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Abstract

We introduce a method to generate a new class of lifetime models based on the
bounded distributions such that the defined models are exclusively a special case of the
new class. A new subfamily, Generalized Alpha Power (GAP) is discussed and some
stochastic orders in this subfamily are investigated to identify the proposed method
effect. The performance of the maximum likelihood estimators based on the simulation
is studied and in the end, the importance and flexibility of the new family for the models
are illustrated by a real data set. Our results indicate that using the proposed method
substantially improves the fitness of any G-family model and can be extended to any
real data set. Finally, the GAPTW regression model is applied to the kidney infection

data.
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Introduction

There has been a considerable study to introduce
new models that are based on bounded distributions,
which can describe real-world phenomena. However,
using stochastic orders to compare the theoretical effect
of generating new models with the existing models is
not considering by the authors [1, 2]. In the last decades,
stochastic orders have been studied by researchers in
many areas of probability, statistics, and other applied
sciences include reliability theory, operations research,
lifetime and survival analysis, and economics sciences
[3-7]. Shaked and Shanthikumar [8] studied some of the
most applied stochastic orders (i.e. distributions order,
hazard order, and star order). They also investigated the
relations between stochastic orders in more detail.
Belzunce [9] reviewed some relationships between the
main stochastic orders, and Belzunce et al. [10]

considered some of the stochastic orders in the classical
distribution.

Using stochastic orders to compare the elements of
the family of distributions are studied by several authors
as follows: Giovagnoli and Wynnb [11] investigated
stochastic orderings for the family of the discrete
random variables and Yu [12] perused stochastic
ordering between exponential family and mixture
exponential family distributions. Klenke and Mattner
[13] inquired stochastic ordering in the family of the
discrete distributions and stochastic ordering in the
elliptical random vectors was introduced by Pan et al.
[14]. Stochastic orders in the extended additive hazards
models were considered by Raeisi and Yari [15] and
Catana and Raducan [16] studied stochastic orders in
the multivariate uniform distributions.

Many new models based on bounded distributions
are developed and studied, however, the most popular

* Corresponding author: Tel: +986133331043; Fax: +98 613333104 1; Email: zadkarami_m@scu.ac.ir

245



Vol. 32 No.3 Summer 2021

models are usually based on some limited bounded
distributions with zero and one support such as Beta,
Kumaraswamy (Jones [17]), and so on. Eugene et al.
[18] proposed the Beta-Generated (B-G) family of
distributions using G(x) = B(F(x)) where B(t) and
F(x) denote the cumulative distributions functions (cdf)
of the Beta and the random variable X, respectively.
Many B-G distributions have been considered by the
following authors. Beta-Weibull (Famoye et al. [19]),
Beta-Exponential (Nadarajah and Kotz [20]), Beta-
Pareto (Akinsete et al. [21]), Beta-Burr XII (Paranaiba
et al. [22]) distributions are some typical examples.
Recently, a new family of models is deployed by
replacing the Beta with the Kumaraswamy distribution.
Kumaraswamy-Weibull ~ (Cordeiro et al. [23]),
Kumaraswamy-generalized Gamma (Pascoa et al. [24]),
and Kumaraswamy-generalized half-normal (Cordeiro
et al. [25]) are some studies in this regard. The Alpha
power (AP) distribution is another beta-type distribution
which was considered by several authors to introduce
the AP-G family of distributions, including Alpha
power -Weibull (Dey et al. [2]), Alpha power —Inverse
Lindley (Dey et al. [26]), and Alpha power -Lindley
(Hassan et al. [27]).

In this research, a new flexible method is proposed
to generate a lifetime distribution, when the generator
distribution is bounded. The advantage of the proposed
method is that the new model is based on G(x) =
R(W2[F(x)]) — RW,[F(x)]) where W;[.] and W,[.]
are linear functions. Moreover, R(t) and F(x) denote
the cdf of any distribution defined on the bounded
interval [a, b] and the random variable X, respectively.
It is worth noting that the defined models are based
onG(x) = R(F (x)) — R(a) and therefore, the defined
models are exclusively a special case of the new class.
The proposed method allows researchers to define a
flexible model that can apply to fit any real lifetime
data. Moreover, we introduce a new subfamily named
Generalized Alpha Power (GAPTW) and a theoretical
comparison of the aforementioned model with the
existing ones is done using stochastic orders, likelihood
ratio order, star-shaped order, and so on.

The data are the recurrence times between the
insertion of a catheter and the next infection of kidney
patients who were using a portable dialysis machine
(McGilchrist and Aisbett [28]). Risk factors related to
the kidney infection of the catheter insertion is one of
the considerable subjects for medical researchers (Erbay
et al. [29]; Delistefani et al. [30]). The data set includes
a sample of 38 patients and for each patient, first and
second recurrence times (in days) of infection from the
time of insertion of the catheter until it has to be
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removed owing to infection are recorded. The data also
includes risk variables: age, sex, and disease types:
Glomerulo Nephtiritis (GN), Acute Nephtiritis (AN),
Polycystic Kidney Disease (PKD), and others.
Furthermore, the data includes censoring because the
catheter may have to be removed for reasons other than
kidney infection. Some authors consider the data and
applied various types of statistical modeling literature to
model the kidney infection data (Hanagal and Dabade,
[31]). We consider only the first recurrence time and
due to flexibility, the GAPTW censored regression
model is applied to the data to identify the risk factor
related to the kidney infection data.

