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Abstract 

Many survival data analyses aim to assess the effect of different risk factors on 
survival time. In some studies, the survival times are correlated, and the dependence 
between survival times is related to their spatial locations. Identifying and considering 
the dependence structure of data is essential in survival modeling. The copula functions 
are helpful tools for incorporating data dependencies. So, one may use these functions 
for modelling spatial survival data. This paper presents a model for spatial survival data 
by the Gumbel-Hougaard copula function. A two-stage estimator using a composite 
likelihood function is used to estimate regression and dependence parameters. A 
simulation study investigates the performance of the model. Finally, the proposed model 
is applied to model a set of COVID-19 data. 
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Introduction 
Analyzing the joint pattern of diseases in specific 

population groups has become a popular research field 
in many epidemiological studies. These groups could be 
family members, residents of a geographic region, 
patients of a clinical centre, etc. Analyzing dependent 
survival data requires a model for joint survival 
function.  Such multivariate survival data analysisaims, 
especially in biomedical and epidemiological research, 
to determine the effects of some risk factors on the joint 
hazard (or survival) function. Ordinary survival models, 
such as the Cox proportional hazard model, can explain 
the effect of known factors as covariates in the model. 
Sometimes some unknown or unmeasurable factors 
affect the hazard function and cause some dependencies 
between survival times. We should consider any 
dependence structure of the data in survival modeling; 

Otherwise, it can lead to misleading results.  Frailty and 
copula models are two commonly used approaches for 
modelling dependent survival data. These models take 
the association between survival times into account in 
two manners. The frailty models consider the 
dependency in the model using a latent random effect 
term (so-called frailty) and consider a known 
distribution for this latent variable. From the conditional 
distribution point of view, frailty models assume that 
the observations are independent conditionally on the 
frailty term (1). Used frailty models in analyzing 
univariate survival data. They extended the ordinary 
Cox regression model by multiplying it by a frailty 
term, W, as follows 

 λ( | ) = W ⋅ λ (t)exp(β 	 ).																				(1) 
 
There are different types of dependency on survival 

data.  In some cases, their dependencies are related to 
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their spatial locations. When the survival data's 
dependency is due to their spatial locations, they will be 
called spatial survival data (2). Modeled this type of 
data by adding a spatial random field as frailty to the 
proportional hazards model as follows 

 λ t, s Z(s) = λ (t)exp β 	Z + X(s) ,																			(2) 
 
where X(s) is a Gaussian random field to explain the 

spatial dependence between subjects. They used this 
model to analyze the childhood asthma data (3). 
considered a non-Gaussian random effect model and 
proved the model parameters' identifiability in this case 
(4). Investigated the spatial structure of leukemia 
survival data using a spatial survival model (5). 
Assumed the proportional odds model as the marginal 
hazard and used frailties to model spatial dependency 
structure (6). Considered random effects from a CAR 
model as frailties in accelerated failure time, 
proportional hazards, and proportional odds models (7). 
Used the spatial survival model for interval-censored 
data. They used the Bayesian approach to estimate the 
model parameters. Frailty models are appropriate when 
within-cluster inferences are desired because the 
covariate effects in these models are interpreted as being 
conditional on the frailties and are cluster-specific (8). 

On the other hand, copula functions are powerful 
tools for constructing multivariate distributions based on 
their marginal distributions and dependence structure. 
The variety of dependency structures that copulas can 
model, copula families' flexibility, and the copulas' 
relative mathematical simplicity make them a popular 
tool for modeling dependencies between random 
variables. 

