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Abstract 

Real count data time series often show the phenomenon of the overdispersion. In this 
paper, we introduce the first-order integer-valued autoregressive process. The 
univariate marginal distribution is derived from the Delaporte distribution and the 
innovations are convolution of Poisson with �-fold zero modified geometric 
distribution, based on binomial thinning operator, for modelling integer-valued time 
series with overdispersion. Some properties of the model are derived. The methods of 
Yule–Walker, conditional lea st squares and conditional maximum likelihood are used 
for estimating of the parameters, and their asymptotic properties are established. The 
Monte Carlo experiment is conducted to evaluate the performances of these estimators 
in finite samples. The model is fitted to time series of the weekly number of syphilis 
cases that are overdispersed count data. 
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distribution; INAR (1) models. 
 

                                                        
* Corresponding author:  Tel: +986133331041; Email:  Parham_g@scu.ac.ir 

Introduction 

During the last decades, modelling count time series 
has been considered in many articles often as counts of 
events or individuals in consecutive time intervals. For 
example, they arise as the number of births at a hospital 
in successive months, the number of road accidents and 
the number of diseases in a certain area in successive 
months. The integer-valued autoregressive (INAR) time 
series models are constructed usually based on the 
binomial thinning operator that introduced by Steutel 
and van Harn [1], which is defined as follows: ρ ∘ X = ∑ ��	�
� ,          � > 0,                                  (1) 

 
and 0 otherewise, where the counting series � ≔{��}��� is a sequence of independent identically 

distributed Bernoulli random variables with fixed 
success probability � ∈ [0,1] and � is a non-negative 
integer valued random variable independent of �.  

McKenzie [2] and Al-Osh and Alzaid [3] introduced 
the INAR(1) model as follows 

 �� = � ∘ ���� + �� ,                � ∈ �,                         (2) 
 
where 0 ≤ � < 1, {��}�∈"   is a sequence of 

independent and identically distributed integer valued 
random variables, called innovations and for each �, �� 
is independent of ���# for all $ ≥ 1, &'��( = )* and +,-'��( = .*/. From the results of Al-Osh and Alzaid 
[3], we have � ∈ [0,1( and � = 1 are the conditions of 
(strictly) stationarity and non-stationarity of the process {��}�∈", respectively. The autocorrelation function 
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(ACF) of model (2) is �0 = 12--'�� , ���0( = �0, for 3 ≥ 0, that is, it is of AR(1) type, but the only non-
negative autocorrelation is allowed. Also, � = 0 '� >0( implies the independence (dependence) of the 
observations of {��}�∈"  . The mean and variance of {��}�∈" are given by )	: = &'��( = 67��8           and        .	/: = +,-'��( =8679:7;��8; . 

A commonly used variability measure of a random 
variable is the Fisher index of dispersion, defined by <=	 = +,-'�( &'�(⁄ , that is a measure of aggregation 
or disaggregation, for more details see [4], page 163. 
Thus, the Fisher index of dispersion of {��}�∈"  in 
Equation (2) is given by <=	 = ?@798�98 .                                                          (3) 

 
If A	'B( and A*'B( denote the probability generating 

function (pgf) of {��}�∈" and {��}�∈", respectively, then 
the stationary marginal distribution of {��}�∈" can be 
determined from the equation A	'B( = A	'1 − � +�B(. A*'B(, This allows for various types of marginal 
distributions, including the Poisson [3], geometric [5], 
generalized Poisson [6] and Poisson-geometric 
distributions [7] . 