This paper is organized as follows: In Section 2, a
new method to generate lifetime models based on the
bounded distributions is proposed, and a member of the
proposed family, namely Generalized Alpha Power
(GAP) is presented along with discussing its general
properties. In Section 3, Many stochastic orders
between AP and GAP distributions are presented and an
application is demonstrated to indicate the flexibility of
the GAPTW, and the GAPTW regression model is
applied for the kidney infection data. Section 4
concludes the paper.

Materials and Methods
Let X be a random variable with pdf and cdf f(x)
and F(x), respectively. Moreover, consider a
continuous random variable T with bounded pdf r(t) is
defined on [a, b], where a and b can be any real values.
The cdf of a new family of models is defined as:

G() = [y T(O) Q)

where functions W;(F(x)) and W,(F(x)) satisfy
the following conditions:
1. Wy (F(x)) € [a,c] and W,(F(x)) € [c, b], where
a<c<h.
2. Wy(x) is a differentiable and monotonically
nonincreasing function of x, while W,(F(x)) is a

differentiable ~and monotonically nondecreasing
function of x.

3. W (F(x)) > a as x— —oo, whilst W,;(F(x))
— cela,b] as x > oo. 2

4. W,(F(x)) - cela,b] as x » —co and W,(F(x))
— basx— .

The pdf r(t) in (1) is transformed into a new cdf
G(x) through the functions W;(F(x)) and W,(F(x))
and we refer to the distribution G (x) as a transformed
from random variable T through the transformer random
variable X. The corresponding pdf associated with (1) is
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d
g(x) = r(Wy(F(x))) 5= [W> (F ()]

5]
=T (FG) - W (FC0)]

Note that the random variable X can be either
discrete or continuous. Also, in the aforementioned
case, G(x) denotes the cdf of a discrete or continuous
distribution.

Consider (1), it is convenient to assume W;(.) and
W,(.) as linear functions, because the pdf r(t) is defined
on the bounded interval [a,b].

Theorem 1: Let X be a random variable with pdf
and cdf f(x) and F(x), respectively. Also consider the
continuous random variable T with pdf r(t) defined on
[a, b]. Suppose Wi(F(x)) =d+eF(x) and
W,(F(x)) = h + kF(x) are linear functions of F(x)
such that for ¢ € [a, b], W;(F(x)) and W,(F(x)) are
defined in the intervals [a,c] and [c, b], respectively.
Then the cdf of the G-family is given by

Gx) = [ r(e)dt =

bF(x)+c(1-F(x))
faF(x)+c(1—F(x)) r(t)dt ®)

Proof: Since W;(F(x)) is a monotonically non-
increasing function of the cdf F(x) in the interval [a, c],
the inequality as<W (Fx))=d+eF(x)<c
satisfies. Moreover, lim,_,_,[d + eF(x)] =d = ¢ and
lim,,,[d +eF(x)]=d+e=a, therefore, d=c,

wi(F(x) _
F (c—a)<O.

Furthermore, W,(F(x)) is a monotonically non-
decreasing function of the cdf F(x) results in ¢ <
W,(F(x)) = h+ kF(x) < b. As aresult, lim,_,_[h +
kF(x)] = h = c and lim,_[h + kF(x)] =h+ k = b.

e=—(c—a) and then,

Apparently, for W;(F(x)) =a =c, equation (3)
changes to G(x) = fa+(b_a)F(x)r(t)dt. Besides, if

a
Wo(F(x))=b=c leads to

G(x) = fbb_(b_a)F(x) r(t)dt. Figure 1  displays

W, (F(x)) and W,(F(x)) for different values of a, b,
and c.

Corollary 1. For a special case, let ¢ = 0, hence,
a < 0 < b. As a consequent, equation (3) changes to
bF(x)
G() = [ r(t)dt )
If r(t) is a symmetric density function about zero,

thena = —band G(x) =2 f;" ) r(t)dt.

Corollary 2. Let the support of T be [0, 1], then

0 <c <1, and the pdf r(t) belongs to the beta-type

distributions such as Beta, Kumaraswamy, and Alpha-
power distributions. In this case,

c+(1-c)F(x)

G(x) = fC_CF(x) r(t)dt =

F(x)+c(1-F(x))
Jecireoy r(t)dt. ©)

Moreover, for ¢ =0, depends on Beta,
Kumaraswamy, or Alpha-power distributions for r(t),
the B-G, KW-G, or APT-G distributions are obtained,
respectively. Furthermore, we can rewrite (5) as
follows:

1-ZEw(F (o)

6() = [ty (Ot ©)

where W (F(x)) = c — cF(x). The corresponding
pdf associated with (5) is given by

900 = S rW(F () 5= W (F ()] -
r(W(F(2))) 5= W (F ().

