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Abstract 

In this paper, a quantum plasma system was considered to study a nonlinear 

turbulence model. The properties of nonlinear propagation of the solitary potential wave 

in two-dimensional heterogeneous quantum magnetoplasma were investigated using the 

quantum hydrodynamic model. It was assumed that in addition to the heterogeneity in 

this system, there is a magnetic field. If the collision frequency between the heavy 

particles (ions and neutral particles) is negligible, a nonlinear equation in two 

dimensions (2D), as well as the solutions of the plasma electrostatic potential, are 

obtained. For this purpose, the method of indeterminate coefficients, dimensionless 

conversion, travel wave conversion, etc. were used. A series of corresponding physical 

quantity properties was described by solving the individual solution of wave obtained 

for a quantum plasma system with a nonlinear model. The effects of the quantum Bohm 

potential on the single wave structure of the electrostatic potential are shown 

numerically in Figures 1 and 2. It was found that increasing the numerical density and 

amplitude of this wave decreases. The present study may play a significant role in 

understanding the properties of potential wave propagation in dense astrophysical 

plasma where quantum effects are useful. 

 
Keywords: Inhomogeneous quantum magnetoplasma system; Nonlinear dynamic disturbed; Traveling 

wave transformation; Nonlinear partial differential equations. 
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Introduction 

Classical plasmas (due to high temperatures and low 

density) are different from quantum plasmas (due to low 

temperatures and high density). By lowering the plasma 

temperature and wavelength comparable to the 

dimensions of the desired system, the plasma behaves 

like a Fermi gas and the behavior of charged particles is 

greatly affected by quantum effects [1-5]. 

The field of quantum plasmas has attracted a lot of 

attention in the plasma physics community due to its 

wide application. Numerous investigations in dense 
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astrophysical environments (such as white dwarfs and 

neutron stars) [6], in dusty plasma [7, 8], in 

microelectronic devices [9], in plasma produced by 

intense laser beam [10], nonlinear optics [11, 12] etc., to 

understand the quantum effects on the linear and 

nonlinear wave propagation behavior in these systems. 

Much research work has been devoted to dusty 

magnetic plasma, as it plays an important role in the 

study of various fields of plasma science [13-15]. Jung 

et al. [16] investigated the quantum effects of electron-

electron scattering in a high-temperature dense plasma. 

Kremp [17] discussed kinetic theory in a multiparticle 

system for time-dependent electromagnetic fields. 

Shukla [18] studied the behavior of the alpha wave in 

parallel with the magnetic field in quantum plasma [13-

15]. 

Today, many studies have been done by researchers 

to solve nonlinear problems. Nonlinear equations play 

an important role in various fields of science including 

fluid dynamics, engineering, mathematics, and plasma 

physics [19-25]. Recently, many methods have been 

used to estimate the solution of nonlinear partial 

differential equations (NLPDE) [26-28]. Using the 

quantum hydrodynamic model (QHD) and the laws of 

conservation of motion, the classical plasma fluid model 

can be changed to the quantum state. These changes are 

caused by quantum statistics, including quantum 

diffraction, and an additional term called the Boehm 

potential has appeared in the equations of motion of 

charged particles. Propagation of linear and nonlinear 

waves in heterogeneous quantum plasma using the 

QHD model has been the subject of numerous 

researches. Manfredi et al. [1] investigated wave 

propagation in collisionless quantum plasma. Shukla 

and Stanflo [29] showed that there are new drifts in non-

uniform quantum magnetoplasms, and the frequency of 

this drift wave led to a change in the electron Bohm 

potential. El Taibani and Wadati [30] studied the 

nonlinear quantum dust acoustic wave in a non-uniform 

quantum dust plasma and stated that the change of 

solitons is related to some plasma parameters. Massoud 

et al. [31] investigated the linear and nonlinear 

properties of quantum dust acoustic waves in a scattered 

quantum plasma and showed that quantum statistical 

terms and Bohm potential significantly change the 

length scale of these structures. The presence of 

transverse disturbance introduces an anisotropy in the 

system, which modifies the wave structure and stability 

of the system [32, 33]. Using the tanh-coth method [34] 

is a direct algebraic approach to create exact single-

wave solutions in nonlinear partial differential 

equations. Sirendaoerji [35] estimated several new 

individual responses for the generalized mKdV equation 

based on the tanh hyperbolic function method. This 

method of complex algebraic calculations is of great 

importance in the search for exact solutions to arbitrary 

nonlinear equations [36-40]. 