The word copula was first employed mathematically 
or statistically by (9) in the theorem describing the 
functions that combine one-dimensional distribution 
functions to form multivariate distribution functions 
(10). From one point of view, copulas are functions that 
join or couple multivariate distribution functions to their 
one-dimensional marginal distribution functions. 
Alternatively, copulas are multivariate distribution 
functions whose one-dimensional margins are uniform 
at intervals (0,1) (10). We can use the copula functions 
to model joint survival functions based on assumed 
marginals (11). Considered a bivariate association 
model for an ordered pair of individuals in constructing 
bivariate life tables. Without knowing the copula 
concept, his model uses a copula to create the bivariate 
survival function (12). Used the copula function to 
analyze spatial dependent data (13) and (14) modeled 
drought data with copula functions (15). Assumed a 
marginal proportional hazard model and used the 

Gaussian copula function to model the geostatistical 
survival data's spatial dependence structure (16). Used a 
copula-based approach to evaluate the effect of 
dependence in stress-strength models in the context of 
reliability (17). Assumed the Farlie-Gumbel-
Morgenstern copula and modeled the dependence 
parameter as a function of geographic and demographic 
pairwise distances. For the estimation of the dependence 
parameters, they presented pairwise composite 
likelihood equations (18). Modeled the marginal 
survival function with a Bayesian nonparametric model 
and applied the Gaussian copula function to describe the 
survival data's spatial dependence structure. They also 
considered the Bayesian version of the (15) model and 
assumed a piecewise exponential prior for the baseline 
hazard function (19). Extended the Archimedean copula 
methodology to model multivariate survival data 
grouped in clusters. 

 The methodology in this paper is motivated by 
modeling spatially dependent survival data. We use the 
Gumbel-Hougaard bivariate copula to model pairwise 
survival functions. We assume that the copula's 
parameter is a function of Euclidian distances between 
subjects to capture the spatial dependence structure of 
survival data. A two-stage estimation method is used to 
estimate the model parameters. First, the marginal 
model parameters are estimated using a marginal 
likelihood, and then we use the composite likelihood 
approach for the spatial dependence parameters. The 
rest of the paper is structured as follows: Section 2 
describes the model in detail. Section 3 presents the 
estimation procedure. In Section 4, the model's 
performance is evaluated via a simulation study. Section 
5 contains the application of the model on a real data 
set. Finally, a brief discussion is presented in Section 6. 

 
Model Specification 

Let T  and C , i=1,…,n, be the unobserved failure 
and right censoring time, respectively, and Z  be the p-
vector of covariates. Conditional on Z, T, and C are 
assumed to be independent. For the i-th subject, the 
observed quantity is = min	( , ). In order to know 
whether the event happened or the time has been 
censored, the indicator function δ = I( ≤ )	is 
defined. For subject i, one can observe , δ , 	and 
geographic coordinates  and . 

We model the dependence structure between 
subjects by modeling the bivariate survival function. For 
this purpose, assume that the marginal survival function 
of  T follows the Weibull model given by S(t|Z) = exp(−λ exp(β 	Z))																(3) 

 
where α and λ are location and scale parameters, 
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respectively, and β is a regression coefficient vector. 
Model (3) is a marginal model for s, and the estimated 
β from this model has a population-average 
interpretation. 

When the survival data are spatially correlated, one 
may use the copula functions to model the survival 
data's spatial dependence structure. Spatial data are 
correlated, and the dependence decreases as the spatial 
distance between units increases. So, a copula function 
is considered a valid spatial copula if it covers positive 
dependencies between variables. In addition, the copula 
results in independence and maximum dependency, 
when the spatial distance between units, , goes to 
infinity and zero, respectively. For every copula  and 
every ( , ) ∈ , 

 ( , ) = max( + − 1,0) ≤ ( , ) ≤( , ) = min	( , ), 
 
where and are referred to Fréchet-Hoeffding 

upper and lower bound, respectively. Another important 
copula is product copula Π( , ) = . So, in the 
context of copula functions, for a valid spatial copula, → ∞ results in the product copula, and → 0 leads to 
Fréchet-Hoeffding upper bound. 

