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Abstract 
This paper is concerned with the problem of statistical hypotheses testing in circular 

data under weighted sampling. The most powerful test has been obtained when the 
sampling is subjected to a weight function. Different weight functions are examined for 
the von Misses distribution. For the same weight function, the critical values and the 
power of the test can be calculated analytically, and for some, we need to use a 
numerical method. The simulation study shows that the power of the test increased as 
the weighted circular distribution is considered in replace of the original circular 
distribution and the sample data increased. A real-data example has been carried out to 
show the performance of our method. 
 
Keywords: Circular data; Weight function; Weighted sampling; MP test; Monte Carlo simulation. 
 

                                                        
* Corresponding author: Tel: +989161117832; Email: chinipardaz_r@scu.ac.ir 

Introduction 
Angles and directions are used to measure circular 

data. Typically, they are observed in scientific fields as 
diverse as life sciences (1), behavioral biology (2), 
cognitive psychology (3), bioinformatics (4), and 
political sciences (5). Circular data are frequently 
encountered in the study of motor behavior (6-9), and 
also in the application of circumplex models (10-12). 
The difference between circular data and linear data is 
that circular data are measured in a periodical sample 
space. For example, an angle of 10∘ is quite close to an 
angle 350∘, despite linear intuition suggesting 
otherwise.  

 Weighted sampling is a generalization of random, in 
which the sampling mechanism records units with a 
probability based on a non-negative weight function. 
The recorded data called a weighed sample is not a 
random sample from the original population. This 
sampling approach is called weighted sampling. 

The usual methods of inferring unknown parameters 

from a weighted sample are not useful and should be 
adjusted. Suppose that the circular random variable ߠ is 
distributed with a probability density function, pdf, ݂(ߠ;  Suppose a .ߟ where the natural parameter is (ߟ
realization ߠ of Θ records or enters the sample with a 
probability proportional to an arbitrary non-negative 
weight function ߠ)ݓ;  is the weight ߣ where ,(ߣ
parameter. In this case, the observation ߠ is not based 
on the circular random variable Θ, but on its weighted 
version instead. This random variable which is denoted 
by Θ௪ has a weighted distribution with the following 
probability density function:  ݂௪(ߠ; (ߟ = ௪(ఏ;ఒ)௙(ఏ;ఎ)ாሾ௪(ఏ;ఒ)ሿ 																																								 (1) 

where ߠ)ݓ)ܧ;  is required to be finite as a ((ߣ
normalizing constant. The ݂௪(ߠ;  is the weighted (ߟ
probability density function of Θ under the weight 
function ߠ)ݓ;  When a random sample of an interest .(ߣ
population is unavailable, weighted sampling is 
conducted to represent the unequal probability of 
samples entering the population. A carefully chosen 
biased sample may prove more informative than a 
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sample obtained even if the experimenter is able to 
obtain one  (13) introduced the idea of weighted 
distribution by demonstrating that models must be 
adjusted based on how data are collected (14, 15) was 
the first to unify this concept. Weighted distributions 
have been used to select appropriate models from data 
sampled without a proper frame. In this study, the 
hypothesis testing problem is considered for circular 
data when the sampled data is subjected to a weight 
function. The main study’s motivation is that in 
weighted samplings, the parameter, ߟ, may be 
represented by more or less information than under 
random samplings. Many weight functions have been 
introduced by authors in linear statistics. The different 
weight functions can be considered based on the nature 
of the data when analyzing circular data. A set of 
suitable weight functions are proposed in Table 1 that 
we believe can lead to a tractable analysis of circular 
data. The paper is provided in five sections. In Section 2 
the effect of the weight function on the test function and 
power of the test is studied for von Mises distribution 
under some weight functions. In Section 3, selecting an 
appropriate weight function from two or a set of 
candidates of weight functions based on the Neyman–
Pearson Lemma is discussed for von Mises and cardioid 
distributions with different sample sizes. In Section 4, 
we use Monte Carlo simulation to determine the powers 
of these tests when the distributions of test statistics are 
complicated. Finally, in Section 5, using the soil 
samples of Ahvaz in Iran, the weighted sampling is 
tested against random sampling.  
 