In this paper, the nonlinear propagation 

characteristics of solitary waves in a heterogeneous 

quantum magnetoplasma system are investigated using 

the quantum plasma nonlinear dynamics model (QHD 

model). Here, using physico-mathematical methods and 

theories including the tanh-coth method, the quantum 

plasma system is investigated and the single solutions of 

wave in the nonlinear model are discussed as follows. In 

part 2, to investigate the nonlinear partial differential 

equation, we first used dimensionless conversion and 

then mobile wave conversion. In part 3, we obtain the 

individual solution of wave for the plasma potential in 

the electrostatic state. In the last part, in a conclusion, 

the method used was introduced as an efficient method. 

Therefore, by estimating single-wave solutions, the 

structural properties of other physical states can be 

predicted. 

 

Mathematical Formulation 

1. Set of nonlinear equations 

A heterogeneous quantum magnetoplasm consisting 

of electrons, ions, and neutrals in the background was 

considered here. On the other hand, the magnetic field 

assumed equilibrium in the z-direction and density 

gradient and temperature in the x-direction. Regardless 

of the quantum statistical contribution and bohemian 

potential of ions and using the QHD model, the 

equations of electrons and ions will be as follows: 

𝑚𝑒𝑛𝑒(𝜕𝑡 + 𝑉𝑒 . ∇)𝑉𝑒 = −𝑒𝑛𝑒 (𝐸 +
1

𝐶
𝑉𝑒 × 𝐵°) − ∇𝑃𝑒

+
ℏ2𝑛𝑒
2𝑚𝑒

∇(
∇2√𝑛𝑒

√𝑛𝑒
) 

(1) 

𝑚𝑖𝑛𝑖(𝜕𝑡 + 𝑉𝑖 . ∇)𝑉𝑖 = +𝑒𝑛𝑖 (𝐸 +
1

𝐶
𝑉𝑖 × 𝐵°)

− 𝑚𝑖𝑛𝑖𝜐𝑖𝑛𝑉𝑖 
(2) 

 

In this relation 𝑬 = −𝛁𝛟 the electrostatic field is the 

electrostatic potential, 𝑽𝒆, 𝑷𝒆, 𝒏𝒆, 𝒎𝒆 , and 𝒆 are the 

Fermi velocity, pressure, density, mass, and charge of 

the electron, respectively (we have similarities for ions 

with index i, and vin is the frequency of collisions 

between ions and neutrals) [41, 43]. 

Case 1. Using the parallel component of equation 1 

(electron pressure placement  𝑷𝒆 =
ℏ𝟐(𝟑𝝅𝟐)𝟐 𝟑⁄

𝟓𝒎𝒆
𝒏𝒆
𝟓 𝟑⁄

, 

expansion by the Taylor series and boundary conditions 

[44]) and the velocity component of equation 2 can be 

written: 
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(
𝑛𝑒̃
𝑛𝑒0
) =

3𝑒ϕ

2𝐾𝑇𝑒
+
3𝑒2ϕ2

8𝐾2𝑇𝑒
2 +

9𝑒ℏ2

16𝑚𝑒𝐾
2𝑇𝑒

2 ∇
2ϕ 

 

(3) 

(
𝑛𝑖̃
𝑛𝑖0
) =

3𝑒ϕ

2𝐾𝑇𝑒
+
3𝑒2ϕ2

8𝐾2𝑇𝑒
2 +

9𝑒ℏ2

16𝑚𝑒𝐾
2𝑇𝑒

2 ∇
2ϕ

−
1

4𝜋𝑒𝑛0
∇2ϕ 

(4) 

 