Corollary 3. In the case b = 0, then a < ¢ < 0 and
G(x)in (3)is

Then, we have h=c, k=b —a andw= (b —
OF (x)
a) > 0 and, (3) satisfies.
W(F(x)) WiF{x))
0
b [
i) |
S WlF i)
] 1 > F(x o[~
§ T W)
) S ) 3 e

Wir

W(F(x])
L — ;
WiF)
T W)
a ]
0 : > Fix)

Figure 1. Plots of the functions W, (F(x)) and W, (F(x)) fora < c < b.
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c—cF(x) c(1-F(x))
G(x) = f r(t)dt
c

—(c=a)F(x)

r(t)dt = f

aF(x)+c(1-F(x))

Consider ¢ = b = 0, thus G(x) = f:F(x) r(t)dt.

Corollary 4. Consider a =0, then 0 < ¢ < b and

T
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the equation (3) changes to
c+(b—c)F(x)

¢ (x) B fc—cF(x)

bF(x)+c(1-F(x))
r(t)dt = f r(t)dt.

c(1-F(x))

—— ¢=0.75, @=0.01, 2=0.12, y=0.72
- ¢=0.75, «=0.01, 2=0.10, v=0.72
¢=0.75, ¢=0.01, 2=0.14, v=0.72

Figure 2. The Graphs of the pdf (left) and HRF (right) of the GAPW for selected values of parameters
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The Class of GAP(a, c) Models
Consider the random variable T follows the a-power

distribution with parameters «, then r(t) = 12(_“1) at,
0<t<1l and r(t)=1 0<t<1l for a=1

According to theorem 1, we have a =0 and b = 1.
With regard to from (3), The generalized alpha-power
(GAP) cdf and pdf are respectively given by

_ c+(1-0)F(x) In(a) ¢ — o c(1-F(x)) aF ()1
G(x) fc_cF(x) —rafdt=a — (7)
and
— In(®) c(1-F(x)) F(x)
9() =2 (0)a [(A-0a@+c] @8

where 0 < c <1, a > 0,a # 1 are both the shape
parameters and the new model is called the GAP(a, ¢)
family of the distributions. The hazard function of the
model is given by
_ (1=F(x)) [(A-c)aF® ¢
h(x) = In(a)f (x)a’ x @CO—FN[1—aF @ +a-1"

)

For ¢ =0 in equation (8) the GAP distribution
reduces to GPT, proposed by Mahdavi and Kundu [32]
with cdf

aF () _q
G(x) = | a1 a>0,a#1
F(x) a=1

For ¢ = % and ¢ = 1, the GAP distribution reduces
1-F(x) (F(¥)_q
2

F(x)_
to G(x) =a and G(x) = @' F®—,

respectively. One of the popular distributions to use for
modeling lifetime data is the Weibull (W) distribution,
which is applied by several researchers in the last few
years. Such that various types of the Weibull extensions
are studied. In the GAP, consider the Weibull
distribution as the baseline distribution with cdf
F(x) =1—exp(—Ax"), where 1 and y denote the
scale and shape parameters, respectively. The cdf and
pdf of the GAPTW distribution are respectively given
by

G — ce (xl'e_lxy— 10
®W=a (10)
and
log(a)dyxY~Le=2x" ce—rxY 1—e—AxY
gx) =——— —F——a“ [A1-0)a +c
(11)

where 0 <c<1, a>0,a#1 are both shape
parameters. The hazard rate function (hrt) is

249

h(x) =

log(a)AyxY~le=Ax" gce

[(1—c)a1_e_lxy+c]

acg_lxy[l_al—e_lxy

—AxY

]+a—1.

For a = 1 from (3), the cdf of the GAPTW is:

c+(1-c)F(x)

Gx) = f o
c—CcF(x

=[c+ (1 —c)F()]—[c—cF(x)]

=F(x)

Which is independent of ¢ and G(x) = F(x) for all
values ¢ € [0,1]. Figure 2 indicates that the shape of the
GAPTW density function would be bimodal and
decreasing. Moreover, the hazard rate shape can be
decreasing and decreasing-increasing. For y =1,
GAPTW distribution reduces to the GAPE distribution.

Some Statistical Properties of the GAP
In this section, we discuss some statistical properties
of the GAPTW family, e.g. quantile, moment generating

function, and moments. Consider the power series
-1 n
a = Yo CI@ n (12)

n!

The GAP density is expanded using the power series
(12) such that for @ > 0, a # 1, the density of the GAP
is given by

96 = lr;(oi)i(c FGO[(1 — )a=OF ) 4 cqeF)]
_ oIn(a) C (In(@)F (x))!
= ZO ——
_ 10)0i+1 _ (—C)i+1]
= biha @ (13)
i=0
where, b; = o n@)y [(c— D" = (-0)™""] and

a-1 (i+1)!

hiva () = (i + DFCO(F ().