Overdispersion is an important concept in the 
analysis of discrete data. The Poisson INAR process is 
not suitable for modelling overdispersed counts because 
Poisson distribution is equidispersed. Various methods 
have been proposed to overcome it. A simple approach 
is to change the innovation distribution. Another 
suggestion to deal with overdispersion is to change the 
type of thinning operator, which often makes change the 
distribution of innovation. The third approach is to 
change the marginal distribution of the process. A 
reason for overdispersion, reported in the literature, is 
the presence of a positive correlation between the 
monitored events [8-9].  Jazi, Jones and Lai [10] 
introduced the INAR(1) process with geometric 
innovations. Jazi, Jones and Lai [11] discussed an 
INAR(1) process with zero-inflated Poisson 
innovations. Barreto-Souza [12] proposed INAR 
processes with zero-modified geometric marginals. 
Bourguignon and Vasconcellos [13] studied a new 
stationary INAR(1) process with power series 
innovations. Jose, and Mariyamma [14] introduced an 
INAR(1) model with Poisson-negative binomial 
marginal distribution. Fernáandez-Fontelo Fontdecaba, 
Alba, Puig [15] introduced a generalization of the 
classical Poisson-based INAR models whose 
innovations follow a Hermite distribution. Kim and Lee 
[16] considered the INAR (1) process with Katz family 

innovations. An INAR (1) process for modelling count 
time series with equidispersion, underdispersion and 
overdispersion was studied by Bourguignon and Weiß 
[17]. Bourguignon, Rodrigues and Santos-Neto [18] 
introduced two new binomial thinning INAR (1) 
processes with double Poisson (DP) and GP 
innovations, denoted by INARDP (1) and INARGP (1), 
respectively, for modelling non-negative integer-valued 
time series with equidispersion, underdispersion or 
overdispersion. A common way for treating 
overdispersion in count data is to use the mixed Poisson 
distributions, which is obtained by introducing a latent 
random effect on the mean of a Poisson distribution. 
Barreto-Souza [19] proposed class of overdispersed 
INAR (1) processes with marginals belonging to a 
general class of mixed Poisson distributions.  

The Delaporte distribution is a discrete probability 
distribution that has received attention in actuarial 
science. It can be defined using the convolution of a 
negative binomial distribution with a Poisson 
distribution. Just as the negative binomial distribution 
can be viewed as a Poisson distribution where the mean 
parameter is itself a random variable with a gamma 
distribution, the Delaporte distribution can be viewed as 
a compound distribution based on a Poisson 
distribution, where there are two components to the 
mean parameter: a fixed component, which has the λ 
parameter, and a gamma-distributed variable 
component, which has the α  and β parameters. The 
distribution is named for Pierre Delaporte, who 
analyzed it in relation to automobile accident claim 
counts in 1959. For the special value of parameters this 
distribution reduces to Poisson, Polya, or geometric 
distribution.   

In this paper, we estimate the unknown parameters 
of a first-order integer-valued autoregressive that the 
univariate marginal distribution is derived from 
the Delaporte distribution and the innovations are 
convolution of Poisson with �-fold zero modified 
geometric distribution. We denote this model by 
DELINAR (1). This model is suitable for modelling 
non-negative integer-valued time series with 
overdispersion. The article is organized as follows. The 
model is defined in Section 2 and we derive the 
transition probabilities of the model based on marginal 
and innovation mass function. Also, some of properties 
model are outlined. In Section 3, estimation methods for 
the model parameters and asymptotic distribution for 
some parameters are discussed. Section 4 discusses 
some simulation results for the estimation methods. In 
Section 5, the model is applied to a well-known data set. 
Finally, we conclude in Section 6. 
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INAR (1) process and its marginals 

In this section, we study structural properties of this 
process, such as, the distributions of the marginal and 
innovation, mean and variance of these distributions, 
autocovariance function, conditional expectation and 
conditional variance of the marginal random variable, 
and transition probabilities. 

 

The Delaporte distribution 

The Delaporte distribution is a Poisson mixture 
proposed to fit the number of claims in an insurance 
portfolio [20]. The Delaporte distribution has 
probability generating function  D	'�( = E�F'���(' ��9G'���((H,                                (4) 

 
where |�| ≤ 1 ,  J > 0 ,  �, K > 0. This shows that it 

is the convolution of a negative binomial and Poisson 
random variables (see, [20] and [21]). The probability 
mass function (pmf) corresponding to (4) is given by L'M( = N'� = M( = ∑ O'�9H(PQRFSQTGTO'H(�!'�9G(VWT'X��(!X�
Y  , 

 
for  M = 0, 1, 2, …,  and  �, K, J > 0. This 

distribution is denoted by Del'J, �, K(. 
   Differentiating the probability generating function 

of Delaporte distribution, it is easy to show  )	: = &'�( = J + �K                                            (5) 
 
and      .	/: = +,-'�( = J + �K'1 + K(.                          (6) 
 
Thus, the dispersion index, which is the variance-to-

mean ratio, is given by  =	 = :_;6_ = 1 + HG;F9HG . 

