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Abstract 
The proposed research incorporates the utilization of a heavy-tailed skewed 

distribution referred to as the inverse Weibull as a link function in the context of a 
binary classification model. This selection is motivated by the need to address the 
existence of rare or extreme events in random processes. The study introduces a model 
that relies on the Inverse Weibull (TYPE II) distribution, and the estimation of model 
parameters is accomplished through the application of maximum likelihood methods. 
When the outcomes are compared to those derived from other link functions such as 
TYPE I (Complementary log) and TYPE III (Weibull) based on extreme value 
distributions using standard classification data as well as real-life data, it becomes 
apparent that the Inverse Weibull (TYPE II) model exhibits exceptional performance. 
This assessment of performance takes into account several criteria, encompassing the 
Akaike information criterion, Bayesian information criterion, Area under the curve, and 
Brier scores. In conclusion, the study establishes that the proposed model demonstrates 
considerable robustness in its performance, rendering it a viable choice for the modeling 
of binary classification problems. 
 
Keywords: Extreme value Distribution; Inverse-Weibull; Classification Model; Heavy-Tailed 
Distribution. 
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Introduction 
Classification involves determining the category to 

which an observation belongs. The application of 
classification models extends across various aspects of 
life. In the realm of medical science, the significance of 
classification models cannot be overstated, given the 
field's structure and operations. A common scenario is 
assigning a diagnosis to a patient based on observable 
patient characteristics, including gender, blood pressure, 
and the presence or absence of specific symptoms. 
These individual observations are often transformed into 
quantifiable properties referred to as features or 
covariates. Classifiers function by comparing 

observations to previous ones using a similarity or 
distance measure. 

Unique modeling approaches for classification 
problems include linear discriminant models, probit 
models, and logit models, which are commonly 
employed by frequentist statisticians. Bayesian 
statisticians, on the other hand, use methods like naïve 
Bayes and Bayesian networks. Additional methods 
include dynamic linear models (1), nonlinear models, 
hidden Markov models, and more (2). 

In the general linear model, numerous link functions 
have been developed by researchers for modeling 
classification data, which include the inverse Gaussian, 
logistic distribution, and a class of two-parameter link 
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functions that also generalize the logit model. Some 
studies have explored skewed distributions, such as the 
Weibull (3, 4). However, the Weibull distribution, being 
a member of the Extreme Value distribution family, 
exhibits a lighter tail compared to the Gumbel 
distribution. This characteristic may limit its capability 
to capture extreme or rare events resulting from random 
processes. 

In this proposed study, we adopt a heavy-tailed 
skewed distribution known as the inverse Weibull as a 
link function within a binary classification model. This 
choice enables us to account for extreme or rare events 
that may occur in random processes. 

 

Materials and  Methods 
1. Extreme Value Distribution 

Extreme Value Theory (EVT) is a branch of 
statistics that deals with the stochastic behavior of 
extreme events found in the tails of probability 
distributions. A stochastic model represents a situation 
where uncertainty is present, essentially a model for a 
process that exhibits some degree of randomness. EVT's 
primary goal is to predict the probabilities of rare events 
that are greater (or smaller) than previously recorded 
events. An extreme value distribution serves as a 
limiting model for the maximums and minimums within 
a dataset (5). A limiting distribution simply models how 
large (or small) your data is likely to become. Let Y be 
a random variable, represented as Y = (y1, y2, y3, ...). 
Extreme value distributions are categorized into three 
groups: Type I, Type II, and Type III. These three types 
are defined as follows, with parameters μ, α, and β, 
corresponding to the location, scale, and shape 
parameters, respectively. 
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The basic idea is that three types of extreme value 
distributions (EVD Types I, II, and II) can model the 
extremes from any set of data, as long as the distribution 
is "well-behaved" (5). Figure 1, depicts the tail of the 
three extreme value distributions the figure shows that 
TYPE II has a heavier tail than TYPE I and TYPE III. 