     To model the spatial dependence structure of 
survival data, functions should be used that, in addition 
to having the conditions of a valid spatial copula, also 
match the characteristics of the survival data. Survival 
data are always positive, and their distributions are often 
skewed. So, like Frank copula, symmetric copula 
functions could not be the appropriate choice to fit 
survival data. While, Gumbel-Hougaard and Clayton 
copulas can model upper and lower tail dependence, 
respectively. In the context of joint survival models, a 
copula with upper tail dependence exhibits the 
association between early event times. At the same time, 
a copula with lower tail dependence is used to represent 
the dependency of late event times. Commonly, late 
event times are influenced by right censoring. So, a 
lower tail dependence copula is affected more by the 
right censoring and has a weak performance in inference 
(20). 

     o model the dependence structure of the data, we 
assumed the Gumbel-Hougaard (GH) copula function, 
given by , = ( ),= exp − (− ln ( ))+ −ln 									(4) 

 

where , = ( > , > ) is the joint 
survival function, ( ) and  are the marginal 
survival functions for subjects i and j, respectively, and ∈ (1,∞) is the copula function parameter that 
measures the dependency of two margins. A GH copula 
meets the requirements of a valid spatial copula. It 
covers only the positive dependencies between 
variables. Moreover, when = 1, = Π, and when → ∞, = M. Furthermore, it is able to model 
upper tail dependence, which is consistent with the 
distribution of the right censored survival data. 

There is a one-to-one relation between the copula 
function parameter, ∈ (1,∞) , and the global 
measure of dependence, Kendall’s correlation, because = 	. To consider the spatial dependence in the 

model,  can be viewed as a function of the geographic 
distance between subjects i and j. (21) introduced a new 
method to build spatio-temporal covariance functions 
using Archimedean copula generators and listed some 
Archimedean copulas and their corresponding stationary 
spatial covariance functions. Exponential covariance 
function can be constructed by the generator of the GH 
copula. So, we assume an exponential model for  
given by 

 ≡ ; = 	 																								(5) 
 
where  is the Euclidean distance between the 

spatial location of subjects i and j, and  is the spatial 
dependence parameter to be estimated. Considering 
model (5) for , it is seen that the GH copula meets the 
requirements of a spatial copula function, since when → 0, → 1, → ∞ and = M. Similarly, 
when → ∞, → 0, = 1 and = Π. 
 
Estimation Procedure 

To determine the joint bivariate survival function, 
we should estimate the marginal survival functions’ 
parameters and the copula function. Since the copula 
approach separately models the marginal functions and 
dependence structure, we use a two-stage estimation 
method. First, β, λ and α are estimated from the 
marginal survival model using the marginal maximum 
likelihood procedure. The log-likelihood for the 
assumed marginal model has the following form 
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ℓ β	, λ	, α , δ, Z= ln + ln + ( − 1) ln+ − ( ) 														(6) 
(22) showed that this estimator is consistent for 

marginal parameters if the marginal model is correctly 
specified. However, the estimator’s variance is affected 
by the dependency of the observations. 

     In the second stage, the calculated estimates from 
the first stage, ,  and , are inserted into the 
composite likelihood function, and maxℒ , , ,  

is solved for . A composite likelihood is formed by 
multiplying a collection of component likelihoods; the 
context often determines the particular collection used. 
For an m-dimensional random variable Y with 
probability density function ( ; ) ,consider a set of 
marginal or conditional events , … ,  with 
associated likelihoods ℒ ( ; ) ∝ ( ∈ ; ). A 
composite likelihood is a weighted product 

 ℒ ( ; ) = ∏ ℒ ( ; ) ,                (7) 
 
where s are nonnegative weights to be 

determined. The weights can be equal and ignored (23). 
The pairwise composite likelihood for survival data has 
the following general form 
 ℒ=

, ∈
, ( ) ( ) , ( ) , ( ) , 							(8) 

 

where ( ) , = − , , ( ) , =− , , , = ,  and  is a 

set of all pairs i and j that are in a specific distance from 
each other. For our proposed joint model: 

 ( ) , = − ,  

																				= / × (− ln ( )) × − ( ) × exp − /( ) × ln ( ) × 	
( ) , = − ,  

																				= / × − ln × − × exp − /× ln × 	
, = ,  																		= / × ( ) × (− ln ( )) × × − ln 																		× exp − / − 1 + /( ) × ln ( ) × × ln ×  

 
where = (− ln ( )) + −ln . 