 
It follows that this distribution shows 

overdispersion.  
 
 

INAR(1) process with convolution Poisson with `-fold 

zero modified  geometric distribution 

In this section we consider a stationary integer 
valued process {��}�∈" in (2) with Del(J, �, K( marginal 
distribution, where � ∈ (0, 1), and {��}�∈" is a sequence 
of i.i.d. random variables. Let Φ	'B( and Φ*'B( be the 
alternative probability generating function of the 
random variables ��  and ��, respectively. From (2) and 
the stationarity of the process  {��}�∈" it follows that the 
random variable �� has the alternative probability 
generating function (apgf) 

Φ*b'B( = Φ	b'B(Φ	bQc'�B(= E�F'��8(d e� + '1 − �( 11 + KBfH. 
 
Thus, it follows that the innovations sequence  {��}�∈"   can be represented as  �� = �� + �/, where ��~ h2(J'1 − �() and �/ are �-fold convolutions of 

zero-modified geometric distribution. Therefore, the 
expectation and the variance of the random variable �� 
are  )*: = &'��( = '1 − �('J + �K( = '1 − �()	, 

and .*/: = +,-'��( = '1 − �([J + �K'1 +'1 + �(K(] = '1 − �/(.	/ − �'1 − �()	. 
 
The conditional distribution of  ��  given  ���� has 

the form N�i = h'�� = j|���� = k(=  h'� ∘ ���� + �� = M�|���� = M�(. 
 
Now, BmnQco : = ρ ∘ Xp��|Xp��~binomial'Xp��, ρ(, 

also εp is independent of Xp�� and is convolution of two 
random variables with distribution of P'y,o(~Po'λ'1 −ρ(( and �-fold convolutions of zero-modified geometric 

(ZMG) with parameters N = ��9G  and pY, where NY ='�98G(�9G   is probability mass at zero. Therefore, it can be 

written as     h'�� = M�|���� = M���( = h|}	bQc8 + h'F,8( +�<�~D'�,��( = M��     

             = ∑ h'�<�~D =Xb�
YB( ∑ h'��� {Xb��,XbQc} �
Y }	bQc8 = �(h|h'F,8( = M� − B −��,   (7) 
 
where, h|h'F,8( = �� = PQR'cQ�([F'��8(]��!  ,      � = 0,1,2, ⋯,   

 h|}	bQc8 = k� = �M���k � ��'1 − �(	bQc�� ,   k =0,1, ⋯ , M���, 
 
and  �FZMG'�,��( = ∑ Z�H�
� , such that 

h'�� = 3( = � hY 3 = 0'1 − �( K0'1 + K(09�         3 = 1,2, ⋯ 

 

where  pY = ρ + '1 − ρ( ��9� is probability mass at 

zero. 
The conditional expectation and the conditional 

variance are given, respectively, by 
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&'��|����( = ����� + '1 − �()	    
   
and     
 +,-'��|����( = �'1 − �(���� + '1 − �/(.	/ −�'1 − �()	. 
 

Parameter estimation and asymptotic properties 

Assume that we have n observations ��, �/, … , �� 
from DELINAR(1) process. In the DELINAR(1) model 
we have four parameters, we assume that � is known, 
therefore, three parameters �, J and K have to be 
estimated. Three methods will be considered in this 
section, Yule-Walker method (YW), conditional least 
squares method (CLS), and conditional maximum 
likelihood method (CML). 