Case 2. Similarly for electron pressure placement 

  𝑷𝒆 =
ℏ𝟐(𝟑𝝅𝟐)𝟐 𝟑⁄

𝟐𝒎𝒆
𝒏𝒆
𝟓 𝟑⁄

 [25, 26]: 

(
𝑛𝑒̃
𝑛𝑒0
) =

3𝑒ϕ

5𝐾𝑇𝑒
+
3𝑒2ϕ2

50𝐾2𝑇𝑒
2 +

3

5
(3𝜋2𝑛0)

−2 3⁄ (
∇2√𝑛𝑒

√𝑛𝑒
) (5) 

 

(
𝑛𝑖̃
𝑛𝑖0
) =

3𝑒ϕ

5𝐾𝑇𝑒
+
3𝑒2ϕ2

50𝐾2𝑇𝑒
2
−

𝐾𝑇𝑒
4𝜋𝑒2𝑛0⏟    

 ∇2ϕ + 
3

10
(
5

3
) (3𝜋2𝑛0)

2 3⁄

⏟            
∇2ϕ 

                                                         𝜆𝑒
2                                     𝐻2 

(6) 

 

 

Assuming the frequency of the quantum collision is 

small (𝝂𝒊 ≪
𝝎𝒊𝒏

𝑲
≪ 𝝂𝒆, and 𝑭(𝟎,𝝓) = 𝟎), the nonlinear 

dynamic model of the heterogeneous plasma is written 

as follows; for case 1. 

 
3

2

𝜕2ϕ

𝜕𝑡2
+ 𝐴0

𝜕2ϕ2

𝜕𝑡2
− 𝜆𝑒

2
𝜕4ϕ

𝜕𝑡2𝜕𝑦2
+𝐻2

𝜕4ϕ

𝜕𝑡2𝜕𝑦2
− 𝜚2

𝜕4ϕ

𝜕𝑡2𝜕𝑦2
 

 

−𝜔𝑖𝑛𝜚
2 𝜕3ϕ

𝜕𝑡𝜕𝑦2
+
3

2
𝜐∗

𝜕2ϕ

𝜕𝑡𝜕𝑦
−𝐵0

𝜕2ϕ2

𝜕𝑡𝜕𝑦
− 𝐶2

𝜕2ϕ

𝜕𝑧2
= 𝐹(𝜀,ϕ)                    (7) 

(

7) 

 

In here 𝑨𝟎 =
−𝟑𝒆

𝟒𝑲𝑻𝒆
, K the Boltzman constant, 𝑻𝒆 =

ℏ𝟐

𝟐𝒎𝒆𝑲
(𝟑𝝅𝟐𝒏𝒆𝟎)

𝟐
𝟑⁄  the temperature of electrons, 𝑩𝟎 =

𝟑(𝒍𝒏−𝒍𝒕)

𝟒𝑩
, B the magnetic field, 𝝀𝒆

𝟐 = (
𝑲𝑻𝒆

𝟒𝝅𝒆𝟐𝒏𝟎
) the electron 

fermi wavelength, 𝑯 = √
𝟗ℏ𝟐

𝟏𝟔𝒎𝒆𝑲𝑻𝒆
 quantum parameter, 

𝝊∗ = (
−𝟐𝒄𝑲𝑻𝒆

𝟑𝒆𝑩
)𝒍𝒏 the drift velocity, 𝑪 = √

𝑲𝑻𝒆

𝒎𝒊
 the 

quantum ion-acoustic speed, 𝝔 = √
𝑲𝑻𝒆

𝒎𝛀𝟐
 (𝛀 =

𝒆𝑩

𝑪𝒎𝒊
 is the 

ion cyclotron frequency), the ion Larmor radius at 

electron temperature in quantum plasma [41, 43] For 

case 2.  