Hypothesis testing for original parameters of 
population 

In this section, we look at the problem of hypothesis 
testing under weighted sampling for parameter ߟ of Θ ;ߠ)݂∽  Suppose that the parameters of the weight .(ߟ
function, ࣅ, are known and we wish to test ܪ଴: ߟ =  ଴ߟ
versus ܪଵ: ߟ = ࣂ ଵ are known. Considerߟ ଴ andߟ ଵ whereߟ = ,ଵߠ) ,ଶߠ . . . ,  ௡)ᇱ is realized out of the weightedߠ
sample દ௪ ∼ (Θଵ௪, Θଶ௪, . . . , Θ௡௪)ᇱ from Θ under ߠ)ݓ;  .(ߣ

The most powerful (MP) test with size ߙ based on 
the Neyman-Pearson Lemma is given by 

(࢝ࣂ)߮   = ቄ1 ݂௪(ࣂ; (ଵߟ ≥ ܿଵ݂௪(ࣂ; ଴)0ߟ ݁ݏ݅ݓݎ݄݁ݐ݋  
  

where the critical value, ܿଵ, is obtained with ܧఎబ(߮(࢝ࣂ)) =   Then .ߙ
 ݂௪(ࣂ; ;ࣂ)ଵ)݂௪ߟ (଴ߟ = ∏௡௜ୀଵ ;௜ߠ)݂ ;ߠ)ݓఎబܧ)(ଵߟ ௡∏௡௜ୀଵ((ߣ ;௜ߠ)݂ ;ߠ)ݓఎభܧ)(଴ߟ =				 ௡((ߣ ,଴ߟ)ݒ (ଵߟ ௙(ࣂ;ఎభ)௙(ࣂ;ఎబ),	  
 
where ߟ)ݒ଴,  .ଵ) is independent of the test statisticߟ

As ߟ)ݒ଴,   ,ଵ) is positiveߟ
;ࣂ)݂  ;ࣂ)݂(ଵߟ (଴ߟ > ܿଶ ⇔ ݂௪(ࣂ; ;ࣂ)ଵ)݂௪ߟ (଴ߟ > ܿଵ, 
 
where 
 ܿଵ = ܿଶ((ܧఎబߠ)ݓ; ;ߠ)ݓఎభܧ)/௡((ߣ  .(௡((ߣ
 

It means that the test structure is the same for both 
weighted and random sampling, although the critical 
value may differ. The following sections illustrate this. 

 
Test for mean direction  
  Suppose that ࣂ = ,ଵߠ) ,ଶߠ . . . ,  ௡)ᇱ is a circularߠ

random sample from θ ∼ vM(μ, κ) where κ is known 
and the notation vM represents von Mises distribution 
and has density  

 

௩݂ெ(ߠ; ,ߤ (ߢ = ݁఑ ୡ୭ୱ(ఏିఓ)2ܫߨ଴(ߢ) , (2) 
 
for ߠ ∈ ,ߨ−) ߤ ,(ߨ ∈ ,ߨ−) ߢ ,(ߨ ≥ 0 and where ܫ௥(ߢ) is the modified Bessel function of the first kind of 

order ݎ, defined as  
(ߢ)௥ܫ  = නଶగߨ12

଴ cos ߠݎ ݁఑ୡ୭ୱఏd,ߠ			ݎ  = 0,േ1,േ2, . . .. 
 
The MP test for testing ܪ଴: ߤ = 0 versus ܪଵ: ߤ ଵߤ)	ଵߤ= > 0) is  
(ࣂ)߮  = ቊ1 sin(̅ߠ − (ଵ/2ߤ ≥ ݀ଵ0 sin(̅ߠ − (ଵ/2ߤ < ݀ଵ. 
 
 Equivalently ߮(ࣂ) = ቊ1 ߠ̅ ∈ ݃0 ߠ̅ ∈ ݃ 

 where  
 

g=arc({ π
2 +

μ1
2 -δ}(mod 2π),{

π
2 +

μ1
2  +δ}(mod 2π)),   

Table 1. Some weight functions. 
 Weight function ((ࣂ)࢝) Name 

(ߠ)ݓ 1 = ܿ Constant 
2 w(θ)=exp{λ1 cos jθ +λ2 sin jθ} Exponential 
3 w(θ)=1+λ1 sin jθ +λ2 cos jθ linear 
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 0<δ<π/2.  
 
Let ̅ߠ|ܴ distributed as ߤ)ܯݒ, ܴ where ,(ܴߢ ଶܥ̅)݊= + ܵ̅ଶ)భమ, ̅ܥ = ଵ௡∑௡௜ୀଵ cosߠ௜ and ܵ̅ = ଵ௡ ∑௡௜ୀଵ sinߠ௜. 

When ܴ > 0, the mean direction ̅ߠ is given by  
ߠ̅  = ቊtanିଵ(ܵ̅/ܿ̅) ܥ̅ ≥ 0tanିଵ(ܵ̅/ܿ̅) + ߨ ܥ̅ < 0. 
 