Simulation Study 
We investigate the efficacy of the proposed model 

via a simulation study. For this purpose, we generated a 
spatial survival data set using a method proposed by 
(24) For a spatial survival function, we have S(t|Z, s) = exp −Λ (t)exp(β Z+ 	R(s)) 																										(9) 

where R(s) is a Gaussian random field with a valid 
covariance function, and s denotes each subject's 
geographic location. Since S(t|Z, s) has a standard 
uniform distribution, according to the probability 
integral transform theorem, the spatial survival time 

 T = Λ − ln × exp −(β Z + 	R(s)) ,U	 ∼ U(0,1)										(10) 
 
has equation (3) as its survival function. For our 

proposed model, with the Weibull baseline hazard 
function, a spatial survival time can be generated by 

 T = − ( 	 ( )) /
                                          (11) 

 
Following this method, two elements should be generated 

randomly:  from (0,1) and a Gaussian random field ( ) 
with a specific covariance function. 

     First, n locations were simulated using the uniform 
distribution (0,1) .After calculating the distance 
matrix of these locations, the Gaussian random field, ( ), with an stationary exponential covariogram, σ(d) = exp − , were generated. We consider = 1, = 0.9 and one covariate from Bernoulli(0.5) 
distribution. Using this method ensures that the 
presented simulations had marginal survival times from 
Weibull model (3). We consider a 10% censoring rate 
for simulated data. The results for β and  are 
summarized in Table 1 for n=50, 100 and 500. The 
MSEs of the estimators  and  in this table are defined 
by MSE = ∑ −  and MSE =∑ − , where M is the number of iterations. 

     In Table 1, the estimates of  have a slight bias 
in all simulations. The MSE criterion decreases slightly 
by increasing n; This is because only the observations in 
a specific neighbourhood participate in the estimation of 

, not all of them. The length of the interval ( . , . ) decreases as n increases. On the other 
hand, since the  estimation method assumes the 
observations are independent, the  estimator's 
precision slightly reduces by increasing the data 
dependency by increasing .  
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Application: Analysis of COVID-19 Data 
The COVID-19 pandemic is an ongoing pandemic 

of coronavirus disease 2019 that was first identified in 
December 2019. Globally, as of 10 January 2021, there 
have been 88,120,981 confirmed cases of COVID-19, 
including 1,914,378 deaths, reported to WHO 
(https://covid19.who.int/). COVID-19 is thought to 
spread mainly through close contact from person to 
person, including between people who are physically 
near each other. So it seems that people infected by this 
disease will desire more spatial dependence, which 
copula functions can model. To determine the effective 
factors in the survival time of COVID-19 patients and 
also to test if there is a spatial dependence between 
patients, we applied the proposed model to a dataset 
from the Philippines on GitHub (25). 

Philippines is an archipelagic country in Southeast 
Asia, near China. As of 10 January 2021, more than 
490,000 confirmed cases, including more than 9,500 
deaths, have been reported to WHO in Philippines 
(https://covid19.who.int/region/wpro/country/ph). The 
available data set on GitHub included laboratory-
confirmed COVID-19 individuals who observed 
symptoms in the first three months after the outbreak 
and were followed up until recovery or death. For each 

patient, in addition to geographical coordinates, 
longitude and latitude, age, sex (1: male, 0: female), 
onset symptoms date, date of death or recovery, and the 
outcome (death, recovery or discharging) have been 
recorded. Since the dataset included patients with acute 
conditions, out of 363 cases, death was recorded for 321 
patients. So The censoring percentage is about 11%. 
Figures 1 and 2 show the geographical dispersion of 363 
patients and geo-plots of this dataset. 

 First, based on a parametric approach, we fitted a 
marginal Weibull model on survival times and 
considered age and sex as covariates. The results 
showed that patients' sex does not have a significant 
effect on survival time. A summary of the final fitted 
model from 'survreg' function in survival package in R 
is provided in Table 2. 