 

Yule-Walker estimation  

Let us consider the Yule–Walker estimators of the 
unknown parameters �, J and K. Because � = ��, E'X�(  =  J + �K and  Var'X�(  =  J + �K'1 + K(, we 
have that the Yule–Walker estimators are ���� = ∑ '	b�	�('	bQc�	�(�b�;∑ '	b�	�(;�b�c ,        

J��� = �� − � d;�	�H ,             
K��� =  d;�	�H  ,              
    
where ��  and ¡/  are  the sample mean and sample 

variance, respectively. 
 

Conditional least squares estimation 

We derive the conditional least squares estimators of 
the parameters �, ) and ./, where  ) = E'X�(  =  J +�K and ./ = Var'X�(  =  J + �K'1 + K(. We use the 
two-steps conditional least squares method [22]. In the 
first step, we derive the conditional least squares 
estimators of the parameters � and ). They are obtained 
by minimizing the sum of squares 

¡�¢£d'�, )( = ¤ E��/�
�
/ = ¤'�� − &[��|����](/�

�
/= ¤'�� − ����� − '1 − �()(/�
�
/ . 

 
Hence, the conditional least squares estimators of 

the parameters � and ) are ��¢£d = '���( ∑ 	b	bQc�b�; �∑ 	b ∑ 	bQc�b�;�b�;'���( ∑ 	bQc;�b�; �'∑ 	bQc�b�; (;  , 

and  )̂¢£d = ∑ 	b�b�; �8¦§¨© ∑ 	bQc�b�;'���('��8¦§¨©(  . 

 

In the second step, we consider the estimation of the 
parameter ./. We define a new random variable +� as +� = '�� − &'��|����((/ = '�� − ����� − '1 − �()(/. 
It is easy to show that &'+�|����( = +,-'��|����( =�'1 − �(���� + '1 − �/(./ − �'1 − �(). 

Now, the conditional least squares estimator of the 
parameter ./ can be obtained by minimizing the sum of 
squares 

¡/¢£d'./( = ¤'+� − &[+�|����](/�
�
/ = ¤'+� − �'1 − �('���� − )( − '1�

�
/− �/(./(/. 
 
Thus, the conditional least squares estimator of the 

parameter ./ is .�ª#�/
= ∑ '�� − ��ª#����� − '1 − ��ª#�()̂ª#�(/ −��
/ ��ª#�'1 − ��ª#�( ∑ '���� − )̂ª#�(��
/'« − 1('1 − ��¢£d/ ( . 

 
Finally, the conditional least squares estimators for 

the parameters J, K are, respectively, 
 K�¢£d =  :¦¬®; �6¦¬®H ,          J�¢£d = )̂¢£d − �K�¢£d. 

 

Proposition. The estimators  ��ª#� and )̂ª#�   are 
strongly consistent for � and  ) respectively and satisfy 
the asymptotic normality   √«[' ��ª#�  , )̂ª#�(° − '�, )(°] �→ ²/ ''0,0(°, +��³+��( 

as n→ ∞, where  

+�� = µ 1./ 0
0 1'1 − �(/

¶ 

 
and W being a 2×2 symmetric matrix given by  ³ = '1 − �( · �)∗¹ �'1 − �(./�'1 − �(./ '1 − �('1 − �/(./º  

where )∗¹ is third central moment of  �� . 
 

Proof. It can be verified that the regularity 
conditions given in Theorem 3.2 of [23], are satisfied by 
DELINAR(1) process.  So, the proof is achieved.  

 

Conditional maximum likelihood estimation 

Let ��, �/, … , �� be a random sample of size n from 
a stationary DELINAR(1) process with parameters �, J  
and K. The conditional log-likelihood function is given 
by 1»'�, J, K( = ∑ log h'�� = M�|���� = M���(��
/ , 
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where h'�� = j|���� = k( is defined in (7). The 

conditional maximum likelihood estimators are obtained 
by maximizing 1»'�, J, K(. In practice, there will be no 
closed form for the CML estimates and numerical 
methods are needed.  