 The constant ߜ is then determined from  ߙ = ഏమାഋభమ׬ ାఋഏమାഋభమ ିఋ ௘ഉೃౙ౥౩ഇଶగூబ(఑ோ)  (3)                                  ,ߠ݀	

similarly, the power of the test is  
ߚ  = නగଶାఓభଶ ାఋగଶାఓభଶ ିఋ

݁఑ோୡ୭ୱ(ఏିఓభ)2ܫߨ଴(ܴߢ)  								,ߠ݀	
See Mardia (16). 
 
   Now, suppose that θw=(θ1

w,θ2
w,...,θn

w)' is a weighted 
sample from ߠ ∼ ,ߤ)ܯݒ (ߠ)ݓ with weight function (ߢ = ݁ఒ ୡ୭ୱ(ఏିఓ) where ߣ is known, then ߠ௪ ,μ)ܯݒ∽ ߢ + ,(ߣ κ + λ > 0. Then the MP test is again  

(௪ߠ)߮  = ቊ1 sin(̅ߠ௪ − (ଵ/2ߤ ≥ ݀ଶ0 sin(̅ߠ௪ − (ଵ/2ߤ < ݀ଶ 

 Equivalently,  
(௪ߠ)߮  = ቊ1 ௪ߠ̅ ∈ ݃0 ௪ߠ̅ ∈ ݃ 

Proof. See the Appendix. 
 
 Let ̅ߠ௪|ܴ distributed as ߤ)ܯݒ, ܴߢ + λ). The 

constant ߜ is then determined by 
ߙ   = නగଶାఓభଶ ାఋగଶାఓభଶ ିఋ

݁(఑ோାఒ)ୡ୭ୱఏ2ܫߨ଴(ܴߢ + (ߣ  ,ߠ݀
 
similarly, the power of the test is  
 

௪ߚ = නగଶାఓభଶ ାఋగଶାఓభଶ ିఋ
݁(఑ோାఒ)ୡ୭ୱ(ఏିఓభ)2ܫߨ଴(ܴߢ + (ߣ  .ߠ݀

 
Table 2 shows the power of the test ܪ଴: ߤ = 0 versus ܪଵ: ߤ = గଶ for ܴߢ = 1 and various ߙ and ߣ. According to 

Table 2, the power of the test increases when ߣ 
increases and also the power of the test of weighted 
sampling (ߣ ് 0) is more than random sampling (ߣ =0). The last column of the table shows the nominal 
significance level (nsl) obtained from the simulation 
study (n=1000), which is close to the pre-assigned 
significance level. 

  
Test for the concentration parameter 

Suppose that ࣂ = ,ଵߠ) ,ଶߠ . . . ,  ௡)ᇱ is a circularߠ
random sample from ߠ ∼ ,0)ܯݒ ߤ where (ߢ = 0. The 
MP test for testing ܪ଴: ߢ = :ଵܪ ଴ versusߢ ߢ = ଴ߢ)ଵߢ  ଵ) isߢ>

(ߠ)߮   = ൜1 ܥ ≥ ݀ଵ0 ܥ < ݀ଵ 

  
where ܥ = ∑௡௜ୀଵ cosߠ௜ and the probability density 

function of C is given by  
 ݃(ܿ; (ߢ = ሼܫߨ଴௡(ߢ)ሽିଵ݁఑௖ නஶ

଴ ݊−,ݐ݀	(ݐ)଴௡ܬ(ݐܿ)	ݏ݋ܿ < ܿ < ݊. 
 

where ܬ଴(ݔ) is the standard Bessel function of zero 
order, it is given by 

(ݔ)଴ܬ  =෍(−1)௞(݇!)ଶ ଶ௞,ஶ(2ݔ)
௞ୀ଴  

See Mardia (16). 
The constant ݀ଵ is then determined from  
ߙ  = ܥ)ܲ > ݀ଵ|ߢ =  ,(଴ߢ
with the power of the test  
 

 
Table 2. The power of the test and the nominal significance level ܪ଴: ߤ = 0 versus ܪଵ: ߤ = గଶ for the several of ߙ and ߣ. 
ࢻ  = ૙. ૙૚  ࢻ = ૙. ૙૞  ࢻ = ૙. ૚  ߚ ߜ ࣅ௪ nsl ߜ ௪ߚ nsl ߜ  ௪ nslߚ
0 0.087 0.044 0.012 0.393 0.199 0.046 0.785 0.390 0.105 
1 0.288 0.166 0.011 0.925 0.542 0.055 1.287 0.723 0.114 
2 0.742 0.458 0.017 1.285 0.788 0.048 1.545 0.884 0.099 
5 1.344 0.906 0.01 1.654 0.977 0.054 1.815 0.990 0.118 

