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Abstract 

In a number of real-world situations, one encounters count data with over-dispersion 
such that the typical Poisson distribution does not suit the data. In the current situation, 
it is appropriate to employ a combination of mixed Poisson and Poisson-Sujatha (PS) 
distributions. The PS distribution has been investigated for count data, which is of 
primary interest to a number of disciplines, including biology, medicine, demography, 
and agriculture. However, no research has been conducted regarding generating 
bootstrap confidence intervals for its parameter. The coverage probabilities and average 
lengths of bootstrap confidence intervals derived from the percentile, basic, and biased-
corrected and accelerated bootstrap methods were compared using Monte Carlo 
simulation. The results indicated that it was impossible to achieve the nominal 
confidence level using bootstrap confidence intervals for tiny sample sizes, regardless of 
the other settings. Furthermore, when the sample size was large, there was not much of 
a difference in the performance of the several bootstrap confidence intervals. The bias-
corrected and accelerated bootstrap confidence interval demonstrated superior 
performance compared to the other methods in all of the cases examined. Moreover, the 
effectiveness of the bootstrap confidence intervals was proven through their application 
to agricultural data sets. The calculations offer significant evidence in favor of the 
suggested bootstrap confidence intervals. 
 
Keywords: Interval Estimation; Poisson Distribution; Mixed Distribution; Count Data; Bootstrap 
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Introduction 
The Poisson distribution is frequently used to model 

the number of events that occur in a given time and/or 
location (1) .A Poisson distribution applies to data such 

as the number of thunderstorms per month, the number 
of orders a company will receive the next day, the 
number of calls received per hour at a call centre, the 
number of defects in a completed product, etc. (2). The 
Poisson distribution is an essential model for the 
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analysis of count data, but its use is limited due to the 
equality of its mean and variance (equi-dispersion). In 
comparison to the Poisson distribution, count data 
frequently exhibit over-dispersion, with a variance 
larger than the mean (3, 4). The application of the 
Poisson distribution to data with over-dispersion can 
result in inaccurate analyses and incorrect conclusions 
(5). A possible solution for addressing over-dispersion 
in count data is to employ a mixed Poisson distribution. 
This approach assumes that the Poisson parameter, 
which governs the distribution, is a random variable 
characterized by a single parameterized distribution (6).  

Shanker (7) investigated the mathematical and 
statistical properties of the Poisson-Sujatha (PS) 
distribution developed by combining the Poisson and 
Sujatha distributions. The PS distribution is derived 
from the Poisson distribution when the Poisson 
parameter λ  (the average number of occurrences) 
follows a Sujatha distribution. The PS distribution was 
found to be more appropriate than the Poisson and 
Poisson-Lindley (8) distributions when applied to two 
actual data sets. 

Shanker (9) introduced the Sujatha distribution as a 
one-parameter lifetime continuous distribution with a 
probability density function (pdf) defined as 
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whereSujatha distribution The  0.θ > and  0x >  
is a continuous distribution that consists of a 
combination of three probability distributions: the 
exponential distribution, exp(θ ), the gamma(2,θ ) and 
the gamma(3,θ ) distributions. These three distributions 
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The aforementioned distribution has been utilized for 
the purpose of modeling lifetime data within the 
domains of engineering and biomedical science. 
Moreover, Shanker (9) demonstrated that the Sujatha 
distribution outperforms the exponential, Lindley (10), 
and Akash (11) distributions as a more suitable model. 
Shanker (9) had examined the important statistical 
properties of the Sujatha distribution. Figure 1 depicts 
the pdf plots of the Sujatha distribution with specified 
values of parameter .θ  

The confidence interval, a fundamental component 
of statistical inference, is a range of values that is highly 
probable to encompass the real value of the population 
parameter of interest. It serves as a crucial outcome in 
numerous statistical analyses and plays a pivotal role in 
the interpretation of parameter estimations (12). 
According to our best knowledge, no studies have been 
done on calculating the confidence interval for a PS 
distribution parameter. Bootstrap confidence intervals 