 
2. Weibull Distribution and Inverse Weibull 
Distribution 

The Extreme value distribution of type III was 
named after a Swedish engineer and scientist called 
Waloddi Weibull, well-known for his work on the 

 
Figure 1. Plot of Extreme Value Distribution 
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strength of materials and fatigue analysis (6). The 
Weibull distribution was first created to analyze the 
distribution of material lifetimes or failure times in the 
realm of material science. It proved highly valuable in 
comprehending material behavior and predicting 
potential failures Let X represent a random variable that 
denotes the lifetime or time to occurrence of an event. 
The Weibull distribution is defined as 
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In equation 7 (above), if α = 1, the Weibull 

distribution function reduces to the Exponential model, 
whereas for α = 2, it mimics the Rayleigh distribution 
which is mainly used in the telecommunications field 
(6). Furthermore, it resembles the Normal distribution 
when α = 3.5.  
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's call it reciprocal 

transformation to a Weibull distribution X therefore the 
newly generated distribution is inverse Weibull and is 
stated as follows: 
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The following represent essential statistical 
properties of the Inverse Weibull distribution.
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Figure 2 depicts the relationship between extreme 

value distributions and the inverse Weibull distribution. 

 
Figure 2. Plot of Extreme Value Distribution and Inverse Weibull distribution 
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The figure illustrates that the inverse Weibull and TYPE 
II extreme value distributions are equivalent and exhibit 
heavier tails compared to other distributions. 

 
3. Inverse Weibull link Function 

The study introduces a novel link function that relies 
on the highly asymmetric (inverse Weibull) distribution. 
This new link function is expressed as: 
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4. Estimation Method 

Let Y be a random variable from the Bernoulli 
distribution then, its Probability Mass function (PMF) is 
defined as 

y=0,1 
 

The likelihood function of Bernoulli distribution and 
Inverse Weibull link is given by 
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Where Λ is a vector? A numerical method will be 
adopted to obtain the MLE for (Λ, α).  

 
5. Model Efficiency and Selection 

In selecting the most competitive models, this study 
adopted the Log-likelihood(LL) value, Akaike 
Information Criterion(AIC), and Bayesian Information 
Criterion (BIC). Also, for goodness of fit Kolmogorov-
Smirnov (KS) statistic was used, for classification 
performance, model accuracy and Brier Score were 
used. 

 

Results 
1.  Roland Fisher Irish Data (Standard Data) 

 Roland Fisher Iris dataset which contains four 
features sepal length, sepal width, petal length, and iris 
Virginica (7). This dataset will be used as standard data 
to test the proposed model using Virginica as a species 
of interest while Setosa and Versicolor will be used as 
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references. 
The best model based on log-likelihood, AIC, and 

BIC is TYPE III (Weibull) followed by TYPE II 
(Inverse Weibull) while the logistic model performed 
better based on KS and Brier's score followed by TYPE 
I (Complementary log log). The coefficients of TYPE 
III (Weibull) distribution result in a very small standard 
error which makes all the coefficients highly significant. 
However, it has the lowest accuracy compared to other 
models (Tables 1& 2). The Area under the Curve 
(AUC) in Table 2, revealed that both logistic and TYPE 
I (Complementary log log) were classified better than 
TYPE II (Inverse Weibull) and TYPE I (Weibull). 
However, TYPE II (inverse Weibull) has a higher AUC 
than TYPE I (Weibull). Also, in Table 3, the TYPE III 
model consistently reveals strong associations for all 
factors (constant, sepal length, sepal width, petal length, 
and petal width) with notably low p-values. The TYPE 
II and TYPE I models similarly display substantial 

associations for certain variables. In contrast, the 
Logistic model generally suggests less robust 
associations with elevated p-values and a lack of 
uniformity in identifying significant predictors.  

 
2. Stillbirth Data 

Data used in validating the new proposed model 
were collected from six primary Health Centres across 
the six Area Councils of Federal Capital Territory of 
Nigeria. Data consists of patients who delivered babies 
in Federal Capital territory clinics in the year 2019. The 
information elicited from the patient's record were 
maternal age, antenatal status, birth size, gestational 
age, and birth outcome (alive or stillbirth). 