10 1.641 0.996 0.01 1.850 0.999 0.049 1.972 0.999 0.109 
20 1.841 0.999 0.013 1.985 0.999 0.052 2.075 1 0.107 
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ߚ = ܥ)ܲ > ݀ଵ|ߢ =  .(ଵߢ
 
Also, for ߢ > 2, we can use Stephen’s 

approximation (17) 2ߛ(݊ − (ܥ ≃ ߯(௡)ଶ 	, ଵିߛ = ଵିߢ +  .ଶିߢ38
Therefore, ݀ଵ = ݊ − ఞ(೙,ഀ)మଶఊబ  where ߛ଴ି ଵ = ଴ିߢ ଵ + ଷ଼ ଴ିߢ ଶ 

and ߯(௡,ఈ)ଶ  is the ߙth quantile of chi-square distribution 
with n degree of freedom. 

The power of the test is  

β=P(C>n-
χ(n,α)

2

2γ0
)=Fχ(n)

2 (
γ1
γ0

χ(n,α)
2 ), 

where ܨఞ(೙)మ is comulative chi-square distribution 

function and ߛଵି ଵ = ଵିߢ ଵ + ଷ଼ ଵିߢ ଶ.  
 Now suppose that θw=(θ1

w,θ2
w,...,θn

w)' is a weighted 
sample from 0)ܯݒ, (ߠ)ݓ with weight function (ߢ =݁ఒୡ୭ୱఏ where ߣ is known, then ߠ௪ ∼ ,0)ܯݒ ߢ +  For .(ߣ
testing ܪ଴: ߢ = :ଵܪ ଴ versusߢ ߢ = ଴ߢ)ଵߢ <  ଵ) underߢ
the weighted sample, the MP test is  

(௪ߠ)߮  = ൜1 ௪ܥ ≥ ݀ଶ0 ௪ܥ < ݀ଶ 

 

 where Cw=∑n
i=1 cosθi

w and d2=n-
χ(n,α)

2

2γ0
, 

γ0
-1=(κ0+λ)-1+ 3

8
(κ0+λ)-2. The power of test under 

weighted sample is  
 

βw=Eκ1(φ(θw))=Fχ(n)
2 (

γ1
γ0

χ(n,α)
2 ), 

where γ1
-1=(κ1+λ)-1+ 3

8
(κ1+λ)-2. 

 
Hypothesis testing for weight functions 

There is no common usage method to find an 
appropriate weight function. As the selection of the 
weight function is a very important issue in data 
analysis, especially in testing and model selection 
problems, as was shown before, very careful efforts 
have to be made when selecting the weight function 
from many candidates. 

Several weight functions could be considered. In the 
case of the weight function (ߠ)ݓ = ܿ, i.e. the sample 
data is random, there is no change in the results because 
the weighted distribution is the same as the original 
distribution. Assume we are interested in finding out 
what weight function is satisfied by the recorded data: 

 ଴: Data is the weighted sample with weightܪ 
function ݓ଴(ߠ)  ܪଵ: Data is the weighted sample with weight 

function ݓଵ(ߠ) 
 
  The following hypotheses are equivalent to these 

statements: ܪ଴: ௪ࣂ ∼ ݂௪బ(ߠ) versus ܪଵ: ௪ࣂ ∼ ݂௪భ(ߠ). 
If ݂௪೔(ߠ)(݅ = 0,1) is completely specified under ܪ௝(݆ =0,1). According to the Neyman–Pearson Lemma, the 
MP test is given by  

 

φ(θ)= ۔ۖەۖ
    1ۓ

fw1(θ)
fw0(θ) >d1     

0    
fw1(θ)
fw0(θ) ≤d1     

= ൜1 Tw>d2
0 Tw≤d2

       

 
 where test statistic is Tw=∏n

i=1 w1(θi)/∏n
i=1 w0(θi) 

and ݀ଶ is obtained from  
 ܲ௪భ(ܶ௪ > ݀ଶ) =  ,ߙ
 
and ܲ௪భ represents for the probability under weight 

function ݓଵ(ߠ).  
 