 
Figure 1. Plots of the pdf of the Sujatha distribution for θ = 0.5, 1, 1.5 and 2 
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for estimating the parameter quantify the uncertainty 
associated with statistical inference based on the sample 
data. The idea is to conduct a simulation study using 
real data in order to estimate the potential size of 
sampling error (13). The key objective of the current 
study is to evaluate the effectiveness of three different 
bootstrap confidence interval estimations, specifically 
the percentile bootstrap (PB), the basic bootstrap (BB), 
and the bias-corrected and accelerated (BCa) bootstrap, 
in estimating the parameter of the PS distribution. In 
addition, none of the bootstrap confidence intervals will 
be exact (i.e., the actual confidence level is precisely 
equal to the nominal confidence level 1 α− ), but they 
will all be consistent, with the confidence level 
approaching 1 α−  as the sample size increases (14). 
Given the inherent limitations in conducting a 
theoretical comparison of bootstrap confidence 
intervals, we select to perform a simulated study to 
assess their respective advantages and disadvantages. In 
addition, the bootstrap methods were compared in a 
simulation investigation in a number of studies (see 
Reiser et al. (15), Flowers-Cano et al. (16), Mostajeran 
et al. (17)). In the current study, a Monte Carlo 
simulation was implemented to compare their 
performance. Based on the chance of coverage and the 
average length, the simulation results were used to find 
the method with the best performance. 

 

Theoretical Background 
In probability theory, the Poisson distribution is 

characterized by its probability mass function (pmf), 
which may be written as 

 
exp( )( ; ) ,

!

y

p y
y
λ λλ −=

                                    (2) 
where 0,1,2,...,y =  e  is a constant equal to 

approximately 2.718282 and λ  is a Poisson parameter; 
0.λ >   Let X  represent a random variable which 

follows the PS distribution with a parameter ,θ  which 

is commonly denoted as PS( ).X θ  According to 
Shanker (7), the pmf of the PS distribution is defined as 
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where 0,1,2,...,x =  and 0.θ >  Figure 2 shows 
the pmf plots of the PS distribution for a range of 
parameter values .θ  According to the PS distribution, 
the expected value (mean) and variance of the random 
variable X  are as follows: 
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Figure 2. Plots of the pmf of the PS distribution for θ = 0.5, 1, 1.5 and 2 
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Maximizing the log-likelihood function 
log ( ; )iL x θ  or the logarithm of the joint pmf of 

1,..., nX X  yields the point estimator of .θ  
Consequently, the derivation of the ML estimator for θ  
involves the following procedures: 
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We obtain the non-linear equation by solving for θ  

in the equation 
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 denotes the sample mean. 

According to the inability to find a closed-form solution 

provided by the ML estimator for ,θ  numerical 
iteration techniques such as bisection, Newton-Raphson, 
and Ragula-Falsi methods can be used to solve the 
resulting non-linear problem. The paper utilized the 
maxLik package (18) with the Newton-Raphson method 
for ML estimation. The statistical software R (19) was 
employed for this purpose. 

 
Bootstrap Confidence Intervals 

The interval estimation, also known as confidence 
interval, is derived from an estimator that calculates the 
standard errors of a parameter, denoted as .φ  Then, the 
standard error is multiplied by the critical value to add 
or subtract, giving the (1 )100%α−  two-sided 
confidence interval for φ  (for example, 

1 ( /2)
ˆ ˆ( )).z SEαφ φ−±  This computation is based on the 

normality assumption of the estimator of φ  (16). 
Nevertheless, there are a number of situations in which 
the normality assumption is not appropriate to make an 
estimation. In such instances, or when estimating the 
standard error is exceedingly challenging, it is 

reasonable to employ techniques based on the bootstrap 
method. The computationally intensive bootstrap 
methods described in this study offer an alternative to 
assuming the underlying distribution when constructing 
approximate confidence intervals (20). In this paper, we 
concentrate on the three bootstrap confidence intervals 
for the PS distribution parameter. The most frequently 
employed bootstrap confidence intervals in practice are 
the PB, BB, and BCa confidence intervals (14). With 
the use of the boot package (21) and the statistical 
software R (19), the bootstrap confidence intervals were 
calculated for this investigation. 

 
Percentile Bootstrap (PB) Confidence Interval 

The PB two-sided confidence interval is defined as 
the range bounded by the ( / 2) 100α ×  and 
(1 ( / 2)) 100α− ×  percentiles of the distribution for 
the estimated values of θ  acquired from resampling or 
the distribution of *ˆ ,θ  where θ  denotes an important 
parameter and α  denotes the level of significance (22). 
The procedure for constructing a PB confidence interval 
for the PS distribution parameter is as follows: 

1) With a replacement, B  random bootstrap 
samples of the underlying distribution are created, 
where B  is the number of bootstrap replications, 

2) From each bootstrap sample, a parameter estimate 
*θ̂  is determined, 

3) All parameter estimates from the B  bootstrap 
samples are ranked from smallest to greatest, and 

4) the (1 )100%α−  PB two-sided confidence 
interval is created as follows: 

 
* *
( ) ( )
ˆ ˆ, ,PB r sCI θ θ =                      (4) 

where the notation *
( )