Maximum likelihood estimates were obtained for the 
proposed model (Inverse Weibull), Logistic, 
Complementary log log, and Weibull. The most 
competitive model was selected based on the model 
efficiency method which includes Log-likelihood, AIC, 

Table 1. Comparison of the link functions under maximum likelihood Estimate for Standard Data 
MODEL LL AIC BIC KS Brier Score Accuracy 

TYPE II(INVERSE WEIBULL) 98.287 -184.58 -183.517 0.1333 0.1832 82.3% 
LOGISTIC -5.949 21.899 36.953 0.01431 0.0133 98.7% 

TYPE I (COM LOG LOG) -5.689 21.378 36.431 0.0141 0.0133 96.2% 
TYPE III (WEIBULL) 9.90E+290 -1.98E+291 -1.98E+291 0.3333 0.3541 66.7% 

 
LL=Loglikelihood, AIC=Akaike Information Criterion, BIC= Bayesian Information Criterion, KS= Kolmogorov-Smirnov 

 
Table 2. Area under the curve for Irish data 

 Obs ROC Area Std. Err. [95% Conf. Interval] 
Inweibullirish 150 0.8100 0.0261 0.75882   0.86118 

Logisticiris 150 0.9986 0.0012 0.99621   1.00000 
Comloglogirish 150 0.9990 0.0010 0.99709   1.00000 

Weibullirish 150 0.540 0.0194 0.502       0.5779 
Std. Err. 

 
Figure 3. Area under curve for Irish 
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BIC, KS, and Brier score. The inverse Weibull has the 
highest Log-likelihood, lowest AIC, and BIC, and 
second minimum both in KS and Brier scores. Also, it 
has a better sensitivity value than other models and it 
has almost the same accuracy with logistic (see table 
4&5). The coefficient of the model shows that an 
increase in maternal age reduces the risk of stillbirth, 
booking for antenatal reduces the risk of stillbirth, 
increase in birth weight will the risk of stillbirth (see 
Table 7).  

In both data examples, the Weibull model predicted 
value tend towards zero which was aligned with the 
assumption on which it was being built which affects its 
sensitivity and accuracy of prediction(5). Inverse 
Weibull unlike Weibull has both good sensitivity and 
accuracy of prediction. Also, the result in Table 6 
revealed that both logistic and TYPE I (Complementary 

log log) have 75% value of AUC, and TYPE II (Inverse 
Weibull) has 76% ability to differentiate between 
stillbirth and livebirth While TYPE I (Weibull) has 
50%.  

 

Discussion 
The findings of this study show that Type II and 

logistic link functions are good in binary classification 
based on the results of model efficiencies such as 
loglikelihood, AIC, and Area under the curve. This 
result aligns with Tahir et al. (2016), who in their paper 
illustrated the application of at-site frequency analysis 
using relatively nontraditional probability distributions, 
adopting four methods of parameter estimation using 
annual maximum rainfall series from 1980 to 2015 from 
three sites: Muzaffarabad, Garhi Dupatta, and Kotli in 

Table 3. Maximum Likelihood Estimate for Irish Data 
 TYPE II (INVERSE WEIBULL) LOGISTIC TYPE I (COMPLEMENTARY LOG LOG) TYPE III (WEIBULL) 
 Coeff(std.error) p<|z| Coeff(std.error) p<|z| Coeff(std.error) p<|z| Coeff(std.error) p<|z| 

Con -2.28(1.005) 0.02 -42.638(25.708) 0.097 -31.937(17.511) 0.068 28.05(4.3E-145) <0.0001 
sepal.length 0.318(0.3265) 0.3301 -2.46(2.39) 0.303 -1.4629(1.387) 0.292 161(5.205E-145) <0.0001 
sepal.width 0.4267(0.2575) 0.097 -6.681(4.479) 0.136 -5.224(3.113) 0.093 84.14(9.44E-145) <0.0001 
petal.length -0.529(0.266) 0.047 9.429(4.737) 0.047 6.1047(2.732) 0.025 99.89(9.44E-145) <0.0001 
sepal.width 2.23(0.431) <0.0001 18.286(9.743) 0.061 15.1167(7.7519) 0.051 30.89(8.68E-145) <0.0001 

α 4.03(0.391)      80.84(5.72E-146)  
 
Con=Constant, Coeff=Coefficient, std.error=Standard error 

 

 
Table 4. Comparison of the link functions under maximum likelihood Estimate for Stillbirth data 

MODEL LL AIC BIC KS Brier 
Score 

TYPE II(INVERSE 
WEIBULL) 