Test for two exponential weight functions  
Suppose that ીܟ = (θଵ୵, θଶ୵, . . . , θ୬୵)ᇱ is a circular 

weighted sample from θ ∼ vM(0, κ). We want to test H଴:w(θ) = e஛బୡ୭ୱ஘ versus Hଵ:w(θ) = e஛భୡ୭ୱ஘, where λଵ > λ଴ and under H୧(i = 0,1), θ୵ ∼ vM(0, κ + λ୧). 
Therefore, the MP test level α is  

(ࣂ)߮  = ൜1 ௪ܥ ≥ ݀ଶ0 ௪ܥ < ݀ଶ 

  
where ܥ௪ = ∑௡௜ୀଵ cosߠ௜௪ and the probability 

density function of ܥ௪ under ܪ௜ for ݅ = 0,1 is given by ݃(ܿ௪; ߢ + (௜ߣ = ௘൫ഉశഊ೔൯೎ೢగூబ೙(఑ାఒ೔) ஶ଴׬   ,ݔ݀(ݔ)଴௡ܬ(ݔ௪ܿ)ݏ݋ܿ
 ݊ < ܿ௪ < ݊. 
 
The constant ݀ଶ is then determined from  
ߙ  = ௪ܥ)ܲ > ݀ଶ|ߣ =  ,(଴ߣ
and the power of the test is  
௪ߚ  = ௪ܥ)ܲ > ݀ଶ|ߣ =  .(ଵߣ
 
Also, for ߢ + ௜ߣ > 2, we can use Stephen’s 

approximation (17) for ݅ = ݊)௜ߛ2  0,1 − (௪ܥ ≃ ߯(௡)ଶ ௜ିߛ 	,	 ଵ = ߢ) + ௜)ିଵߣ + 38 ߢ) +  .௜)ିଶߣ
Therefore, ݀ଶ = ݊ − ఞ(೙,ഀ)మଶఊబ  where ߛ଴ି ଵ = ߢ) +
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଴)ିଵߣ + ଷ଼ ߢ) + ଴)ିଶ and ߯(௡,ఈ)ଶߣ  is the ߙth quantile of 
chi-square distribution. 

The power of the test is  ߚ௪ = ௪ܥ)ܲ > ݊ − ఞ(೙,ഀ)మଶఊబ ߣ| = (ଵߣ ఞ(೙)మܨ= ቀఊభఊమ ߯(௡,ఈ)ଶ ቁ,       
where ܨఞ(೙)మ  is comulative chi-square distribution (ݑ)

function at ݑ.  
 

Test for the linear versus exponential weight function  
    Suppose that θw=(θ1

w,θ2
w,...,θn

w)' is a sample from θ ∼ vM(0, κ). We want to test H଴:w(θ) = 1 + λsinθ 
versus Hଵ:w(θ) = eஓୡ୭ୱ஘, where λ and γ are specified. 

Under ܪଵ, ߠ௪ ∼ ,0)ܯݒ ߢ +  .(ߛ
The MP test is given by  
(௪ߠ)߮  = ቄ1 ܶ௪ > ݇∗0 ܶ௪ ≤ ݇∗ 
 
 where test statistics is ܶ௪ = ௡௜ୀଵ∑ߛ cosߠ௜ −∑௡௜ୀଵ ln(1 +   ௜) and ݇∗ is obtained fromߠsinߣ

PH0(γ෍n

i=1

cosθi-෍n

i=1

ln(1+λsinθi)>k*)=α. 

 
 The distribution of ܶ௪ is complicated. However, ݇∗ 

and ߚ௪ can be calculated using Monte Carlo simulation. 
Table 3 represents the values of the simulated power of 
this test for ݊ = 5, 10, 50 and 100 using the simulation 
with ݉ଵ = ݉ଶ = 10000 iterations. 

 
Test for the constant versus linear weight function 

Clearly, for random sampling, ݓ௜(ߠ) = 1. In this 
case, the researcher wants to know if the sampling is 
random or weighted with the weight function such as (ߠ)ݓ: 

 .(ߠ)ݓ ଵ: Data is a weighted sample with weight functionܪ ଴: Data is a random sampleܪ 
 
Therefore, ܪ଴ is rejected if  ܶ௪ =ෑ௡௜ୀଵ (௜௪ߠ)ݓ > ݇∗, 
 
where ݇∗ is given by PRandom(Tw>k*)=α.  
 
Suppose that θw=(θ1

w,θ2
w,...,θn

w)' is a sample from 
Θ∼f(θ)= 1

2π
(1+2ρ cos θ |ߩ| ,( ≤ ଵଶ. To test ܪ଴:(ߠ)ݓ = 1 

versus ܪଵ:(ߠ)ݓ = 1 + ߣ sin  is specified, we ߣ when ,ߠ
have:  

(௪ߠ)߮ = ۔ۖەۖ
1ۓ ෑ௡௜ୀଵ (1 + (௜௪ߠsinߣ > ݇∗
0 ෑ௡௜ୀଵ (1 + (௜௪ߠsinߣ ≤ ݇∗ 

 
 where ݇∗ is obtained from ுܲబ(∏௡௜ୀଵ (1 (௜ߠsinߣ+ > ݇∗) = ௪ߠ ,଴ܪ because under ,ߙ ≡   .ߠ
 For ݊ = 1, ݇∗ is obtained from  
 ܲ(1 + ߠsinߣ > ݇∗) = ߨ12 ߨ) − sinିଵ ൬݇∗ − ߣ1 ൰ − ߩ2 ൬݇∗ − ߣ1 ൰) =  .ߙ
 
This equation is not solvable and therefore, no value 

can be obtained for ݇∗.  
 For ݊ > 1, the distribution of ܶ௪ is complicated. 