 
3

5

𝜕2ϕ

𝜕𝑡2
+ 𝐶0

𝜕2ϕ2

𝜕𝑡2
− 𝜆𝑒

2
𝜕4ϕ

𝜕𝑡2𝜕𝑦2
+ 𝐻2

𝜕4ϕ

𝜕𝑡2𝜕𝑦2
− 𝜚2

𝜕4ϕ

𝜕𝑡2𝜕𝑦2
− 

 

𝜔𝑖𝑛𝜚
2 𝜕3ϕ

𝜕𝑡𝜕𝑦2
+
3

5
𝜐∗

𝜕2ϕ

𝜕𝑡𝜕𝑦
− 𝐷0

𝜕2ϕ2

𝜕𝑡𝜕𝑦
− 𝐶2

𝜕2ϕ

𝜕𝑧2
= 𝐹(𝜀,ϕ)                  (8) 

(8

) 

 

In here 𝑪𝟎 =
−𝟑𝒆

𝟐𝟓𝑲𝑻𝒆
, 𝑫𝟎 =

𝟑(𝒍𝒏−𝒍𝒕)

𝟏𝟎𝑩
 [43, 44]. 

 

2. Conversion without dimension 

To provide a turbulent individual wave solution, the 

mathematical equations of the nonlinear partial 

differential (7 and 8) must be dimensionless, so 

assuming 𝝍 = 𝒆𝛟/𝐊𝐓 , 𝚼 = 𝒚/𝝔, 𝚭 = 𝒛/𝝔, and 𝝉 =
𝛀𝒕 dimensionless transformations are obtained for these 

equations: In case 1. 

 
𝜕2𝜓

𝜕𝜏2
− 𝑝1

𝜕2𝜓2

𝜕𝜏2
− 𝑝2

𝜕4𝜓

𝜕𝜏2𝜕Υ2
− 𝑝3

𝜕3𝜓

𝜕𝜏𝜕Υ2
− 𝑝4

𝜕2𝜓

𝜕Ζ2

− 𝑝5
𝜕2𝜓

𝜕𝜏𝜕Υ
− 𝑝6

𝜕2𝜓2

𝜕𝜏𝜕Υ
= 𝐹(𝜀, 𝜓) 

(9) 

 

In here 𝒑𝟏 =
𝟏

𝟐
, 𝒑𝟐 =

𝟐

𝟑

(𝝀𝒆
𝟐+𝝔𝟐−𝑯𝟐)

𝝔𝟐
, 𝒑𝟑 =

𝟐

𝟑
𝝎𝒊𝒏, 𝒑𝟒 =

𝟐

𝟑
(
𝑪

𝜴𝝔
)𝟐, 𝒑𝟓 =

𝝊∗

𝛀𝝔
, and 𝒑𝟔 =

𝑲𝑻𝒆

𝟐𝒆𝑩𝒄
(𝒍𝒏 − 𝒍𝒕). 

 

In case 2. 

 
𝜕2𝜓

𝜕𝜏2
− 𝑞1

𝜕2𝜓2

𝜕𝜏2
− 𝑞2

𝜕4𝜓

𝜕𝜏2𝜕Υ2
− 𝑞3

𝜕3𝜓

𝜕𝜏𝜕Υ2
− 𝑞4

𝜕2𝜓

𝜕Ζ2

− 𝑞5
𝜕2𝜓

𝜕𝜏𝜕Υ
− 𝑞6

𝜕2𝜓2

𝜕𝜏𝜕Υ
= 𝐹(𝜀, 𝜓) 

(10) 

 

 

In here 𝒒𝟏 =
𝟏

𝟓
, 𝒒𝟐 =

𝟓

𝟑

(𝝀𝒆
𝟐+𝝔𝟐−𝑯𝟐)

𝝔𝟐
, 𝒒𝟑 =

𝟓

𝟑
𝝎𝒊𝒏, 𝒒𝟒 =

𝟓

𝟑
(
𝑪

𝛀𝝔
)𝟐, 𝒒𝟓 =

𝝊∗

𝛀𝝔
, and 𝒒𝟔 =

𝑲𝑻𝒆

𝟐𝒆𝑩𝒄
(𝒍𝒏 − 𝒍𝒕). On the other 

hand 𝑭(𝜺,𝝍) = 𝒇 (𝜺,
𝑲𝑻𝒆

𝒆𝝍
 ) and the dimensionless 

coefficients expressions 𝒑𝒊 and 𝒒𝒊 to the right of 

Equations 13 and 14 are omitted. 