 

Simulation 

In this section we show some simulation results for 

the different values of the parameters. All simulations 
were carried out using the R programming language. 
We generate the sample sizes n = 100, 200, 400, 800 
from the DELINAR(1) process, and the number of 
Monte Carlo replications for each case is 1000. In this 
simulation, we set (a) '�, K, J( = '0.1,2,6(, 
(b) '�, K, J( = '0.2,3,1(, (c) '�, K, J( = '0.5,1,3(  and 
(d) '�, K, J( = '0.8,1.5,1(. Tables 1, 2, 3 and 4 show the 
empirical bias and mean square error (MSE) of the 

 
Table 1. Empirical bias and MSE (in parentheses) of estimators of parameters for  'ρ, β, λ( = '0.1,2,6(. 

 Estimator of  ρ Estimator of β Estimator of λ 
n Â¦ÃÄ Â¦ÅÆÇ Â¦ÅÈÆ ÉÊÃÄ ÉÊÅÆÇ ÉÊÅÈÆ ËÌÃÄ ËÌÅÆÇ ËÌÅÈÆ 

100 
-0.015 
(0.010) 

-0.012 
(0.010) 

-0.001 
(0.006) 

-0.069 
(0.173) 

-0.093 
(0.180) 

-0.110 
(0.250) 

0.099 
(0.626) 

0.147 
(0.650) 

0.181 
(0.881) 

200 
-0.012 
(0.005) 

0.011 
(0.005) 

-0.008 
(0.004) 

-0.002 
(0.077) 

-0.013 
(0.077) 

-0.005 
(0.073) 

0.009 
(0.298) 

0.034 
(0.300) 

0.018 
(0.286) 

400 
-0.007 
(0.002) 

-0.007 
(0.002) 

-0.006 
(0.002) 

-0.014 
(0.036) 

-0.019 
(0.037) 

-0.014 
(0.036) 

0.024 
(0.145) 

0.035 
(0.145) 

0.024 
(0.143) 

800 
-0.002 
(0.001) 

-0.002 
(0.001) 

-0.003 
(0.001) 

-0.005 
(0.018) 

-0.007 
(0.018) 

-0.006 
(0.016) 

0.004 
(0.065) 

0.010 
(0.066) 

0.007 
(0.061) 

 

Table 2. Empirical bias and MSE (in parentheses) of estimators of parameters for 'Â, É, Ë( = 'Í. Î, Ï, Ð(. 
 Estimator of  ρ Estimator of β Estimator of λ 

n Â¦ÃÄ Â¦ÅÆÇ Â¦ÅÈÆ ÉÊÃÄ ÉÊÅÆÇ ÉÊÅÈÆ ËÌÃÄ ËÌÅÆÇ ËÌÅÈÆ 

100 
-0.022 
(0.009) 

-0.018 
(0.009) 

-0.008 
(0.005) 

-0.057 
(0.093) 

-0.079 
(0.198) 

-0.048 
(0.146) 

0.113 
(0.552) 

0.156 
(0.567) 

0.096 
(0.329) 

200 
-0.006 
(0.004) 

-0.004 
(0.004) 

-0.001 
(0.002) 

-0.033 
(0.096) 

-0.043 
(0.097) 

-0.028 
(0.068) 

0.057 
(0.284) 

0.077 
(0.286) 

0.047 
(0.155) 

400 
-0.005 
(0.002) 

-0.004 
(0.002) 

-0.002 
(0.001) 

-0.007 
(0.051) 

-0.012 
(0.051) 

-0.009 
(0.036) 

0.013 
(0.139) 

0.025 
(0.140) 

0.018 
(0.074) 

800 
-0.002 
(0.001) 

-0.002 
(0.001) 

-0.000 
(0.000) 

-0.007 
(0.026) 

-0.009 
(0.026) 

-0.005 
(0.017) 

0.016 
(0.074) 

0.020 
(0.074) 

0.013 
(0.037) 

 
Table 3. Empirical bias and MSE (in parentheses) of estimators of parameters for  'ρ, β, λ( = '0.5,1,3(. 