However, ݇∗ and ߚ௪ can be calculated using Monte 
Carlo simulation. Table 4 represents the values of the 
simulated power of this test for ݊ = 10, 20, 50 and 100 
using simulation with ݉ଵ = ݉ଶ = 10000 iterations. 

 
Simulation study 

Frequently, testing ܪ଴:(ߠ)ݓ = (ߠ)ݓ:ଵܪ versus (ߠ)଴ݓ =  ଴ܪ the distributions of ܶ௪ under ,(ߠ)ଵݓ
and ܪଵ are complicated. Using Monte Carlo simulation, 
the critical value,݇∗, and the power test, ߚ௪, can be 
calculated. We employed R Software to generate 
random numbers. The procedure of our desired 
algorithm is given by the following steps: 

 
 1. Simulate ݉ଵ times from a sample of size ݊ from 

the weighted distribution specified in the null 
hypothesis, namely ݂௪బ(ߠ), and compute the test 
statistic for each sample. Then ݇∗ is introduced as (1   .th quantile of these ݉ଵ values(ߙ−

 2. Simulate ݉ଶ times from a sample of size ݊ from 
the weighted distribution specified in ܪଵ, namely ݂௪భ(ߠ), and compute the test statistic, ௜ܶ௪, for each 
sample. Then the power of the test,	ߚ௪, will be  

 

βw=
Number of simulated Ti

w less than k*

m2
. 

 
 
According to Table 3, the power of the test increases 

when ݊ and ߛ increase for fixed ߙ and from Table 4, we 
can see that the power of test increases when ߣ increases 
for fixed ߙ. The nsl columns of tables 3 and 4 show the 
nominal significance level obtained from the simulation 
study, which is close to the pre-assigned significance 
level. 
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Now, suppose that ߠଵ, ,ଶߠ . . . ,  ଶ଴ are observedߠ

values of a sample from Θ ∼ (ߠ)݂ = ଵଶగ (1 + 0.1cos	ߠ). 
Thus, ܪ଴: ’the sample is random’ versus ܪଵ: ’the sample 
is weighted with weight function (ߠ)ݓ = 1 +0.75sinߠ’ is rejected at the significant level 2.5%, when ∏ଶ଴௜ୀଵ (1 + 0.75sinߠ௜௪) > 1.823. Note that the power 
of this test is 0.719 in Table 4.  

 
 

Application 
Directional data is an important category of geologic 

information. The direct shear test is a laboratory test 
performed on samples taken from drilling and 
excavating operations in the field and after transfer to 
the laboratory. The internal friction angle of the soil 
particles is one of soil shear strength parameters and the 
important outputs of this test and depends directly on 
soil type, wet percent, and density of undisturbed soil. 
Considering the mechanism for selecting the samples 

Table 3. Simulated power of test and nominal significance level ܪ଴:(ߠ)ݓ = 1 + (ߠ)ݓ:ଵܪ versus ߠ݊݅ݏ0.5 = ݁ఊ௖௢௦ఏ using ݉ଵ =݉ଶ = 10000 iterations and several sample sizes when ߢ = 1 and 1=ߛ and 2. 
ࢽ   = ૚  ࢽ = ૛  

Sample size ߚ ∗݇ ߙ௪ nsl ݇∗  ௪ nslߚ
 0.01 5 0.105 0.0096 5.002 0.161 0.0115 
 0.025 4.657 0.215 0.0286 4.680 0.327 0.0286 

n=5 0.05 4.378 0.312 0.0504 4.352 0.498 0.0546 
 0.1 3.919 0.483 0.1 3.929 0.691 0.0987 
 0.15 3.580 0.601 0.1524 3.579 0.804 0.1519 
 0.2 3.302 0.682 0.2005 3.305 0.866 0.2022 
 0.01 8.563 0.253 0.0103 8.516 0.526 0.011 
 0.025 8.002 0.395 0.0233 7.953 0.700 0.0268 