 

3. Individual wave solutions 

In nonlinear dimensionless quantum plasma 

(Equations (9 and 10)), single wave solutions can be 

obtained using the following traveling wave converter. 

 

𝜖 = 𝛼Υ + 𝛽Ζ − 𝛾𝜏 (11) 

 

Where 𝜶, 𝜷 are wavenumbers and 𝜸 is wave 

frequency. By placing relation (11) in equations (9 and 

10) and assuming 𝝍 = 𝝍(𝝐) for case 1 we have: 

 

+2𝛾(𝑝6𝛼 − 𝑝1𝛾)
𝑑2𝜓2

𝑑𝜖2
+ (𝛾2 − 𝑝4𝛽

2 + 𝑝5𝛼𝛾)
𝑑2𝜓

𝑑𝜖2
− 

(𝛾2 − 𝑝4𝛽
2 + 𝑝5𝛼𝛾) 𝜓

𝑑2𝜓

𝑑𝜖2
+ 𝑝3𝛼

2𝛾
𝑑3𝜓

𝑑𝜖3
− 𝑝2𝛼

2𝛾2
𝑑4𝜓

𝑑𝜖4
= 𝐹(𝜀, 𝜓) 

 

(12) 

After sorting the above relation, we have 
𝑑4𝜓

𝑑𝜖4
+ 𝜒1

𝑑3𝜓

𝑑𝜖3
+ 𝜒2

𝑑2𝜓

𝑑𝜖2
+ 𝜒3𝜓

𝑑2𝜓

𝑑𝜖2
+ 𝜒4

𝑑2𝜓2

𝑑𝜖2

= 𝑄(𝜀, 𝜓) 
(13) 

 

For case 1. 
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𝜒1 = −
𝑝3

𝑝2𝛾
; 𝜒2 = −

𝛾2−𝑝4𝛽
2+𝑝5𝛼𝛾

𝑝2𝛼
2𝛾2

; 𝜒3 = +
𝛾2−𝑝4𝛽

2+𝑝5𝛼𝛾

𝑝2𝛼
2𝛾2

; 𝜒4 = −
2(𝑝6𝛼−𝑝1𝛾)

𝑝2𝛼
2𝛾

 
 

𝑄(𝜀, 𝜓) = −
𝐹(𝜀,𝜓)

𝑝2𝛼2𝛾2
          (14) 

(14) 

 

For case 2. The results for case 2 are quite similar to 

the results of case 1, except that in Equation 14, 

wherever 𝒑𝒊 was, 𝒒𝒊 must be replaced. 

 

 

Solitary of the Wave for the Plasma Potential in 

Electrostatic state 

 

In the nonlinear traveling wave without dimension 

(Equation 13) we consider the perturbation solution as 

follows [42]: 

𝜓(𝜖, 𝜀) =∑ 𝜓𝑖(𝜖) 𝜀
𝑖

∞

𝑖=0
 (15) 

 

First, we place equation (15) in the traveling wave 

relation (Equation (13)), then we extend the nonlinear 

expression to the perturbation parameter ε. By 

combining expressions with the same power 𝜺𝒊 and 

setting their coefficients to zero, a nonlinear equation is 

obtained. 

 
𝑑4𝜓0
𝑑𝜖4

+ 𝜒1
𝑑3𝜓0
𝑑𝜖3

+ 𝜒2
𝑑2𝜓0
𝑑𝜖2

+ 𝜒3𝜓0
𝑑2𝜓0
𝑑𝜖2

+ 𝜒4
𝑑2𝜓0

2

𝑑𝜖2
= 0 

(16) 

 

And quite similarly the linear equation is obtained: 

 
𝑑4𝜓1
𝑑𝜖4

+ 𝜒1
𝑑3𝜓1
𝑑𝜖3

+ (𝜒2 + (2𝜒4 + 𝜒3)𝜓0)
𝑑2𝜓1
𝑑𝜖2

+ 

4𝜒4
𝑑𝜓0
𝑑𝜖

𝑑𝜓1
𝑑𝜖

+ (2𝜒4 + 𝜒3𝜓0)
𝑑2𝜓0
𝑑𝜖2

𝜓1 = 𝑄(0, 𝜓0)     (17) 