Consider the Exp-G random variable Y;,; with
density function h;,,(x). The cdf of the GAP family
can be determined by G(x) = X.{2ob;H;;1(x) where
H;,,(x) denotes the cdf of the Exp-G random variable
Y; ;1. Therefore, the explanation of the GAPTW density
function is given by
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glx) = - Z Z (=0 — @] [~ + DA xYU+D-1
— 4 '
a 1 i=0 =0 (1 + 1) b]l
| k1 K+ 1A
+ Z (c.ln(@) " [-(k+ on
a- 1 k+ 1! I
ay o e (@] [ + DAPH , _
122 (1 + 1)| I [(C — 1)“‘1 + C1+1]
i=0 j=0 ]
X4, ..., X, from the GAP distribution and let the order

Moments and Moments Generating Function: Using
equation (13), the rth moment of X, say p, = E(X"), is
obtained by

W= D BE(YLL) = )+ Dbidy
i=0 i=0

8i = J, (Qr(w) widu and Qr(w) =
F~1(u) denotes the baseline quantile function (qf). The
moment generating function (mgf ) My(t) of X can be
expressed from (12) as

where

Me(®) = B(e™) = ) biMia(O) = ) (i + Dbit,
i=0 i=0

where M;;(x) denotes the mgf of Y;,, for (i = 0)
and P,; = fol exp(tQr(u)) u'du can be
evaluated numerically using the baseline gf.
Quantile: We can compute the quantile by equation
F(Qw)_1
-1

u = q°@-Fw)Z . Therefore, the quantiles are

1 An((a— 1)u+1)) and Q(u) _

given by Q)= F RS
c=0

F_l(l __In(a- (a— 1)u+1)) for

n(@) and
respectively.

c=1,

Incomplete Moments: The rth incomplete moment
of X, say ¢,.(t), can be written from (13) as

<pr(t2
= f x"g(x)dx

had t
= Z b; f x" hijp,(x) dx
i=0 —®

where the last integral in (14) denotes the rth
incomplete moment of the Exp-G random variable Y; ;.

(14)

Order Statistics. Consider random sample
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statistics denote by X(yy, ..., X(n). Using the generalized
binomial expansion and the power series (12), the pdf of
the rth order statistic X,.,,, say g,.n(x), is given by
Ira(X)
_ 9ear(X) S
B(rn—r+1)z( 1) (15)

where B(.,.) denotes the beta function. Using (7)

and (8), we have

9oap(X)Ggap(x)SH1 n(a)
o‘In(a
= ( )s+r f( )

— 0)a@=F 4 ¢][1 - aF(x>]S+r‘1

GGAP ()5,

c(1-F(x)) [(1

Applying the generalized binomial expansion and
the power series (12), we obtain

9eap(X)Ggap ()51

:inmefl

<S+1]?_1)[(1—c)(s+r

& a-a
—c—j)
+ce(s+r—c—j
— D'f)F (x)! (16)

Combining (15) and (16), the pdf of the rth order
statistic X, i8S grn(%) = XNiZ0 kihiz1(x), where
hiz1(x) denotes the density of the Exp-G random
variable Y;,; and

C(ln(a))l+1
i+ 1! ZZ B(j,n—
—o(s+r—c—j)!
+c(s+r—c—j—1)i](n

ki
(-
j+ DA —a)str

—r)<s+;—1)

Maximum Likelihood Estimation

[(1

We determine the maximum likelihood estimate of

the parameters of the GAP distribution. Let
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Xq,X5,..., %X, be the observed values from the GAP
family distribution with parameters ¢ and a. The log-

likelihood function corresponding to (9) is given by
In(L(x;c,@)) =
nin(=2) + cin(@)[n —

i=1 F(e)] + 21, [In(( -

c)aF@) + ¢) + Inf (x;)] (17)
The partial derivatives of (17) are:
~In(L(x; ¢, @) = In(@)[n — By F(x)] +

n —aFCxp

=1 (q_ c)aF(xl)+c
1
—ln(L(x c, a)) =n [aln(a) - E] +

c[n=-3f, F(xp)] [(1-c)F(x; )aF(xl) 4
. + X (1-c)aF @D e

Setting —In(L(x; ¢, ) and —=In(L(x; ¢, @)) equal
to zero, and solving numerically these expressions
simultaneously yields the maximum likelihood
estimators (MLEs) of (c, ).

Theorems 2 and 3 indicate that the above equations
have unique solutions (¢, &) which are the MLE of
(¢, a), Lemann and Casella [33].

Theorem 2: Equation h,(a,c) = %ln(L(x; c, a)) =
0, as a function of ¢ has only one root fora > 0, & # 1.

Proof:  hy(a,¢) = =In(L(x;c,@)) = In(a)[n —

1—aF )
1 FO)l + Xl (oo
then,

In(e)n — Ty FO] < [n— Ty a"&9]  and
In(@)[n — X, F(x)] > [n— XL, 0D (18)

To show that h; (@, c) = 0 has only one solution for
0<c<1, it is sufficed to show that the function

Consider 0 < a < 1,

hy (@, c) is strictly descending because ih1 (a,c) =—

Z Fxl +Z a-
= In(@)[n — z Fx)] - [n— Z )
i=1

i=1

1—«a

M = linghl(a, c) = 11m [In(a)[n
c—

n
i=1

F(xl)

o)afE + c]

and
) 1-— aF(xt)
m = limh, (a,c) = lim[In(a)[n Z F(xl)]+z ErracE
= In(@n Z Fx] + Z a" )]
=1
respectively.  From (18), we have In(a)[n—

Xy F(x)] < [n— Xy a~F09], and

In(@)[n — Ty FO)] > [n— Ty a"@0]  when
¢ - 0% becomes positive. Hence, it refers to given
values of m < 0 < M and using the intermediate value
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N ﬁFégﬁixi)

A-0)aFCd+c

of the theorem. The equation h, (&, ¢) = 0 has only one
root. For @ > 1, the proof is similar.