n=10 0.05 7.368 0.557 0.0522 7.402 0.834 0.0524 
 0.1 6.630 0.718 0.1056 6.684 0.924 0.1035 
 0.15 6.158 0.800 0.1565 6.218 0.959 0.1528 
 0.2 5.770 0.854 0.2044 5.822 0.977 0.2004 
 0.01 30.430 0.969 0.0099 30.711 0.999 0.0081 
 0.025 28.768 0.988 0.0256 28.895 1 0.0227 

n=50 0.05 27.264 0.996 0.0523 27.598 1 0.0438 
 0.15 24.583 0.999 0.1512 24.575 1 0.145 
 0.2 23.645 0.999 0.2009 23.596 1 0.202 
 0.01 54.315 1 0.01 55.073 1 0.0077 
 0.025 52.600 1 0.0228 52.290 1 0.0231 

n=100 0.05 50.059 1 0.0537 50.115 1 0.0456 
 0.15 46.012 1 0.1565 46.203 1 0.1377 
 0.2 44.804 1 0.1984 44.655 1 0.1952 

 
Table 4. Simulated power of test and nominal significance level ܪ଴:(ߠ)ݓ = 1 versus ܪଵ:(ߠ)ݓ = 1 + using ݉ଵ ߠ݊݅ݏߣ = ݉ଶ =10000 iterations and several sample sizes when ߩ = 0.1. 

ࣅ   = ૙. ૛૞  ࣅ = ૙. ૞  ࣅ = ૙. ૠ૞  
Sample 

size 
 ௪ nslߚ ∗݇ ௪ nslߚ ∗݇ ௪ nslߚ ∗݇ ߙ

 0.01 1.117 0.044 0.0125 1.997 0.098 0.0101 2.609 0.242 0.0101 
 0.025 0.932 0.068 0.0264 1.589 0.203 0.0255 2.026 0.410 0.0251 

n=10 0.05 0.783 0.137 0.0462 1.246 0.314 0.0523 1.477 0.561 0.0501 
 0.15 0.426 0.319 0.1503 0.561 0.549 0.1563 0.273 0.785 0.1501 
 0.2 0.319 0.400 0.2023 0.335 0.628 0.2051 -0.086 0.847 0.2 
 0.01 1.515 0.058 0.0099 2.401 0.213 0.0105 2.831 0.559 0.0105 
 0.025 1.218 0.121 0.0271 1.791 0.362 0.0275 1.823 0.719 0.0258 

n=20 0.05 1.017 0.203 0.0481 1.377 0.482 0.0536 1.016 0.830 0.0513 
 0.15 0.528 0.404 0.1455 0.379 0.726 0.1568 -0.675 0.944 0.1504 
 0.2 0.375 0.487 0.1968 0.069 0.790 0.199 -1.152 0.965 0.1997 
 0.01 2.157 0.149 0.0113 2.332 0.603 0.014 1.191 0.964 0.0108 
 0.025 1.686 0.247 0.0266 1.423 0.735 0.0242 -0.235 0.983 0.0265 

n=50 0.05 1.255 0.337 0.0543 0.572 0.837 0.0577 -1.793 0.994 0.0528 
 0.15 0.491 0.587 0.1584 -0.635 0.937 0.1495 -4.347 0.999 0.1485 
 0.2 0.268 0.653 0.2041 -1.186 0.960 0.2019 -5.437 0.999 0.2063 
 0.01 2.507 0.297 0.0114 1.885 0.915 0.0104 -3.586 0.999 0.0098 
 0.025 1.874 0.435 0.0278 0.493 0.962 0.0259 -5.590 1 0.0256 

n=100 0.05 1.347 0.555 0.0531 -0.741 0.976 0.0575 -7.606 1 0.0527 
 0.15 0.252 0.773 0.1545 -3.001 0.995 0.154 -11.613 1 0.1462 
 0.2 -0.088 0.835 0.2046 -3.689 0.997 0.1999 -12.999 1 0.1977 
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tested on the soil type, the harvested samples do not 
have the same chances in the study area. The data set of 
this paper, which is obtained from direct shear tests of 
samples taken from Ahvaz in the southwest of Iran, is 
the internal friction angle of soil particles. Considering 
clay and sand soil have a better chance of being selected 
in Ahvaz city, it can be assumed that the chance of 
chosen soil samples is proportional to the weight 
functions.  