ˆ
rθ  is the thr  quantile of a 

collection of the parameter estimate *θ̂   arranged in 

ascending order, while *
( )

ˆ
sθ  is the ths  quantile of the 

aforementioned collection, ( / 2) ,r Bα=     

(1 ( / 2)) ,s Bα= −    where  x  stands for 
the ceiling function of ,x  and α  is the significance 
level. This study utilized α  = 0.05 and B  = 2,000; the 
two quantiles related to the lower and upper bounds of 
the PB two-sided confidence interval were * *

( ) (50)
ˆ ˆ

rθ θ=  

(the 50th quantile) and * *
( ) (1950)
ˆ ˆ

sθ θ=  (the 1950th 
quantile). 
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Basic Bootstrap (BB) Confidence Interval 
The BB method, often known as the simple 

bootstrap method, is just as straightforward to 
implement as the PB method. Consider the quantity of 
interest to be θ  and the estimator of θ  to be ˆ.θ  The 

BB technique presumes that θ̂ θ−  and *ˆ ˆθ θ−  follow 
similar distributions (20). The (1 )100%α−  BB two-
sided confidence interval for θ  is 

 
* *
( ) ( )

ˆ ˆ ˆ ˆ2 , 2 ,BB s rCI θ θ θ θ = − −                            (5) 

where the quantiles *
( )
ˆ

rθ  and *
( )
ˆ

sθ  represent the same 
percentile of the empirical distribution of bootstrap 
estimates *θ̂  that are utilized in (4) to calculate the PB 
confidence interval. 

 
Bias-Corrected and Accelerated (BCa) Bootstrap 
Confidence Interval 

The calculation of BCa bootstrap confidence 
intervals commonly involves the utilization of influence 
statistics derived from jackknife simulations. However, 
incorporating jackknife simulation alongside ordinary 
bootstrapping is computationally expensive for the 
intended purposes. The BCa bootstrap confidence 
interval uses a bias-correction element and an 
acceleration element to correct for the bias and 
skewness of the bootstrap parameter estimates, 
mitigating the over-coverage problems seen with the PB 
confidence interval (22, 23, 24). Davison and Hinkley 
(25) and Chernick and LaBudde (14) described the 
mathematical particulars of the BCa adjustment. The 
bias-correction element 0ẑ  is calculated by 

{ }*
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where 1−Φ  is the inverse function of the standard 
normal distribution’s cumulative distribution function. 
The acceleration element â  is calculated via jackknife 
resampling, which entails generating n  replicates of the 
initial set of data, where n  is the sample sizes. The 
initial jackknife replication is obtained by omitting the 
first case ( 1)i =  from the initial sample, the second by 
omitting the second case ( 2),i =  etc., until a total of 
n  samples, each with a size of 1,n −  are generated. 
Based on the jackknife resamples, we obtain the value  
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where /2zα  is the / 2α  quantile of the normal 
distribution with a mean of zero and standard deviation 
of 1. Then, the (1 )100%α−  BCa bootstrap two-sided 
confidence interval for the PS distribution parameter is 
computed by 

 
* *
( ) ( )
ˆ ˆ, ,BCa j kCI θ θ =                                           (6) 

where 1j Bα=     and 2 .k Bα=     When the 

value 0ẑ  is set to 0 and â  is also set to 0, it can be 
observed that the BCa confidence interval is equal to the 
PB confidence interval. 

 
Simulation Study 

In the current study, the interval estimation for the 
parameter of the PS distribution was estimated using 
three bootstrap two-sided confidence intervals. Due to 
the lack of a direct theoretical comparison, a Monte 
Carlo simulation investigation was conducted using R 
(19) version 4.3.1 to include cases with various sample 
sizes ( n  = 10, 30, 50, 100, and 500). To observe the 
effects of both large and small variances, the actual 
value of the parameter (θ ) was chosen from 0.1, 0.5, 
0.8, 1 and 1.5. Because Ukoumunne et al. (26) asserted 
that 2,000 bootstrap samples are enough to estimate the 
coverage probability for the 95% confidence intervals 
with a standard error of slightly under 0.5%, the number 
of bootstrap replications ( B ) was fixed at 2,000. From 
the initial pseudo-random sample, n -sized bootstrap 
samples were generated, and each simulation was 
repeated 1,000 times. Without sacrificing generality, the 
level of confidence (1 )α−  was set at 0.95. The study 
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evaluated the performance of different bootstrap two-
sided confidence intervals by examining their coverage 
probabilities and average lengths. The ideal confidence 
interval should have a coverage probability that is equal 
to or very close to the nominal confidence level, 
indicating that it contains the real parameter. 
Additionally, the proposed confidence interval with the 
shortest average length is preferred as it provides the 
most accurate estimation for the parameter of interest in 
a given scenario. Therefore, it is evident that in cases 
where the coverage probability is equal, a smaller 
average length signifies the suitability of the bootstrap 
confidence interval for that specific situation. 

