 21/51     
NiO 0/07 0/04 0/05 0/10 0/08 0/13 0/09 0/13     
Na2O 0/05 0/05 0/07 0/07 0/01 0/09 0/09 0/00     
Sum 100/04 100/61 99/72 100/29 98/78 100/22 100/28 99/31     
                      
Mg 1/585 1/587 1/591 1/554 1/615 1/558 1/554 1/536     
Si 1/001 1/003 0/987 0/998 0/989 0/993 0/992 0/985     
Ca 0/000 0/000 0/002 0/000 0/001 0/000 0/000 0/000     
Mn 0/016 0/017 0/017 0/018 0/016 0/014 0/013 0/016     
Al 0/000 0/000 0/000 0/000 0/000 0/000 0/000 0/000     
Ti 0/000 0/000 0/000 0/001 0/000 0/000 0/000 0/000     
Cr 0/000 0/000 0/000 0/000 0/000 0/000 0/000 0/000     
Fe 0/395 0/387 0/412 0/427 0/388 0/438 0/444 0/472     
Ni 0/001 0/001 0/001 0/002 0/002 0/003 0/002 0/003     
Na 0/001 0/001 0/002 0/002 0/000 0/002 0/002 0/000     
Sum 3/000 2/996 3/013 3/002 3/011 3/008 3/008 3/013     
Mg# 0/801 0/804 0/794 0/785 0/806 0/781 0/778 0/765     
Fo 79/41 79/71 78/69 77/72 79/94 77/52 77/27 75/87     
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primitive mantle-derived melts have Ni content in the 
range of 2500 to 3100 ppm [3, 4]; those deviating from 
this range (Fig. 3b) are igneous olivines which 
crystallized from fractionated melts (lower Ni) or 
involve partial melting of a pyroxenite source (higher 
Ni) [3]. In the Fo versus Ni diagram (Fig. 3b), all 
olivine grains have Ni content lower than 2500 ppm; in 
this diagram, some olivines in shonkinite have Fo and 
Ni content similar to MORB; whereas some with lower 
Fo values show similarities to Hawaiian olivines. In 
contrast, olivines in kersantite are more evolved and 
plot close to the Mediterranean field (Fig. 3b). 
Therefore, the relatively low Ni content in the LSK 
olivines matches well with igneous olivines that 
crystallized from a fractionated melt. 

Also, olivines in the LSK show a weak and negative 
correlation between Ni with Al and Mn contents, 
respectively (Fig. 4a, b). However, Al content in 
olivines is generally low and stretches into the field of 
OIB (Fig. 4a). The negative correlation of Ni with Mn 
in olivines in the LSK (Fig. 4b) indicates igneous 
fractionation which is characteristic of arc basalts, East 
African melilitites and some kimberlites [4]. However, 
fractional crystallization cannot explain the 
contemporary high Fo and Mn contents in some olivines 
in shonkinite. This is inconsistent with olivines of high 
Fo and low Mn contents which are usually crystallize 
from primary magmas. Therefore, high Fo and Mn 
contents in some olivines in shonkinite needs a primary 
source enriched in Mn. 

 
Mantle source and the role of metasomatic agents 

Olivine is generally the earliest crystallizing phase in 
mafic igneous rocks and therefore has the potential to 
record information about primary melts close to their 
original, undifferentiated compositions in equilibrium 
with their mantle source [1]. Olivine phenocrysts then 
reflect the primary melt compositions. Many authors 
used Ni, Ca, Mn, Mg and Fe concentrations in olivine to 
verify its mantle source lithology and the nature of 
metasomatic agents in the source region [1, 3, 11]. 
Olivines in the LSK have lower Ca and Ni contents but 
higher Mn concentration in comparison to olivines of 
MORB and mantle sources. Nickel content of olivine 
decreases during fractionation, whereas Ca and Mn 
contents increase; so the high Mn and low Ca 
concentrations in olivines of the LSK (especially in 
shonkinite) cannot be related simply to magmatic 
fractionation. In order to find out the degree of 
fractional crystallization in LSK parental melts, the Fo 
content in olivine has been used. The Fo content of 
olivines in some shonkinites (Table 1) is similar to those 
in MORB (Fo88-91; [11]) which argues against high 

degree of fractionation. So, the magma fractionation in 
shonkinite, in contrast to more evolved kersantitic 
magma, is unlikely to be responsible for high Mn and 
low Ca and Ni contents in olivine.  