Theorem 3: Equation h,(a,c) = %ln(L(x; c, a)) =
0, as a function of a has only one root.
Proof: Consider the equation h,(a, c) = 0, we have

0
a—hz(c a)

(a — D?[In(a) + 1] — [a In(a)]?
[ [a(a — 1) In(a)]?
_fln = X FOa)
o2
s —c(1 = )1 = F(x)]aF@d=2 — (1 — ¢)2q2Fx)-2
* ;[ [(1 = c)aF& + ]2
<0

Therefore, h,(c, ) is a strictly decreasing function
of a and, the absolute maximum and minimum values
of h,(a, c) are equal to
M = lim_ h,(c,a)

a-0"%

— i [ 1 1 ]
e I aln(a) a—1

N cln =X, F(xpl
1—)F F(xp)-1
+Z (1~ OF 1) oo
(1 — c)aF("l) +c
0 1 1
and, m =limgq hy(c, @) =limg,q [n [aln(a) B

[(A-0)F (xpalD—1

1 c[n i 1F(x1)
a— 1] + Z (1-0)aF&d4¢

=0

respectively, since for each value of @ and i =
1,2,3,..,n we have n—Y" aF*d <0 and n-—

Results and Discussion
Stochastic order relationships between G,p(x) and

Ggap(X)

Stochastic orders are utilized to compare distribution
functions because they include various forms of
possible knowledge about distribution functions. There
are many concepts of the stochastic ordering between
distributions which are defined in Probability and
Statistics (for more detail see Shaked and Shanthikumar
[8]). In this section, some stochastic orders between
Gap(x) and Ggyp(x) distributions are studied to identify
the effect of the proposed method on the new
distributions ordering when using the a-power
distribution as a baseline distribution.

Let F(x)and G(x) denote the cdfs of two non-

1 F(x;)

]? é) 0. Therefore, h,(a, ¢) is strictly descending relative to
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negative random variables X and Y with absolutely
continuous distribution functions respectively. Consider
the survival function F(x) = 1 — F(x), the hazard rate

X
he(x) = £3
E[X —t|X > 0] of the random variable X where
t <t* and t* = Sup{t: F(x) > 0}. Over the union of
the supports of X and Y, the random variable X is said to

be

and the mean residual life my(t) =

i) smaller than Y in the (usual) stochastic order
X <5 V), if F(x) = G(x),Vx € (—00,00).
i) smaller than Y in the star-shaped order (X <, Y),

-1
i-lgg is an increasing function of x € (0,1).

iii) smaller than Y in the hazard rate order
(X <pp V)i hp(x) 2 ho(x).

iv) smaller than Y in the mean residual life order
X St V) if myg () < my(t) forall t.

v) smaller than Y in the likelihood ratio order

if

X<, V)if % increases in x where f(x)and g(x)

denote the pdfs of the random variables X and Y,
respectively.

vi) smaller than Y in the convex transform order
(X <. Y)if GT1F(x) is convex in x on the support of F.

Some authors studied the relationships between
different stochastic orders. For example, Muller and
Stoyan [4] shown that

X<, V=>2X<,Y=>X<,Y
and Shaked and Shanthikumar [8] proven that
X< YaoX<pnYadX <, V=2X<, Y.

Therefore, the likelihood ratio and convex transform
orders are considered in this paper.

Theorem 4. Let Y and Z denote the random
variables from AP(a) and GAP(c, @) respectively, then

i) Y <, Zfora € (0,1)
i) Z <, Y fora € (1,)

Proof. We have
W= Jeap(x)
Gap(x)
FOIn(a)a-FEN[(1 — O)aF® + c]
a—1
a—1

= ¢~ (+OF () [(1 _ C)O!F(x) + C]

It can see that
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w
T = —cf ()In(@)ac~AIF®[(1 - ¢)af®
+ 1+ c)]
For 0 <a <1, In(a) is negative and because
c €(0,1), then q 96ar®

9gap(x)
increasing function of x. Y <, Z for
a € (0,1).

ow . . .
a 1S posmve an 1S an

Therefore,

For 1 < a < oo, In(a) is a positive value and thus,

ow . . X .
— is negative. Then, 964P™) jocreases in x and,
ax gap(x)

X . . . .
GapE) s an increasing function of x. So,

geap(x
Z <, Y fora € (1, ).

therefore

Theorem 5. Suppose random variables X and Z are
from distributions F(x) and GAP(c, a) based on F(x)
respectively, then

CZ
(1-o?
ii) X <, Zifa € (1,00) and ¢ < g

i) Z <, Xifa € (0,1) and <a.
Proof. We have

Goar(@)  In(@)aFO[(1 = )af® + (]
wy = =
IC)
Thus

a—1

awy _ FO)(In(@)?act—F@)
ax

[(1=c)2af® — 2.

a—-1

The value a —1 is negative for a € (0,1) and

a<af™ <1, then (1—c)?a"™ —c? is positive if
2

ow, . . geap(x) .
< a. Thus 5, s negative and i s @
fx)
9Gap(x)
increasing function of x and thus, Z <;,. X.

c
(1-0)?

decreasing function of x. Therefore, s an

Besides, for 1 < a < o, we have 1< af® < q

and therefore, the value of (1 —c)2af® —¢2 is

.. . 1 . % . " gcap(x)
positive if ¢ < > In this case, 5, 8 positive and o

increases for x € (0,1) and then, X <;,. Z.