The summary of 'survreg' includes the coefficients 
of each covariate, standard errors and P-values. The 
output scale corresponds to the Weibull distribution's 
shape parameter is shown in the last line of this table. 
The result of the log-likelihood test indicates the fitted 
model is significantly better than the null model: 
Loglik(model)=-1167.3, Loglik(intercept only)= -
1173.6, Chisq= 12.56 on 2 degrees of freedom, and P-
value=0.0019. 

Table 1. Simulation results for regression and spatial dependency terms 
     ( ) ( )   ( ) ( . , . ) 

  0.5  0.60 0.171 0.237  0.54 0.638 (0.302,1.185) 
 50 1.0  0.57 0.171 0.246  1.25 0.923 (0.670,1.814) 
  1.5  0.53 0.175 0.297  1.61 1.187 (0.978,2.033) 
  0.5  0.53 0.083 0.106  0.46 0.627 (0.366,0.950) 

0.5 100 1.0  0.56 0.084 0.110  1.09 0.745 (0.788,1.660) 
  1.5  0.52 0.084 0.147  1.36 1.132 (1.052,1.935) 
  0.5  0.51 0.017 0.018  0.46 0.593 (0.316,0.662) 
 500 1.0  0.51 0.017 0.024  1.01 0.697 (0.813,1.391) 
  1.5  0.46 0.017 0.024  1.44 1.034 (1.374,1.689) 
  0.5  1.09 0.171 0.235  0.65 0.759 (0.385,1.090) 
 50 1.0  1.08 0.174 0.281  1.17 0.832 (0.694,1.796) 
  1.5  0.99 0.179 0.288  1.38 1.042 (0.861,1.857) 
  0.5  0.97 0.086 0.094  0.59 0.704 (0.344,0.969) 

1.0 100 1.0  1.01 0.086 0.088  1.20 0.894 (0.823,1.258) 
  1.5  0.98 0.088 0.156  1.44 1.017 (1.257,1.680) 
  0.5  0.99 0.017 0.018  0.44 0.516 (0.346,0.688) 
 500 1.0  1.01 0.017 0.021  0.98 0.657 (0.859,1.074) 
  1.5  1.01 0.017 0.027  1.56 0.935 (1.266,1.740) 
  0.5  1.61 0.165 0.190  0.79 0.909 (0.340,1.176) 
 50 1.0  1.49 0.174 0.205  1.13 0.782 (0.628,1.394) 
  1.5  1.50 0.179 0.270  1.37 1.024 (0.824,2.121) 
  0.5  1.47 0.086 0.085  0.57 0.682 (0.291,1.029) 

1.5 100 1.0  1.52 0.085 0.116  1.09 0.707 (0.769,1.178) 
  1.5  1.45 0.087 0.154  1.48 1.132 (1.119,1.903) 
  0.5  1.51 0.017 0.024  0.51 0.661 (0.317,0.704) 
 500 1.0  1.50 0.017 0.017  0.98 0.657 (0.865,1.090) 
  1.5  1.49 0.017 0.026  1.49 0.110 (1.324,1.767) 
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Despite the convenience of fitting the Weibull model 
and the flexibility of Weibull distribution, it has not 
been used widely in medical research because the 
estimated coefficients are not clinically meaningful 
(26). So the function 'ConvertWeibull' in package 
SurvRegCensCov was used to convert the summary of  
'survreg' to more clinically relevant statistics such as 
hazard ratio. Using this function, the Hazard Ratio for 

variable age is calculated as  1.014  with 
(1.0059,1.0221) as its 95% confidence intervaln. It 
seems that the variable age has a small contribution to 
the hazard ratio, as an additional year of patients' age 
increases the risk of death by 1% (HR=1.01) and 
decreases the survival time by around 1%. 