Foley et al [3, 4] believe that the low Ca and high Ti 
contents in olivines are related to a silica-poor 
metasomatic agent that was enriched in Ti and depleted 
in Ca. Ammanati et al., [1] showed that there is a 
relationship between olivine chemistry (especially Ni 
content) and magma composition in term of SiO2 
content. In contrast to silica saturated magmas, olivines 
that crystallized from silica-undersaturated magmas, 
similar to LSK olivines, are depleted in Ni [1]. A 
general consensus exists among experimental 
petrologists that phlogopite and K-richterite have great 
potential to produce silica-undersaturated and silica-
oversaturated melts, respectively [36, 37, 38]. 
Phlogopite and K-richterite are also known from 
metasomatized mantle assemblages that yield K-rich 
magmas [12]. The LSK rocks are high-Mg, silica-
undersaturated and K-rich rocks which confirm their 
derivation from a phlogopite-bearing mantle source. 
Moreover, this silica-undersaturated, phlogopite-and 
olivine-bearing mantle source requires an interaction 
between the peridotitic mantle and CO2-rich 
metasomatic agents [1]. 

In the 100*Ca/Fe versus 100*Ni/Mg diagram (Fig. 
5) olivines in the LSK are different from those in 
leucitite, MORB, oceanic Island basalts and lamproites;  
but their  Ni/Mg ratio is low and similar to leucitite. 
Also, in the 100*Mn/Fe versus 100*Ni/Mg diagram 
(Fig. 6) olivines in the LSK show similar trends but 
higher Mn/Fe ratios in comparison to leucitites. The 
high 100*Mn/Fe ratio of olivines is the characteristic of 
melts that resulted from strongly depleted peridotite, in 
which olivine and Cr-rich spinel are residual phases 
with DMn/DFe ratio <1 [4, 39]. Partial melting of such 
refractory peridotite at higher temperature (in 
comparison to alkaline magmas) could explain high 
Mn/Fe ratios of olivines; but is unable to explain high 
Mn-olivines and high K2O/Na2O ratios in the bulk rock 
composition of the LSK. High Mn/Fe ratio in olivine is 
also the characteristic of melts that resulted from a 
mantle source metasomatized by carbonatitic melts [1]. 
On the other hand, the high Mn/Fe ratios also suggest an 
increase in the bulk DFe during melting of a mantle 
source metasomatized by carbonatitic melts at high 
pressures [1, 11]. Carbonatitic metasomatism in the 
mantle will result a high Ca mantle source and high Ca 
olivine phenocrysts from strongly silica undersaturated 
rocks [1], which is inconsistent with low Ca content of 
the LSK olivines; but Rudnick et al., [40] believed that 
high pressure metasomatism by magnesitic-carbonatite 
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peridotite to produce new mineral assemblages that 
include low-Ca clinopyroxene, phlogopite, and olivine. 

Geochemical data confirm that olivine grains in 
most shonkinites have been crystallized from primary 
silica-undersaturated, K-rich magmas; while olivine 
grains in kersantite are the result of crystallization from 
more evolved magmas. 

 
Conclusion 

The Lar igneous suite is part of post collisional 
alkaline magmatism in Sistan suture zone. In this suite 
kersantite and shonkinite are the only two high-Mg 
mafic potassic-ultrapotassic rocks that contain olivine 
grains. Low Ni content in the LSK olivines demonstrate 
their igneous origin. The low Ni content is also 
consistent with a mantle source rich in olivine and poor 
in orthopyroxene. Geochemical data indicate that 
magma evolution is responsible for extraordinary high 
Mn content in kersantitic olivines. In contrast, the 
relatively low Ca, high Mn, Mn/Fe and Fo values in 
shonkinitic olivines most probably indicates an 
existence of Mn-rich and Ca-poor metasomatic agent. 
So, considering the Middle Oligocene-Miocene post-
collision nature of the Lar igneous suite, melts or fluids 
derived from upwelling asthenosphere probably had 
great potential in metasomatism of subcontinental 
lithospheric mantle. Low Ca and high Mn/Fe ratio in 
LSK olivines confirm that this CO2 and K-rich liquid 
most probably is a magnesitic-carbonatite magma which 
reacts with surrounding peridotite to produce new 
mineral assemblages including low-Ca clinopyroxene, 
olivine and phlogopite. Partial melting of this source 
region was responsible for producing the silica-
undersaturated, K-rich shonkinite and kersantite in the 
Lar igneous suite. 
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