The study’s findings are presented in Table 1. For 
the given value of n =10, the coverage probabilities of 
all three bootstrap confidence intervals exhibited a 
tendency to be below 0.90, indicating that they did not 
achieve the intended nominal confidence level. In these 
situations, however, the BCa bootstrap two-sided 
confidence interval outperformed the others. For a 
sample size of 30, we again find that no bootstrap 
confidence interval yields a probability of coverage in 
excess of the nominal confidence level of 0.95. For n ≥
50, each bootstrap confidence interval achieved 
coverage probabilities close to the nominal level of 
confidence and had average lengths that were 

comparable. Nevertheless, the BCa bootstrap 
confidence interval exhibited a coverage probability that 
was more closely aligned with the specified nominal 
confidence level of 0.95. The coverage probabilities 
tended to rise along with the sample size, approaching 
the nominal confidence level of 0.95 as the sample size 
grew larger. Due to the relationship between variance 
and ,θ  the average lengths of the bootstrap confidence 

intervals increased as the value of θ  was increased. 
Consequently, as the sample size increased, the average 
lengths of all three bootstrap two-sided confidence 
intervals decreased, with the BCa bootstrap confidence 
interval having the shortest average length for all 
situations examined. Furthermore, when the sample size 
was small ( n =10), there was a statistically significant 
difference in the average length of the BCa bootstrap 
confidence interval compared to the others. It was 
observed that the PB and BB confidence intervals for 
the average length did not differ significantly across 
sample sizes. In brief, the BCa bootstrap two-sided 
confidence interval demonstrates superior performance 
in terms of estimated coverage probability and average 
length when applied to moderate and large sample sizes 
( n ≥ 50). 

 

Table 1 .Coverage probability and the average length of the 95 %bootstrap confidence intervals for θ  of the PS distribution 
n  θ  Coverage probability  Average length 

PB BB BCa  PB BB BCa 
10 0.1 0.894 0.889 0.886  0.0773 0.0773 0.0748 
 0.5 0.872 0.862 0.882  0.4663 0.4666 0.4465 
 0.8 0.894 0.893 0.903  0.8957 0.8998 0.8367 
 1.0 0.914 0.882 0.915  1.2677 1.2641 1.1743 
 1.5 0.893 0.883 0.893  2.8157 2.8582 2.4965 

30 0.1 0.937 0.912 0.940  0.0433 0.0432 0.0425 
 0.5 0.912 0.906 0.915  0.2529 0.2529 0.2474 
 0.8 0.908 0.913 0.911  0.4397 0.4397 0.4273 
 1.0 0.931 0.939 0.936  0.5904 0.5898 0.5702 
 1.5 0.928 0.928 0.940  1.0862 1.0867 1.0256 

50 0.1 0.947 0.933 0.948  0.0330 0.0331 0.0327 
 0.5 0.942 0.935 0.942  0.1921 0.1924 0.1898 
 0.8 0.929 0.931 0.932  0.3350 0.3351 0.3293 
 1.0 0.937 0.934 0.947  0.4461 0.4465 0.4371 
 1.5 0.935 0.924 0.939  0.7818 0.7812 0.7559 

100 0.1 0.943 0.936 0.946  0.0237 0.0237 0.0236 
 0.5 0.948 0.932 0.943  0.1343 0.1340 0.1332 
 0.8 0.939 0.945 0.942  0.2346 0.2345 0.2324 
 1.0 0.956 0.950 0.953  0.3082 0.3081 0.3051 
 1.5 0.928 0.953 0.934  0.5359 0.5358 0.5279 

500 0.1 0.941 0.948 0.943  0.0106 0.0106 0.0106 
 0.5 0.948 0.948 0.946  0.0603 0.0603 0.0601 
 0.8 0.953 0.949 0.951  0.1037 0.1037 0.1035 
 1.0 0.949 0.949 0.946  0.1365 0.1365 0.1360 
 1.5 0.961 0.945 0.958  0.2331 0.2331 0.2322 
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 Applications to Real-World Data 
In this section, we demonstrate the applicability of 

bootstrap confidence intervals for estimating the PS 
distribution parameter using two real-world data sets. 