 To model the dependence between survival times, 
we assumed a Gumbel-Hougaard survival copula for the 

 
Figure 1. Geographical dispersion of patients in Philippines 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. Geoplots of Philippines COVID-19 data (a) data locations, (b) data against the Y coordinate, (c) data against the X 
coordinate, and (d) the histogram of the data values. 
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bivariate joint survival function, allowing the copula's 
dependence parameter to be a function of geographic 
distance via its relation to Kendall-tau. Plugging the 
estimated regression coefficient from the marginal 
Weibull model into the composite likelihood function 
and maximizing it as a function of  obtained =0.73. This result indicates that the dependence is 
reducing as the geographic distance increases. 
According to equation (5), a 10-km distance between 
two patients leads to ̂ = 0.93, and a 500 km distance 
causes ̂ = 0.001, which seems reasonable for a country 
like the Philippines.  

 

Results and Discussion 
This paper proposed a copula-based approach to 

model the spatially correlated survival data. We used a 
two-stage estimation method to estimate the regression 
coefficients of the marginal hazard model and the 
spatial dependence parameter of the joint survival 
function. Estimating the spatial dependence parameter 
was obtained by maximizing the composite likelihood 
function based on bivariate survival copulas. The Farlie-
Gumbel-Morgenstern copula, used by (17), can only 
project the small dependencies. On the other hand, 
members of the FGM family are symmetric. Because of 
the skewness of the survival data and a positive 
dependency between the spatial data, we used a 
bivariate Gumbel-Hougaard copula function to consider 
the spatial dependence between data. MSE criteria in 
the simulation study indicated the proper performance 
of the proposed model and the estimation method based 
on the composite likelihood function. Applying the 
proposed model to Philippine’s individual-level 
COVID-19 data allowed us to model the spatial 
dependence from the patients' geographic distance. 

 

Acknowledgements 
The authors thank the editorial team and the 

anonymous reviewers for their comments, helpful 
suggestions and encouragement, which helped improve 
the final version of this paper. Receiving support from 
the Center of Excellence in Analysis of Spatio-
Temporal Correlated Data at Tarbiat Modares 
University is acknowledged. 

 

References 
1. Vaupel JW, Manton KG and Stallard E. The Impact of 

Heterogeneity in Individual Frailty on the Dynamics of 
Mortality. Demography. 1979; 16: 439-454. 

2. Li Y and Ryan L. Modeling Spatial Survival Data Using 
Semiparametric Frailty Models. Biometrics. 2002; 58: 
287-297. 

3. Motarjem K, Mohammadzadeh M and Abyar A. Bayesian 
Analysis of Spatial Survival Model with Non-Gaussian 
Random Effect. Journal of Mathematical Sciences. 2019; 
237: 692-701. 

4. Henderson R, Shimakura S, Gorst D. Modeling Spatial 
Variation in Leukemia Survival Data. Journal of the 
American Statistical Association. 2002; 97: 965-972. 

5. Banerjee S and Dey DK. Semiparametric Proportional 
Odds Models for Spatially Correlated Survival Data. 
Lifetime Data Analysis. 2005; 11: 175-191. 

6. Zhao L, Hanson TE. and Carlin BP. Mixtures of Polya 
Trees for Flexible Spatial Frailty Survival Modelling. 
Biometrika. 2009; 96: 263-276. 

7. Pan C, Cai B, Wang L and Lin X. Bayesian Semi 
Parametric Model for Spatial Interval-Censored Survival 
Data. Computational Statistics and Data Analysis. 2014; 
74: 198-209. 

8. Liu D, Kalbfleisch JD, Schaubel DE. A Positive Stable 
Frailty Model For Clustered Failure Time Data With 
Covariate-Dependent Frailty. Biometrics. 2014; 67(1): 8-
17. 

9. Sklar A. Fonctions de Répartition à n Dimensions et Leurs 
Marges. Publications de l'Institut de Statistique de 
l'Universite  de Paris. 1959; 8: 229-231. 

10. Nelsen RB. An Introduction to Copulas. 2005; Second 
Edition. Springer Series in Statistics . 

11. Clayton D. A Model for Association in Bivariate Life 
Tables and Its Application in Epidemiological Studies of 
Familial Tendency in Chronic Disease Incidence. 
Biometrika. 1978; 65: 141-151. 