Theorem 6. Assume X and Y are two random
variables from distributions F(x) and AP (), based on
F(x), respectively, then

i) Y <, Xfora € (0,1)
i) X <, Y fora € (1,)
_ 9ap(@) _ In(@)af®

Proof. In this case, w, = = and
f(x) a-1
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9 2af®) aw, . .

Qwp _ JOUN@Y @ 7 The value of 222 is negative for
0x a-1 ox

a € (0,1), because a — 1 is negative. Therefore, g—;’(’g)

is a decreasing function of x and % is an increases
AP
function of x and thus, Y < X.

gap(x)

Consider a € (1,0), then o

function of x and so, X <;,. Y.

is an increasing

Theorem 7. Let Y and Z denote two random
variables from AP(a) and GAP(c,a) distributions
respectively, then

)Y <, Zif % < H'(x) < In(a)

i) Z<,Y if In(a) < H'(x) < n(a)[(1 —c)?a—
c?]

where H(x) = m and H'(x) denotes the derivative
of H(x).

Proof. It is sufficient to show that GZipG4p(x) is a
convex function and it should indicate that G,p(x) is
convex and G;ip(x) is a non-decreasing and convex

function (Mrsevi [34]; Boyd and Vandenberghe [35]).
The second derivative of G4p(x) is given by

9* GGAP

Goap(x) =

ln(a) aFO[f' (%) + f ()2 n(a)]

f'(x) denotes the derivative of f(x) and G 4p(x) is

positive if )+ f(x)?n(a) >0 or
_ f’(X) ’

2 < In(a), then H'(x) < In(a).
(19)

For convexity of F~1(x), it is sufficient to show that
F(x) is concave, because F(x) and F~'(x) are
increasing functions (Boyd and Vandenberghe [35]).
Therefore, it is should be shown the second derivative
of Gg4p(x) is negative. But,

ln(“) aCAF £ ()[(1 - )aF® + ¢]

+ f0) n(a)[(1 — c)?af® — 2]
Therefore, G;4p'' (x) is negative if
F [ = c)af® + (]

+ £(0)? In(@) [(1 — ©)?aF® — 2]
<0

Gear(x) =

or
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£ [ = )af® +¢]
< —f()? () [(1 - c)2af® — c?]
f (1 c) a F(x )—L‘ ]
~ e ;> In(@)! a—0aF®@ e -

(-2 4, (a). Then

(1-c)a+c

Therefore, But,

In(a)

[A-0)?aF®—c?]
[(1-c)aF @) +c]

[1-
o C) " In(a) < H'(x)

(20)

Thus, Gup(x) is a concave function. Because
Ggip(x) is convex, then by (19) and (20) when

[1—2c]in(a)

d—Oatc < H'(x) < In(a)

GgipGap(x) is a convex function and then, Y <, Z.

The proof of (ii) is similar.

Data Analysis

In this section, the performance of GAPTW
distribution is considered by applying real data sets. The
model parameters are estimated using the MLE. The
well-known goodness-of-fit criteria Akaike information
criterion (AIC) and Kolmogorov-Smirnov (K-S) are
also used to compare the models. In general, small
values of AIC statistics and a large p-value of K-S
indicate a good model fit for the data. For the sake of
visual comparison, the plots of the pdfs and cdfs of the
fitted distributions are presented in Figure 3. The
regarded computations were carried out in the R and
MATHLAB software. The data set illustrates the
strength of the Alumina (A1203) material, which can be
found in Nadarajah and Kotz [36]. We applied to sub-
models of the proposed G-family based on the bounded
distribution: GB(EW), KUW, and APTW distributions
then with three other well-known competing
distributions. The Weibull is the baseline distribution of
all six G-family models. Therefore, we can identify the
effect of the proposed method on the popular three G-
families. The distribution functions of the competing
models are:

*Beta-Weibull or Exponentiated Weibull (EW),
Mudholkar et al. [37]

GG = (1- )",

x,a, Ay >0

*Kumaraswamy Weibull (Ku-W), Cordeiro et al.
[23]

GX)=1-(1-1Q—e™)DE x apB,y>0

*Alpha power transformed Weibull (APTW), Dey et
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Figure 3. Histogram (left) and empirical and fitted survival function (right) to the A1203 data set.
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Figure 3 depicts the histogram and the fitted
GAPTW distribution density with five other competing
distributions for the data set. We can see that the
GAPTW distribution provides a perfect fit for the data
set. Table 1 indicates the MLEs of the parameters, AIC,
and K-S test statistics for all fitted models. With respect
to Table 1, it is observed that using the proposed
method improves the model fitting substantially for
either of the following G-families: B-G, KU-G, or APT-
G. Moreover, the values of AIC and K-S statistics are
implied on the GAPTW distribution provides the perfect
fit among all fitted distributions.