-67.670 147.34 152.541 0.053 0.2126 

LOGISTIC -336.604 683.207 706.213 0.027 0.2147 
TYPE I (COM LOG LOG) -336.718 683.437 698.4899 0.358 0.3379 

TYPE III (WEIBULL) -1.90E+305 5.163E+302 3.8E+305 0.2377 0.2401 
 
LL=Loglikelihood, AIC=Akaike Information Criterion, BIC= Bayesian Information Criterion, KS= Kolmogorov-Smirnov 
 
 

Table 5.  Comparison of Classification performance for different link functions 
MODEL Sensitivity Specificity Accuracy 

TYPE II(INVERSE 
WEIBULL) 

65.7% 82.7% 78.4% 

LOGISTIC 49.1% 87.7% 78.5% 
TYPE I (COM LOG LOG) 23.4% 79.5% 66.2% 

TYPE III (WEIBULL) 1.14% 76.2% 76.2% 
 

Table 6. Area under curve for stillbirth data 
 Obs ROC Area Std. Err. [95% Conf. Interval] 

Inweibull 736 0.7650 0.0236 0.69879      0.81131 
Logistic 736 0.7538 0.0221 0.71038      0.79720 

Comploglog 736 0.7527 0.0224 0.70883      0.79649 
Weibull 736 0.5048 0.0041 0.4967        0.5129 

Std.Err. standard error 
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Azad Jammu and Kashmir, Pakistan (9). Two 
probability distributions, Fréchet (Type II) and Log-
logistic were used as candidate distributions to model 
the annual maximum rainfall series at given sites. The 
result of the findings on stillbirth, which indicated that 
booking antenatal care significantly reduces the 
likelihood of stillbirth, is in tandem with the findings of 
Berhe et al. (2023) who concluded that "having a good 
quality of antenatal care significantly reduces 
antepartum stillbirth (10). Strategies need to be 
developed on the problems identified to improve the 
quality of ANC and reduce antepartum stillbirth 
significantly". This finding also aligns with the position 
of another study from Lagos State, Nigeria, by 
Orisakwe et al., (2017), who opined that "The 
prevalence of stillbirth was high in the hospital during 
the study period (11). The majority of these deaths 
occurred during the antenatal period and were common 
in those women who did not receive ANC in the 
hospital. There is an urgent need to improve the quality 
of our obstetric healthcare services and encourage early 
referral of complicated pregnancies and labor to prevent 

unnecessary fetal deaths due to preventable or 
manageable obstetric conditions". Another study from 
Ghana (Afulani, 2016) maintained a similar position 
with this finding; the author concluded that "Good 
quality ANC can improve birth outcomes in two ways: 
directly through preventative measures and indirectly 
through promoting deliveries in health facilities where 
complications can be better managed (12). 

 
Conclusion 

This study has presented a new link function for 
binary classification problems. The new model is very 
flexible and capable of handling different types of data 
either symmetric or skew. The results of comparison 
with other extreme value distribution link functions in 
the previous section indicate that Inverse Weibull 
(TYPE II), Performed better than TYPE I 
(Complementary log log) and TYPE III(Weibull). In 
addition, the numerical procedure of the proposed link 
function is very easy to implement compared to other 
Extreme value distributions. Therefore, the performance 
of this proposed model is good and it can be used for 

 
Figure 4. Area under curve for stillbirth Data 

 
Table 7. Maximum Likelihood Estimate for Stillbirth Data 

 TYPE II (INVERSE WEIBULL) LOGISTIC 
Variables Coeff(std.error) p<|z| Coeff(std.error) p<|z| 

Con 0.4437(0.2123) 0.03 -1.097(0.778) 0.158 
Age -0.0008(0.0023) 0.725 -0.008(0.009) 0.389 

Booked -2.333(0.3921) <0.0001 -2.115(0.9937) <0.0001 
birth size -0.0013(0.000357) 0.017 -0.231(0.151) 0.126 

birth month 0.0228(0.0159) 0.154 0.0073(0.0668) 0.913 
α 2.25(0.497)  - - 

 
Con=Constant, Coeff=Coefficient, std.error=Standard error 
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modeling binary classification problems. 
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