(1

7) 

 

Assuming that Equation 16 has an individual wave 

solution, the answer to this equation can be written 

using the uncertain coefficient method of the hyperbolic 

function [42]. The general solution of the mKdV 

equation, using the auxiliary equation mapping method, 

will be as follows: 

 

𝜓(𝜖) =∑ 𝑎𝑖
𝑛

𝑖=0
𝐺𝑖(𝜖) +∑ 𝑏−𝑖

−𝑛

𝑖=−1
𝐺𝑖(𝜖)

+∑ 𝑐𝑖
𝑛

𝑖=2
𝐺𝑖−2(𝜖)

𝑑𝐺(𝜖 )

𝑑𝜖

+∑ 𝑑−𝑖
−𝑛

𝑖=−1
𝐺𝑖(𝜖)

𝑑𝐺(𝜖 )
𝑑𝜖            (18)⁄  

 

𝜓(𝜖) = 𝑎0 + 𝑎1𝐺(𝜖) + 𝑎2𝐺
2(𝜖) + 

𝑏1

𝐺(𝜖 )
+

𝑏2

𝐺2(𝜖)
+ 𝑐2

𝑑𝐺(𝜖 )

𝑑𝜖
+

𝑑1

𝑑𝐺(𝜖 )
𝑑𝜖 ⁄

𝐺(𝜖)
+ 𝑑2

𝑑𝐺(𝜖 )
𝑑𝜖 ⁄

𝐺2(𝜖)
+⋯                                           (19) 

Which 𝒂𝒊, 𝒃𝒊, 𝒄𝒊, and 𝒅𝒊 are constants. In exchange 

for 𝑮(𝝐) = 𝐭𝐚𝐧𝐡 (𝝐), and 𝝐 = 𝜶𝜰 + 𝜷𝜡 − 𝜸𝝉 results in 

the following derivatives: 

 
𝑑𝐺(𝜖 )

𝑑𝜖 
⁄ = 1 − tanh2(𝜖); 

𝑑2𝐺(𝜖 )
𝑑𝜖2 
⁄ = −2 tanh(𝜖) (1 − tanh2(𝜖)) +

(1 − tanh2(𝜖))
2
 ; . . . 

(20) 

 

Using the finite expansion, the expression tanh-coth 

can be written as follows, in which M is obtained using 

the HBM method. After determining the fixed 

parameters, an analytical solution 𝝍(𝝐, 𝒕) is obtained 

(these solutions can be traveling wave, soliton, or 

periodic solutions [36]. 

 

𝜓0(𝜖) =∑ 𝑎𝑘
𝑀

𝑘=0
𝐺𝑘(𝜖) +∑ 𝑏𝑘

𝑀

𝑘=1
𝐺−𝑘(𝜖) 

 

(21) 

𝜓0(𝜖) = 𝑎0 + 𝑎1tanh (𝜖) + 𝑎2tanh
2(𝜖) +

𝑏1
tanh (𝜖)

+
𝑏2

tanh2(𝜖)
 

(22) 

 

𝒂𝒊, 𝒃𝒊 are indeterminate constants that can be 

obtained by placing Equation 22 in Equation 16 and 

then combine the coefficients 𝐭𝐚𝐧𝐡 (𝝐)) By placing 𝒂𝒊 
and 𝒃𝒊 in relation (22) and by assuming one of them to 

be zero ( 𝒃𝟏 = 𝟎; 𝒃𝟐 = 𝟎);  

 

𝑎0 = −
12𝛼2𝑝3

2𝑝2+10𝑝5𝛼𝑝3𝑝2

2𝑝3(10𝑝2𝛼𝑝6−𝑝1𝑝3)
−

−100𝑝4𝑝2
2𝛽2+𝑝3

2

2𝑝3(10𝑝2𝛼𝑝6−𝑝1𝑝3)
; 𝑎1 =

12𝑝2𝛼
2𝑝3

10𝑝2𝛼𝑝6−𝑝1𝑝3
;  

