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Abstract 
A ring R is said to be right McCoy ,  if for every f(x),g(x) in the polynomial ring R[x], 

with f(x)g(x)=0 there exists a nonzero element cϵR with f(x)c=0 . In this note ,  we show 
that von Neumann regular McCoy rings are abelian .  This gives a  positive answer to the 
question rised in    Comm .  Algebra  42 (2014) 1565- 1570.” 
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Introduction 
Throughout this note all rings are associative  with 

unity .  According to McCoy [6, Theorem 2] ,  any  
commutative ring R has the property that,  if f(x)   is a 
zero-divisor in R[x], then the ideal generated by the 
coefficient of f(x) is a zero-divisor in R. 

 P .  P .  Neilsen in [2] , calls a ring R right McCoy (resp . 
 left McCoy) ,  if f(x) is a left (resp . right)  zero-divisor in 
R[x], then the left (resp . right) ideal generated by the 
coefficient of f(x) is a left  (resp . right)  zero-divisor in 
R.   He showed that ,  reversible rings (that is , ab=0 
implies ba=0 for all a,bϵR) are McCoy [2, Theorem 2] . 
 It is obvious that every commutative ring is reversible . 
 A ring  R is called semi-commutative if for any aϵR,  the 
right annihilator of it is an ideal of R.  Reduced rings are 
clearly reversible and reversible rings are semi-
commutative .  In [2] ,  Nielsen provides an example of a 
semi-commutative ring that is not right McCoy . 

A ring R is called 2-primal if Nil*(R)=Nil(R). A ring 
R is symmetric if abc=0 implies acb=0, for all a,b,cϵR.  

 A ring R is called an Armendariz ring if whenever  
polynomials f(x)=a0+a1x+…+amxm, 
g(x)=b0+b1x+…+bmxmϵR[x] satisfy f(x)g(x)=0 ,  then 
aibj=0 for each i,j.   Armendariz had proved that a 
reduced ring (i.e. ,  a ring  without nonzero nilpotent 
elements) satisfies this condition. 

 

    A ring R is called von Neumann regular for each 
aϵ R there exists bϵR such that a=aba.  In other word, a  
ring R is von Neumann regular if any finitely generated 
right ideal of it is a direct summand of it. 

 In  [3],  Nasr-Isfahani posed a question whether is it 
true that any von Neumann regular McCoy ring is 
abelian?  

 In this note ,  we  give a positive answer to this 
question . 

 

Results 
An idempotent e=e2ϵR is called left (resp .  right) 

semi central if ere=re (resp .  ere=er )  or every element 
rϵR.  
 Lemma 1.1. An idempotent e in a ring R is a central 

idempotent if and only if e is both left semicentral and 
right semicentral in R . 

  Theorem 1.2. Von Neumann regular right McCoy 
rings are abelian . 

Proof . Let e=e2ϵR. We shall show that eR(1-
e)=0=(1-e)Re because in this cases, we have er=ere=re 
for all rϵR, as stated in Lemma 2.1. Now if eR(1-e)≠0 
(the other case is similar), then er(1-e)≠0  for some rϵR. 

Thus er(1-e)R=hR for some h=h2ϵR by the regular 
condition on R. It follows that er(1-e)s=h for some sϵR. 
Let 
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