The GAPTW Regression Model

Let response variable x be distributed as GAPTW
distribution with the hazard function h(x) which is
defined in equation (9), then

h(x)

) sy A= FO) - 00 ]
_ln(a)l_F( ) (1 F( )) C(1 F(x))[l—aF(x)]+a_1
= A(x)ho(x)

where A(x) denotes the hazard function of the
baseline density function f(x) and

_ c(1-F(x)) (A-F@)[(1- c)aF(x)+c]
ho(x) = In(a) « (- F(x))[1 —aF®]4a—1 =
Because, for 0<a <1, In(a)<0 and 1-

af® <1 —a, and then a(~F@[1 - W]+ a -~
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1 < 0 however, for l<a<o, In(a) >0 and
1-af® >1-qa thus ac(l‘F("))[l —af®| +a-
1 > 0 and therefore, hy(x) > 0 for 0 < a < co.

Consider the Weibull density function f(x) =
y/lx’l_le_”xl, x > 0,4, ¥ > 0 with the hazard function
yAx?~1. Then, the Weibull distribution belongs to the
class of the Cox-proportional hazard distributions when
it is assumed that the scale parameter is defined as
y = exp(yo + Y14y + -+ ypr), where Z =
(Zl,Zz, ...,Zp) denotes the vector of explanatory
variables. Therefore, the hazard of the GAPTW
distribution is given by

h(x) = ho(x)Ax*1eYotvaZit+vpZp

Then, the hazard function of the GAPTW
distribution.is affected by the explanatory variables. Let
d; denote the indicator variable taking value zero if the
ith subject (i = 1,...,n) censored and value 1 otherwise.
Consider (x;,cen;, Z;), i= 1,2,..,n where x; follows
the GAPTW distribution, cen; denotes the censore time
and Z; = (Zl-l,...,Zip) is the set of the explanatory
variables related to the ith individual. Assume x; and
cen; are conditionally on Z; are independent and

y; = min(x;, cen;), i=12,..,n. The likelihood
function is given by
L(8) = HQGAPTW(J’L — Geaprw (y)]* %

where 0 denotes the parameters set and g;4pry and
Geaprw are the density and cumulative distribution of
GAPTW distribution which is given by equations (11)
and (10), respectively.
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Table 1. The MLEs and the goodness of fit statistics for the Alumina (A1203) material data.

Model Parameters Estimates Statistics

a B 1 4 é AlC K-S
GAPTW 0.00013 - 0.00379 3.95735 0.31084 342.684 0.0553
APTW 4958 - 0.003 3.931 0 347.21 0.144
GEW 8.05 - 0.0028 41118 0.702 342.1986 0.0552
EwW 4.867 - 0.007 3.620 0 347.92 0.082
GKUW 0.3865 3.044 0.0037 4.444 0.272 344.163 0.0552

Kuw 1.633 2.301 0.009 0.657 0 348.10 0.59

Application: Kidney Infection Data

The kidney infection data, which firstly was applied
by McGilchrist and Aisbett [28] is related to the
recurrence time to infection at the point of insertion of
the catheter for 38 kidney patients using portable
dialysis equipment. For each patient, first and second
recurrence times (in days) of infection from the time of
insertion of the catheter until it has to be removed owing
to infection are recorded. The data includes censoring
because the catheter may have to be removed for
reasons other than kidney infection.

We consider only the first recurrence time with risk
variables: age, sex (1 = male, 2 = female), censored
indicator (1 = infection occurs, 0 = censored) and
disease types which are coded as 0 = GN, 1 = AN, 2 =
PKD and 3 = others. After the occurrence or censoring
of the first infection, sufficient time (10 weeks interval)
was allowed for the infection to be cured before the
second time the catheter was inserted. Thus, the first
and second recurrence times can be considered
independent.

Firstly, the models based on Weibull distribution:
GAPTW, APTW, GEW, EW, GKuW, and KuW are
fitted for the first recurrence time to infection at the
point of insertion of the catheter to identify the best
distribution in modeling the data. Table 2 reports the

result of fitting the comparative models. As can see,
applying the new method improves the models fitting
effectively for all models: APTW, EW, and KuW, and
the best model is produced by the GAPTW.

A censored regression model based on the best
distribution (GAPTW) is applied to the data to identify
the risk factors that affect the hazard rate of the first
recurrence time to infection and the results of the fitting
censoring regression. Comparing the goodness statistic
AIC for the GAPTW model in Tables 2 and 3 shows
that explanatory variables improve the model fitting.
Table 3 indicates that the explanatory variable age
affects the recurrence time negatively. We also found
that a lower infection rate for female patients.
Moreover, disease types AN, PKD, and others have less
infection rate than that of the GN type of the disease.

Simulation

In this section, we study the performance of the
maximum likelihood estimators (MLE) for the GAPTW
distributions with different sample sizes n = 50, 100,
200, 500, 1000, and 2000. We simulate 10000 samples
for each sample size with two sets of parameters
combinations; Data Set (1): ¢ = 0.2, a = 0.2, 1 = 1.3,
y = 1.3 and Data Set (2): ¢ = 0.04, @ = 0.04, 1 = 2.4,
y = 3.5 for GAPTW distribution. The simulation study
was conducted with R-software. Furthermore, various

Table 2. The MLEs and the goodness statistic for the kidney infection data.

