Von Neumann Regular McCoy Rings

M. Zahiri*

Department of Mathematics, Higher Education center of Eghlid, Eghlid, Islamic Republic of Iran

Received: 22 September 2020 / Revised: 16 March 2021 / Accepted: 7 April 2021

Abstract

A ring R is said to be right McCoy, if for every f(x),g(x) in the polynomial ring R[x], with f(x)g(x)=0 there exists a nonzero element $c \in R$ with f(x)c=0. In this note, we show that von Neumann regular McCoy rings are abelian. This gives a positive answer to the question rised in Comm. Algebra 42 (2014) 1565-1570."

Keywords: McCoy rings; Von Neumann regular rings; Abelian rings.

Introduction

Throughout this note all rings are associative with unity. According to McCoy [6, Theorem 2], any commutative ring R has the property that, if f(x) is a zero-divisor in R[x], then the ideal generated by the coefficient of f(x) is a zero-divisor in R.

P. P. Neilsen in [2], calls a ring R *right McCoy* (resp. *left McCoy*), if f(x) is a left (resp. right) zero-divisor in R[x], then the left (resp. right) ideal generated by the coefficient of f(x) is a left (resp. right) zero-divisor in R. He showed that, reversible rings (that is, ab=0 implies ba=0 for all $a,b\in R$) are McCoy [2, Theorem 2]. It is obvious that every commutative ring is reversible. A ring R is called *semi-commutative* if for any $a\in R$, the right annihilator of it is an ideal of R. Reduced rings are clearly reversible and reversible rings are semi-commutative. In [2], Nielsen provides an example of a semi-commutative ring that is not right McCoy.

A ring R is called 2-*primal* if Nil_{*}(R)=Nil(R). A ring R is *symmetric* if abc=0 implies acb=0, for all $a,b,c\in R$.

A ring R is called an *Armendariz* ring if whenever polynomials $f(x)=a_0+a_1x+\ldots+a_mx^m$, $g(x)=b_0+b_1x+\ldots+b_mx^m \in R[x]$ satisfy f(x)g(x)=0, then $a_ib_j=0$ for each i,j. Armendariz had proved that a reduced ring (i.e., a ring without nonzero nilpotent elements) satisfies this condition. A ring R is called von Neumann regular for each $a \in R$ there exists $b \in R$ such that a=aba. In other word, a ring R is von Neumann regular if any finitely generated right ideal of it is a direct summand of it.

In [3], Nasr-Isfahani posed a question whether is it true that any von Neumann regular McCoy ring is abelian?

In this note, we give a positive answer to this question.

Results

An idempotent $e=e^2 \in \mathbb{R}$ is called left (resp. right) semi central if ere=re (resp. ere=er)or every element .Rer

Lemma 1.1. An idempotent e in a ring R is a central idempotent if and only if e is both left semicentral and right semicentral in R.

Theorem 1.2. Von Neumann regular right McCoy rings are abelian.

.ProofLet $e=e^2 \in \mathbb{R}$. We shall show that eR(1-e)=0=(1-e)Re because in this cases, we have er=ere=re for all $r \in \mathbb{R}$, as stated in Lemma 2.1. Now if $eR(1-e)\neq 0$ (the other case is similar), then $er(1-e)\neq 0$ for some $r \in \mathbb{R}$.

Thus er(1-e)R=hR for some $h=h^2 \in R$ by the regular condition on R. It follows that er(1-e)s=h for some $s \in R$. Let

^{*} Corresponding author: Tel: +989173518399; Fax: +9844534467; Email: m.zahiri86@gmail.com, m.zahiri@eghlid.ac.ir

 $f(x)=e+er(1-e)x+(1-e)sex^2+(1-e)x^3$ and $g(x)=-(1-e)sh+hx+(1-e)shx^2-hx^3$.

Since $eh=h=h^2=er(1-e)sh$, we have f(x)g(x)=0, right McCoy property grantees that there must exists a nonzero element $c \in R$ such that f(x)c=0. As e, (1-e) are coefficients of f(x), we get ec=(1-e)c=0, and so c=1c=((1-e)+e)c=0, which is a contradiction. So we get eR(1-e)=0. In a similar way as above, we can show that (1-e)Re=0. So e is both left and right semi central idempotent of R and so by Lemma 2.1, $e \in Cent(R)$. Thus R is an abelian ring.

We have the following diagram:

Corollary 1.3. Let R be a von Neumann regular ring. Then the following statements are equivalent:

(1) R is right McCoy;

- (2) R is reduced;
- (3) R is symmetric;
- (4) R is reversible;
- (5) R is semi commutative;
- (6) R is 2-primal;
- (7) R is Armendariz;
- (8) R is abelian.

Proof. $(5) \rightarrow (4) \rightarrow (3) \rightarrow (2)$ follows from [4, P.361] and [4, Proposition 1.3]. (5) (6) \rightarrow follows from [5, Lemma 2.7]. As R is von Neumann, its prime radical is zero we have any semiprime 2-primal ring is reduced. Hence we get (6).(2) \rightarrow Thus we have (2) \leftrightarrow (3) \leftrightarrow (4) \leftrightarrow (5) \leftrightarrow (6).

The implication (2) (8) \rightarrow (7) is clear and (8) (2) \rightarrow follows from the fact that any ablian von Neumann regular ring is reduced. So (2) \leftrightarrow (7) \leftrightarrow (8).

 $(2)(1) \rightarrow$ is clear and (1) $(8) \rightarrow$ follows from the Lemma 2.2. As $(2) \leftrightarrow (8)$ we get $(1) \leftrightarrow (2) \leftrightarrow (8)$.

References

- McCoy NH. Remarks on divisors of zero. Amer. Math. Mon. 1942; 49: 286-295.
- 2. Nielsen PP. Semi-commutativity and the McCoy condition. J. Algebra. 2006; 298: 134–141.
- Nasr-Isfahani AR. On semiprime right Goldie McCoy rings. Comm. Algebra. 2014; 42: 1565-1570.
- Lambek J. On the representation of modules by sheaves of factor modules. Canad. Math. Bull. 1971; 14(3): 359-368.
- Mohammadi R, Moussavi A, Zahiri M. On nilsemicommutative rings. Int. Electron. J. Algebra. 2012; 11: 20-37.
- Camillo V, Nielsen PP. McCoy rings and zero-divisors. J. Pure. Appl. Algebra. 2008; 212: 599-615.
- Azimi M, Moussavi A. Nilpotent elements in skew polynomial rings. J. Sci. Islam. Repub. Iran. 2017; 28(1): 59-74.
- Hong CY, Kwak TK. The McCoy condition on skew polynomialrings. Comm. Algebra. 2009; 37 (11): 4026-403.
- Mohammadi R, Zahiri M, Moussavi A. On annihilations of ideals in skew monoid rings. J. Korean. Math. Soc. 2016;53 (2): 381-401.