 Estimator of  Â Estimator of É Estimator of Ë 
n Â¦ÃÄ Â¦ÅÆÇ Â¦ÅÈÆ ÉÊÃÄ ÉÊÅÆÇ ÉÊÅÈÆ ËÌÃÄ ËÌÅÆÇ ËÌÅÈÆ 

100 -0.023 
(0.008) 

-0.014 
(0.007) 

-0.008 
(0.005) 

-0.042 
(0.107) 

-0.062 
(0.115) 

-0.036 
(0.101) 

0.091 
(0.496) 

0.132 
(0.532) 

0.078 
(0.463) 

200 -0.013 
(0.004) 

-0.009 
(0.003) 

-0.006 
(0.002) 

-0.045 
(0.067) 

-0.057 
(0.069) 

-0.042 
(0.056) 

0.108 
(0.280) 

0.130 
(0.293) 

0.100 
(0.236) 

400 -0.005 
(0.001) 

-0.003 
(0.001) 

-0.001 
(0.001) 

-0.014 
(0.033) 

-0.019 
(0.034) 

-0.009 
(0.024) 

0.037 
(0.143) 

0.045 
(0.145) 

0.026 
(0.106) 

800 -0.004 
(0.001) 

-0.003 
(0.001) 

-0.000 
(0.000) 

-0.014 
(0.017) 

-0.016 
(0.017) 

-0.007 
(0.012) 

0.025 
(0.069) 

0.030 
(0.070) 

0.011 
(0.053) 

 
Table 4. Empirical bias and MSE (in parentheses) of estimators of parameters for 'ρ, β, λ( = '0.8,1.5,1(. 

 Estimator of  Â Estimator of É Estimator of Ë 

n Â¦ÃÄ Â¦ÅÆÇ Â¦ÅÈÆ ÉÊÃÄ ÉÊÅÆÇ ÉÊÅÈÆ ËÌÃÄ ËÌÅÆÇ ËÌÅÈÆ 

100 -0.046 
(0.006) 

-0.028 
(0.004) 

-0.003 
(0.000) 

-0.152 
(0.274) 

-0.165 
(0.284) 

0.000 
(0.161) 

0.339 
(0.959) 

0.375 
(1.037) 

0.037 
(0.307) 

200 -0.028 
(0.003) 

-0.020 
(0.002) 

-0.002 
(0.000) 

-0.124 
(0.169) 

-0.132 
(0.173) 

-0.014 
(0.075) 

0.262 
(0.611) 

0.283 
(0.620) 

0.042 
(0.145) 

400 -0.012 
(0.001) 

-0.008 
(0.001) 

-0.000 
(0.000) 

-0.041 
(0.085) 

-0.044 
(0.086) 

0.001 
(0.038) 

0.099 
(0.283) 

0.106 
(0.287) 

0.013 
(0.070) 

800 -0.005 
(0.000) 

-0.003 
(0.000) 

-0.000 
(0.000) 

-0.025 
(0.039) 

-0.027 
(0.039) 

-0.005 
(0.017) 

0.058 
(0.136) 

0.060 
(0.137) 

0.015 
(0.032) 
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estimators obtained from the YW, CLS and CML 
methods. These tables show that the bias and standard 
error of the estimates of the parameters decrease as the 
sample size increases for all cases. As can be seen from 
the tables, CLS and YW methods show similar MSE 
behaviors. However the CML estimators have the best 
implementation on empirical bias and MSE compared 
with the YW and CLS estimators, because both biases 
and MSE for the CML estimators are smaller than those 
for the other methods. The bias of the estimators of � 
and K are negative, so they tend to underestimate of the 
parameters, and the bias of the estimators of K is 
positive, so it tends to overestimate the parameter.   

 

Real data 

The application of the model was illustrated in this 
section by a real data set. This data set gives the number 
of syphilis cases in the United States monthly from 
2007–2010 in Mid-Atlantic state given in tsinteger 
package [24] available for download at data (syphillis). 
The data consist of 209 observations, and they were 
already analyzed in [25] and [18]. 