Model Parameters Estimates (SD in parenthesis) Statistics
a B 1 4 ¢ AlC
GAPTW 0.000199 - 0.001539 1.1748 0.06258 308.1
(0.001045) (0.001189) (0.2079) (0.03926)
APTW 0.5570 - 0.006672 0.9987 0 311.0
(0.0617) (0.001075) (0.1207)
GEW 0.4923 - 0.000424 1.4271 0.000056 311.5
(0.1575) (0.000426) (0.1669) (0.000310)
EW 1.0986 - 0.01446 0.8773 0 313.7
(0.4284) (0.01428) (0.1569)
GKuw 3.2030 0.8541 0.001507 1.0642 0.9987 311.5
(1.9966) (0.3486) (0.001082) (0.1688) (0.01081)
KuWw 1.6735 2.2881 0.02569 0.7018 0 313.9
0.6580) (1.0273) (0.02285) (0.1409)
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Table 3. The MLEs of the Regression model for the kidney infection data.

Variables Categories Parameter (SD)
Constant -8.3395 (0.9130)
Age -0.00899 (0.007187)
Sex Male (reference) -
Female -0.5477(0.5134)
Disease type GN (reference) -
AN -0.6644 (0.5817)
PKD -2.0536 (0.7820)
Others -0.1796 (0.5539)
a 1E-8 (1E-14)
[ 0.03298 (0.01068)
y! 1.8395 (0.1849)
AIC 302.3
Table 4. Bias and MSEs (in prentice) of estimators for the GAPTW distribution.
n Data Set 1 Data Set 2
¢ a 1 7 é a 1 7
50 -0.0640 -0.1655 -0.0657 0.2343 0.0284 -0.0120 1.0940 0.3139
(0.0281) (0.0397) (0.3718) (0.1497) (0.0133) (0.0096) (7.2498) (0.3588)
100 -0.0255 -0.1355 -0.0086 0.1244 0.0276 0.0017 0.5744 0.1683
(0.0380) (0.0411) (0.3028) (0.0737) (0.0134) (0.0130) (3.3836) (0.1396)
200 -0.0010 -0.0946 0.0013 0.0659 0.0160 0.0112 0.2705 0.0863
(0.0498) (0.0423) (0.2119) (0.0384) (0.0085) (0.0127) (1.7136) (0.0624)
500 0.0017 -0.0219 0.0047 0.0310 0.0018 0.0101 0.0932 0.0362
(0.0499) (0.0490) (0.0951) (0.0157) (0.0019) (0.0063) (0.6852) (0.0224)
1000 -0.0188 0.0201 0.0002 0.0198 -0.0012 0.0072 0.0543 0.0173
(0.0354) (0.0529) (0.0409) (0.0072) (0.0011) (0.0026) (0.3320) (0.0109)
2000 -0.0392 0.0452 -0.0016 0.0117 -0.0025 0.0052 0.0274 0.0079
(0.0207) (0.0497) (0.0179) (0.0033) (0.0006) (0.0011) (0.1565) (0.0057)
criteria such as the bias of the estimators (i.e. more flexible new G-families than existing G-families

Bias(0) = % . [6; — ]) and the mean square errors
(MSEs) of the estimators of the parameters (i.e.
MSE(8) =% n . [6; — 6]?) are obtained which are
reported in Table 4.

Table 4 indicates that the MSEs of parameters
decrease as the sample size increases. Furthermore, the
results in Table 4 show that the parameters estimates are
quite stable; More importantly, the values of the
estimates are close to the true values for these sample
sizes. Thus, the MLE of the model parameters performs
well for the GAPTW distribution.

Comparison of the new G-Families of Distributions

The performance of the proposed method to generate

of distributions is done using a simulation was studied.
To identify the flexibility of GAPTW GKuW, GEW
compare to APTW, KuW, and EW respectively, we
generated six samples with size 20000 from
comparative GAPTW, APTW, GKuW, KuW, GEW,
and EW distributions. The results of fitting models to
different data sets are presented in Table 5. As it can be
seen, the GAPTW, GKuW, GEW in comparison to
APTW, KuW, and EW respectively, give better results.

Conclusion

In this paper, a method to generate new families of
the models was introduced. We show that the novel
method generates a large number of new models as well

Table 5. -Log-likelihood of the GAPTW, APTW, GKuW, KuW, GEW, and EW.

Fitted Distributions
GAPTW APTW GKuW KuW GEW EW
GAPTW 28088.24 28216.04
APTW 2949227 29492.36
Generated GKuW 29743.53 30000.46
Distributions KuW 21008.71 21009.07
GEW 28065.83 28409.95
EW 21230.24 21130.24
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as existing models as special cases. Besides, some
properties of the new member of the family, the GAP
model, were considered and some of the main stochastic
orders are applied to compare the GAP and AP models.
We found that the likelihood ratio order between GAP
and AP models depends on the parameter value of «
however, the convex transform order depends on the
value of parameters a and c. The properties and the
estimation of the parameters of the new family of
models were also presented and, the real data set was
applied in order to illustrate the flexibility of the new
method. The results showed that the new model is a
suitable model to fit data sets with various kinds of
shapes. The results in Table 1 show that using the
proposed method considerably improves the fitness of
any G-family model. In fit the compatible models to the
kidney infection data, the GAPTW produces the best
model, and in fitting the GAPTW regression model, we
found that sex and type of disease (PKD) affect
significantly the recurrence times of the kidney
infection.
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