12. Bárdossy A. Copula-based Geostatistical Models for 
Groundwater Quality Parameters. Water Resources 
Research. 2006; 42: 1-12. 

13. Shiau JT. Fitting Drought Duration and Severity with 
Two-Dimensional Copulas. Water Resources Research. 
2006; 20: 795-815. 

14. Omidi M, Mohammadzadeh M and Morid S. The 
Probabilistic Analysis of Drought Severity-Duration in 
Tehran Province using Copula Functions. Iranian Journal 
of Agricultural Sciences. 2010; 41: 95-102. 

15. Li Y and Lin X. Semiparametric Normal Transformation 
Models for Spatially Correlated Survival Data. Journal of 
the American Statistical Association. 2006; 101: 591-603. 

Table 2. Estimates for marginal hazard using Weibull model
 Value Std z P-value 

Intercept 3.4040 0.1841 18.49 <2e-16 
Age -0.0100 0.0028 -3.49 0.0005 
Sex 0.0549 0.0817 0.67 0.5016 

Log (scale) -0.3629 0.0422 -8.60 <2e-16 
 



Vol. 34  No. 1  Winter 2023 N. Ebrahimi, et al. J. Sci. I. R. Iran 

42 

16. Domma F and Giordano S. A Copula-Based Approach to 
Account for Dependence in Stress-Strength Models. 
Statistical Papers. 2013; 54: 807-826. 

17. Paik J, Ying Z. A Composite Likelihood Approach for 
Spatially Correlated Survival Data. Computational 
Statistics and Data Analysis. 2013; 56(1): 209-216. 

18. Zhou H, Hanson T and Knapp R. Marginal Bayesian 
Nonparametric Model for Time to Disease Arrival of 
Threatened Amphibian Populations. Biometrics. 2015; 71: 
1101-1110. 

19. Prenen L and Braekers R. Extending the Archimedean 
Copula Methodology to Model Multivariate Survival Data 
Grouped in Clusters of Variable Size. Journal of the Royal 
Statistical Society: Series B (Statistical Methodology). 
2017; 79: 483-505. 

20. Geerdens C, Acar EF and Janssen P. Conditional Copula 
Models For Right-Censored Clustered Event Time Data. 
Biostatistics. 2018;19(2): 247-262. 

21. Omidi, M and Mohammadzadeh, M. A New Method to 
Build Spatio-Temporal Covariance Functions: Analysis of 
Ozone Data. Statistical Papers. 2015; 57(3): 689–703 

22. Lee EW, Wei LJ and Amato DA. Cox-Type Regression 
Analysis for Large Numbers of Small Groups of 
Correlated Failure Time Observations. Survival Analysis: 
State of the Art. J. P. Klein and P. Goel, eds. Boston: 
Kluwer Academic Publishers.  1992; 237–248. 

23. Varin C, Reid N and Firth D. An Overview of Composite 
Likelihood Methods. Statistica Sinica. 2011; 21(1): 5-42. 

24. Motarjem K, Mohammadzadeh M and Abyar A. 
Geostatistical Survival Model with Gaussian Random 
Effect. Statistical Papers. 2020; 21(1):85-107. 

25. Xu B, Gutierrez B, Mekaru S, Sewalk K, Goodwin L, 
Loskill A, Cohn E L, Hswen Y, Hill S C, Cobo M M, 
Zarebski A E, Li S, Wu C, Hulland E, Morgan J D, Wang 
L, O’Brien K, Scarpino S V, Brownstein J S, Pybus O G, 
Pigott D M and Kraemer M U G. Epidemiological Data 
From the COVID-19 Outbreak, Real-Time Case 
Information. Scientific Data. 2020; 7 (1): 106. 

26. Zhang Z. Parametric Regression Model for Survival Data: 
Weibull Regression Model as an Example. Annals of 
translational medicine. 2016; 4 (24): 484. 

 