 
Application to the Number of Red Mites 

This example utilizes the number of red mites in a 
apple farm collected by Bliss and Fisher (27). Table 2 
presents the dataset comprising 150 observations. The 
sample mean and standard deviation for this data set are 
1.1500 and 1.4504, respectively. This study employs the 
chi-squared goodness-of-fit test to determine if the 
sample data are likely to be representative of a 
particular theoretical distribution (28). The chi-square 
statistic was 3.3889, while the p-value was 0.4950. 
Consequently, a PS distribution with θ̂  = 1.6533 is 
appropriate for this data set. Table 3 displays the 95% 
bootstrap confidence intervals for the PS distribution 
parameter. The results are consistent with those of the 
simulation because the average lengths of the BCa 
bootstrap confidence interval were shorter than those of 
the PB and BB intervals. 

 
Application to the Number of Corn Borer Larvae Per 
Plant 

McGuire et al. (29) recorded the number of corn 
borer larvae per plant in the field corn of Northwest 
Iowa, United States. Table 4 provides the dataset, with a 

total sample size of 324. The sample mean and standard 
deviation for this data set are 0.6481 and 0.9208, 
respectively. The chi-squared statistic for the chi-
squared goodness-of-fit test (28) was 1.1743 and the p-
value was 0.5559. Therefore, the data best fits a PS 
distribution with θ̂  = 2.4717. Table 5 shows the 95% 
bootstrap confidence intervals for the PS distribution 
parameter. Because the average lengths of the BCa 
bootstrap confidence interval were shorter than those of 
the PB and BB confidence intervals, the results were 
consistent with the simulation results. 

 
 

Results and Discussion 
For estimating the parameter of the Poisson-Sujatha 

distribution, the percentile bootstrap (PB), the basic 
bootstrap (BB), and the bias-corrected and accelerated 
(BCa) bootstrap methods were proposed. When the 
sample sizes were relatively small ( n  = 10 and 30), the 
coverage probabilities for all three bootstrap confidence 
intervals were significantly below the desired threshold 
of 0.95. When the sample size was large enough ( n ≥  
50), the coverage probabilities and average lengths 
derived from the three bootstrap confidence intervals 
did not differ significantly. According to the results of 
our research, the BCa bootstrap confidence interval was 
the best for virtually all of the scenarios, both in the 

 
Table 2 .The number of red mites on apple leaves 

Number of red mites 0 1 2 3 4 ≥ 5 
Observed frequency 70 38 17 10 9 6 
Expected frequency 66.4433 39.2898 21.7920 11.4538 5.7674 5.2537 

 
 

Table 3 . The 95 %bootstrap two-sided confidence intervals and corresponding widths using all intervals for the parameter in the 
number of red mites 
Methods Confidence intervals Widths 
PB )1.4312, 1.9408( 0.5096 
BB (1.3598, 1.8787) 0.5189 
BCa (1.4168, 1.9179) 0.5011 

 
Table 4 .The number of corn borer larvae per plant 

Number of corn borer larvae 0 1 2 ≥ 3 
Observed frequency 188 83 36 17 
Expected frequency 193.6521 79.5626 31.6015 19.1838 

 
Table 5 . The 95 %bootstrap two-sided confidence intervals and corresponding widths using all intervals for the parameter in the 
number of corn borer larvae per plant 

Methods Confidence intervals Widths 
PB (2.2174, 2.7980) 0.5806 
BB (2.1590, 2.7292) 0.5702 

BCa (2.1903, 2.7586) 0.5683 
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simulation study and while utilizing real data sets. Our 
findings provided simulation results that correspond to 
Flowers-Cano et al.’s (16) research work. Using a 
Monte Carlo Simulation, they compared the coverage of 
several bootstrap confidence intervals. According to 
their findings, the coverage probabilities of the BCa 
bootstrap confidence interval were frequently greater 
than those of the other confidence intervals. 

This study’s limitation is that none of the bootstrap 
confidence intervals were exact, but they were 
consistent, indicating that the probability of coverage 
approaches 0.95 as sample sizes increase. In addition, 
the computation of three bootstrap confidence intervals 
is difficult and computationally intensive. 

However, there are a number of R packages 
available for computing bootstrap confidence intervals, 
including the boot package (21), the bootstrap package 
(30), the semEff package (31), and the BootES package 
(32). Since R is an open-source programming language, 
users are allowed to install these packages. Future 
research could concentrate on the development of 
confidence intervals for parameter functions, such as the 
population mean, dispersion index, and coefficient of 
variation. Additionally, it is important to note that there 
is currently a lack of research available on the topic of 
hypothesis testing for the parameter of the PS 
distribution. The study of these issues can be explored 
in future research. 
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