   Suppose that ࢝ࣂ = ,ଵ௪ߠ) ,ଶ௪ߠ . . . ,  ௡௪)ᇱ is a sampleߠ
from Θ ∼ ,μ)ܯݒ κ), we want to test ܪ଴:(ߠ)ݓ = 1 
versus ܪଵ:(ߠ)ݓ = 1 + ߠ)ଵsin(2ߣ − ((ߤ ߠ)ଶcos(2ߣ+ − |ଵߣ| where ,((ߤ + |ଶߣ| < 1. The MP test is  

(௪ߠ)߮  = ቄ1 ܶ௪ > ݇∗0 ܶ௪ ≤ ݇∗ 
 
 where ܶ௪ = ∑௡௜ୀଵ ln(1 + ௜ߠ)ଵsin(2ߣ − ((ߤ ௜ߠ)ଶcos(2ߣ+ −  is a test statistic. The maximum (((ߤ

likelihood estimations of  ߤ,  ଶ based on theߣ ଵ andߣ
weighted sample are 1.95, −0.01 and 0.85 (see (18)). 
As the distribution of ܶ௪ is complicated, the critical 
value, ݇∗, and the power test, ߚ௪, are calculated using 
Monte Carlo simulation with 10000 iterations.  

 The observed value of the test statistic for our 
sample with size 103 is ܶ௪ =෍ଵ଴ଷ௜ୀଵ ln(1 − 0.01sin(2(ߠ௜ − 1.95)) 	+0.85cos(2(ߠ௜ − 1.95))) = −0.032.	
Since the test statistic is more than −0.229, the 
simulated critical value at the significance  

level of 0.01, so the random sample versus the 
weighted sample (with the weight function (ߠ)ݓ = 1 −0.01 sin൫2(ߠ − 1.95)൯ + 0.85 cos(2(ߠ − 1.95))) at the 
significance level of 0.01 is rejected. It means that the 
analyzing internal friction angle of soil particles data 
without considering a proportional weight function may 
lead to misleading results. As the internal friction angle 
of soil particles depends on different factors, such as 

wet percent, the density of undisturbed soil, and soil 
type, different weight functions should be investigated 
for other areas. 

Figure 1 shows the histogram of the data and fitted 
densities for the weighted von Mises distribution under 
H0 and H1. 

   

Results 
In this paper, we considered testing hypotheses in 

directional data when the sampling is subjected to a 
weight function rather than random sampling.  

We showed that the most powerful test might be 
invariant from some appropriate weight functions; 
however, the power of the test is crucially changed with 
the weight function parameters.  

We focused on von Misses distribution, the most 
popular directional data distribution, and weight 
functions considered for both location and concentrate 
parameters. 

It has been shown that the proposed method works 
well; even the own weight function is considered a 
hypothesis to be tested. 

For an application example, we considered the 
internal friction angle of the soil participles data, taken 
from the direct shear test in Ahvaz city southwest of 
Iran. The data has been tested to find any weight 
function that affected the data during collection.  

The random sampling against a two-parameter 
weight function has been rejected with a 0.01 level test. 

The given method can be further investigated for 
other directional distributions to find the weight 
function for the parameters in the testing problem. 

 
Appendix 
Proof of test for mean direction. 

Suppose that ࢝ࣂ = ,ଵ௪ߠ) ,ଶ௪ߠ . . . ,  ௡௪)ᇱ  is a weightedߠ
sample with weight function (ߠ)ݓ = ݁ఒ ୡ୭ୱ(ఏିఓ) where ߣ is known, then ߠ௪ ∼ ,μ)ܯݒ ߢ + ,(ߣ κ + λ > 0	for 

 
Figure 1. Histogram of the Friction angle of soil data (in radians), and fitted densities for the weighted von Mises distribution 
under ܪ଴ (long dashed) and ܪଵ (soild). 
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:଴ܪ ߤ = 0 versus ܪଵ: ߤ =    ଵ, we haveߤ
 ଵ݂(࢝ࣂ)଴݂(࢝ࣂ) = ݁(఑ାఒ)∑ ୡ୭ୱ൫ఏ೔ೢ ିఓభ൯೙೔సభ݁(఑ାఒ)∑ ୡ୭ୱఏ೔ೢ೙೔సభ  						= ݁(఑ାఒ)∑ ൣୡ୭ୱ൫ఏ೔ೢ ିఓభ൯ିୡ୭ୱఏ೔ೢ ൧೙೔సభ > ݀			  
 
for some ݀ > 0. Therefore, we have ෍sin(ߠ௜௪ − ଵ2௡ߤ

௜ୀଵ ) = ܴsin ቀ̅ߠ௪ − ଵ2ߤ ቁ > 	݀ 

As ܴ > 0, hence the critical region is given by (Fig. 
2). 
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Figure 2. The arc (గଶ − ,ߜ గଶ +  .is the critical region (ߜ

 

 