𝑎2 =
6𝑝2𝛼

2𝑝3

10𝑝2𝛼𝑝6−𝑝1𝑝3
; 𝛾 =

𝑝3

10𝑝2
                                               (23) 

 

𝜓10 =
12𝛼2𝑝3

2𝑝2 + 10𝑝5𝛼𝑝3𝑝2
2𝑝3(10𝑝2𝛼𝑝6 − 𝑝1𝑝3)

−
−100𝑝4𝑝2

2𝛽2 + 𝑝3
2

2𝑝3(10𝑝2𝛼𝑝6 − 𝑝1𝑝3)
− 

6𝑝2𝛼
2𝑝3(tanh(𝜖))

2

𝑝1𝑝3−10𝑝2𝛼𝑝6
−
12𝑝2𝛼

2𝑝3tanh (𝜖)

𝑝1𝑝3−10𝑝2𝛼𝑝6
                                       (24) 

 

 

2) By assuming  𝒂𝟏 = 𝟎; 𝒂𝟐 = 𝟎 we have:  

 

𝑎0 = −
12𝛼2𝑝3

2𝑝2+10𝑝5𝛼𝑝3𝑝2

2𝑝3(10𝑝2𝛼𝑝6−𝑝1𝑝3)
−

−100𝑝4𝑝2
2𝛽2+𝑝3

2

2𝑝3(10𝑝2𝛼𝑝6−𝑝1𝑝3)
; 𝑏1 =

12𝑝2𝛼
2𝑝3

10𝑝2𝛼𝑝6−𝑝1𝑝3
 

𝑏2 =
6𝑝2𝛼

2𝑝3

10𝑝2𝛼𝑝6−𝑝1𝑝3
; 𝛾 =

𝑝3

10𝑝2
                                          (25) 

 

𝜓20 = −
12𝛼2𝑝3

2𝑝2 + 10𝑝5𝛼𝑝3𝑝2
2𝑝3(10𝑝2𝛼𝑝6 − 𝑝1𝑝3)

+
−100𝑝4𝑝2

2𝛽2 + 𝑝3
2

2𝑝3(10𝑝2𝛼𝑝6 − 𝑝1𝑝3)
+ 

12𝑝2𝛼
2𝑝3

(10𝑝2𝛼𝑝6 − 𝑝1𝑝3)tanh (𝜖)
+

6𝑝2𝛼
2𝑝3

(10𝑝2𝛼𝑝6 − 𝑝1𝑝3)(tanh(𝜖))
2 (26)

 

 

Then two single wave solutions are obtained as 

follows. 
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𝜓10(𝜖) = 𝐼0 + 𝐼1(2 − tanh (𝜖))tanh (𝜖) 

 
(27) 

𝜓20(𝜖) = 𝐼0 + 𝐼1
(2 tanh(𝜖) + 1)

tanh2(𝜖)
 (28) 

 

So that 𝑰𝟎 and 𝑰𝟏 are constants as follows: 

 

𝐼0 = −
6𝛼2𝑝2𝑝3 + 5𝛼𝑝2𝑝5 − 50(𝛽

2𝑝2
2𝑝4)/𝑝3 + 0.5𝑝3

10𝑝2𝛼𝑝6 − 𝑝1𝑝3
 

 

(29) 

𝐼1 =
6𝛼2𝑝2𝑝3

10𝑝2𝛼𝑝6 − 𝑝1𝑝3
 

 

(30) 

 

Where 𝝍𝟎 is a defined function (obtained from 

relations (27) and (28), See figures 1 and 2). In this 

study, a graphical analysis was presented by drawing 

the curve of zero wavelength (𝝍𝟏𝟎(𝝐), 𝒂𝒏𝒅  𝝍𝟐𝟎(𝝐)) in 

the electrostatic potential of quantum plasma against 

different parameters affecting the wave. In Figures 1 

and 2, the change of wave potential with density is 

shown. From the comparison of these figures, it can be 

seen that the two single zero waves 

(𝝍𝟏𝟎(𝝐), 𝒂𝒏𝒅  𝝍𝟐𝟎(𝝐)) are completely different in 

strength due to the choice of different physical 

parameters (on a dimensionless scale). According to 

Figures, it is clear that increasing the number density 

decreases the amplitude. Since the quantum Boehm 

potential includes the density, then the density change 

indirectly indicates the change of the wave potential 

(quantum Boehm potential). 