The sample mean is 24.63, the sample variance is 
105.68, and the first-order autocorrelation is 0.2322. 
The empirical Fisher index of dispersion is 4.29. The 
sample variance is much larger than the sample mean. 
Hence, the data seems to be overdispersed. Figure 1 
shows the time series plot, the ACF and partial ACF 
(PACF). The ACF plot indicates that an integer-valued 
AR(1) my be suitable. 

Table 5 gives the CML estimates (with 
corresponding standard errors in parentheses), Akaike 
information criterion (AIC) and Bayesian information 
criterion (BIC) for the fitted models. The values of the 
AIC and BIC are smaller for the DELINAR(1) model 
compared to those values of the INARP(1) model. Then, 
the suitable model by CML estimation is �� = 0.27 ∘ ���� + �� ,                � ∈ �, 

 
where �� follows a Del(5.63, 2, 6.07) and �� is a 

convolution of two random variables with distribution 
of Poisson(4.11) and zero-modified geometric with 
parameters N = 0.37, and NY = 0.14. The observed, 
fitted and forecasting values are shown in Figure 2 with 

 

 

Figure 1.  Time series of the number of syphilis cases and its sample ACF and PACF 
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black, red and blue lines, respectively. Figure 3 shows 
ACF and PACF of residuals, and there are not serial 
correlations in the residuals. It means that the proposed 
model was suitable to fit the data.  

 

Results and Discussion 
We discussed a stationary first-order nonnegative 

integer-valued autoregressive model for count data 
process based on binomial thinning operator. In this 
model the distribution of the innovations are 
convolution of a Poisson and �-fold zero modified 
geometric distribution or marginal distribution of �� is 
Delaporte distribution This model is suitable for 
modelling overdispersed count time series data. 

Table 5. Estimates of parameters, MSE (in parentheses), AIC, BIC and estimated quantities for the number of syphilis cases 

Model Parameter CML estimate AIC BIC ÓÔ ÕÔÎ  Ö×Ô 

DELINAR (1) � K J 

0.2704 (0.0008)  
6.0660 (0.0033) 
5.6312 (0.0039) 

1642.159 1652.186 17.7632 91.3598 5.143 

PINAR (1) � J 
0.1480 (0.0261) 
21.063 (0.7087) 

2016.54 2023.22 24.72 24.72 1 

 

 
Figure 2. The plot of observed, fitted and forecasting values. 

 
Figure 3. The ACF and PACF of residuals.  
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Afterward, we obtained some of the properties of the 
model and calculate YW, CLS and CML estimators of 
the parameters. The conditional maximum likelihood 
estimators of parameters have not closed form, 
therefore, numerical methods are needed. By using 
criterion function of the CLS, we see that the parameters 
of J and K are not estimable, so we use the 
reparametrization, ) = J + �K and ./ = J +�K'1 + K(. In the first step, by the conditional mean 
prediction error estimate parameter of the model, �, and 
the mean of ��. To obtain an estimate of ./ in the 
second step, we use the normal equations based on the 
conditional variance prediction error. Since there is 
relation between parameters, we can find only joint 
asymptotic distribution of � and ) that estimate based 
on criterion function of the CLS. In the simulation 
study, we compare YW, CLS and CML estimators. The 
simulation results show that the YW and CLS methods 
produce estimators with similar performances and that 
CML is better. Thus, we recommend the use of the 
CML method to estimate the model parameters of the 
DELINAR(1) process. Finally, we fitted the model to 
real data set to show the number of syphilis cases in the 
United States monthly from 2007–2010. The result 
fitted model shows that based on the AIC, BIC criterion, 
our model is better, compared to those values of the 
INARP(1) model. Also, observed, fitted and forecasted 
values show in the Figure 3.  In this article, we have 
assumed � = 2. It can be increased, or it can be 
considered unknown. It would be interesting to extend 
the model to the autoregressive model of order greater 
than 1.  
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