Note: The second term that includes the 𝐭𝐚𝐧𝐡(𝝐) 
term in the equation is responsible for the shock-like 

structure because it destroys the balance between 

dispersion and nonlinearity. 

Using the perturbation theory ([42] and Equation 

(16)), 𝝍𝟏 and 𝝍𝟐 can be obtained from the first 

approximate solutions of a single wave. 

 

𝜓1(𝜖, 𝜀) = 𝐼0 + 𝐼1(2 − tanh (𝜖))tanh (𝜖)  + 𝜀𝜓21(𝜖)

+ 𝑂(𝜀2);         0 < 𝜀 ≪ 1 

 

(31) 

𝜓2(𝜖, 𝜀) = 𝐼0 + 𝐼1
(2 tanh(𝜖) + 1)

tanh2(𝜖)
+ 𝜀𝜓11(𝜖)

+ 𝑂(𝜀2);         0 < 𝜀 ≪ 1 

(32) 

 

Next, and similarly, the nth approximate asymptotic 

solutions (𝝍𝟏𝒏(𝝐, 𝜺) and 𝝍𝟐𝒏(𝝐, 𝜺)) can be obtained. 

Using transformer (17), the nth solution for two waves 

individually of dimensionless nonlinear dynamic 

electrostatic potential was obtained: 

 

 Φ1𝑛(𝜖, 𝜀) = 𝐼0 + 𝐼1(2 − tanh(𝜖)) tanh(𝜖)

+∑𝜓1𝑖(𝜖)

𝑛

𝑖=1

𝜀𝑖

+ 𝑂(𝜀𝑛+1);              0 < 𝜀 ≪ 1  

 

(33) 

Φ2𝑛(𝜖, 𝜀) = 𝐼0 + 𝐼1
(2 tanh(𝜖) + 1)

tanh2(𝜖)
+∑𝜓1𝑖(𝜖)

𝑛

𝑖=1

𝜀𝑖

+ 𝑂(𝜀𝑛+1);                           0 < 𝜀

≪ 1 

(34) 

 

Results 
One of the most important applications of non-

uniform quantum dynamic equations of plasma system 

is to study the effect of systems potential solutions, and 

analysis of potential amplitude, and explosion wave 

density. Since the plasma turbulence system arises from 

a natural phenomenon, for the nonlinear solo study of 

more models, approximations must be used. In this 

paper, a quantum plasma system was considered to 

study a nonlinear turbulence model. The properties of 

nonlinear propagation of the solitary potential wave in 

two-dimensional heterogeneous quantum 

magnetoplasma were investigated using the quantum 

hydrodynamic model. It was assumed that in addition to 

the heterogeneity in this system, there is a magnetic 

field. If the collision frequency between the heavy 

particles (ions and neutral particles) is negligible, a 

nonlinear equation in two dimensions (2D), as well as 

the solutions of the plasma electrostatic potential, is 

obtained. For this purpose, the use of approximate 

methods including the hyperbolic function method, 

indeterminate coefficient method, and perturbation 

theory was used as a very efficient method. A series of 

corresponding physical quantity properties was 

described by solving the individual solution of wave 

obtained for a quantum plasma system with a nonlinear 

model. The effects of the quantum Bohm potential on 

the single wave structure of the electrostatic potential 

are shown numerically in Figures 1 and 2. It was found 

that increasing the numerical density and amplitude of 

this wave decreases. The present study may play a 

significant role in understanding the properties of 

potential wave propagation in dense astrophysical 

plasma where quantum effects are useful. Therefore, 

single wave solutions for other physical states can be 

investigated using the solution method proposed here 

(decomposition operation) in the future. 
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