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Abstract 

Kernel estimation of the cumulative distribution function (CDF), when the support of 

the data is bounded, suffers from bias at the boundaries. To solve this problem, we 

introduce a new estimator for the CDF with support (0,1) based on the beta kernel 

function. By studying the asymptotic properties of the proposed estimator, we show that 

it is consistent and free from boundary bias. We conducted an extensive simulation to 

illustrate the performance of the proposed estimator. The results demonstrate the 

superiority of the proposed estimator over other commonly used estimators. As an 

application, we use the estimated CDF for nonparametric simulation. Using a numerical 

study, we show that the performance of the kernel probability density function (PDF) 

estimation in which a large sample simulated from the estimated CDF is employed can 

be noticeably improved. We also use the proposed estimator to estimate the CDF of the 

household health cost in Iran in 2019. 

 
Keywords: Nonparametric estimation, Kernel estimator, Boundary bias, Bootstrap, Household cost. 

 

Introduction 
The usual estimator of the CDF is the empirical 

distribution function (EDF). Although the Glivenko-

Cantelli theorem (1-2) proves the uniform convergence 

of the EDF to the true CDF, EDF is not smooth. This 

drawback restricts the application of EDF in many fields 

(see (3) or (4)). An alternative estimator that provides a 

smooth estimate is the ordinary kernel estimator (OKE), 

which is proposed by authors such as Watson and 

Leadbetter (5) or Nadaraya (6). The asymptotic 

properties of kernel estimators, including their uniform 

strong convergence and asymptotic normality, have been 

investigated by many authors (see (7) and the references 

therein for a short review of the literature in this field).  

Despite the good performance of the kernel 

estimators with unbounded support, they suffer from the 

                                                        
* Corresponding author: Tel:+989166043957; Email: b.mansouri@scu.ac.ir 

well-known boundary bias when the support of the data 

is bounded. There are various boundary correction 

methods for the kernel PDF estimator in the literature. 

See (8) for an overview of the methods available in this 

field and their classification. While studies are mainly 

developed for the kernel PDF estimator, there are few 

boundary correction methods for the kernel CDF 

estimator, such as the boundary kernel estimator (BKE) 

(9-10), the reflection method ((11-12)), the asymmetric 

kernels ((7) , (13-16)). 

The idea of using asymmetric kernels in the context 

of PDF estimation and non-parametric regression has 

been discussed in (17-18). Chen (17) proposed a beta 

kernel PDF estimator for densities defined on (0,1). He 

shows that his proposed estimator is free from boundary 

bias when the data support is compact. His idea was that 

to remove the boundary bias, the support of the kernel 
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should coincide with the support of the observations. 

Charpentier et al. (19) extended Chen's idea to estimate 

the PDF of a copula since the support of a copula is 

(0, 1)  × (0, 1). For some recent studies on beta kernel 

estimators, see (20-22). However, Zhang and 

Karunamuni (23) showed that the beta kernel PDF 

estimator has high variance in the boundary region, so 

they concluded that the estimator is only free from the 

boundary bias problem, but it is not free from the 

boundary problem. Informally speaking, the boundary 

region includes the design points that are located near the 

endpoints and the interior region includes the design 

points located far from the endpoints of the support of the 

data.  

The good performance of asymmetric kernel CDF 

estimators motivated us to extend the analysis for 

estimating a CDF with support on (0, 1)  by the beta 

kernel. However, our simulations showed that the beta 

kernel introduced by Chen (17) performs poorly in 

estimating the CDF at the boundary points. We will 

discuss this point later. To improve the performance of 

Chen's beta kernel, especially at the boundary region, we 

use a small but very effective change in it and introduce 

a new version of the beta kernel to establish a boundary-

free bias estimator for the CDF. 

In this paper, we introduce a beta kernel estimator 

(BTKE) for the CDF and investigate its asymptotic 

properties, such as the bias, variance, mean squared error 

(MSE) and mean integrated squared error (MISE). We 

derive the convergence rate of the proposed estimator and 

obtain the optimal bandwidth by minimizing the MISE. 

The numerical studies show that the proposed estimator 

performs better than other competing estimators. 

Nonparametric estimation of the CDF has many 

applications: Goodness-of-fit test and copula estimation 

(24), estimating receiver operating characteristic (ROC) 

curve ((11) and (25-26)), and estimating survival 

functions (27) are just examples, to name a few. Another 

use of the estimated CDF is for simulation and 

bootstrapping (28). To show the usefulness of our 

proposed estimator, we conducted a numerical study to 

compare the performance of the beta kernel PDF 

estimation in the R package ks (29) when the PDF is 

estimated using two approaches. In the first approach, the 

PDF is estimated from the raw data. In the second 

approach, however, the raw data are used for estimating 

the CDF by BTKE. Then we generate a large sample 

from the estimated CDF and eventually estimate PDF 

from the simulated samples. Our numerical study 

demonstrates that the performance of the beta kernel PDF 

is much better that in the second approach. Finally, we 

use the BTKE to estimate the CDF of the proportion of 

health costs to the total household cost in Iran. 

This paper focuses on CDF with support (0, 1). Note 

that if the support of the data is (𝑎, 𝑏) for any two real 

numbers 𝑎 < 𝑏, then we can use the simple transform 
𝑥−𝑎

𝑏−𝑎
 to locate the support on (0, 1). 

Throughout the paper, the notation 𝑎𝑛  = 𝑜(𝑏𝑛)  
means that 𝑎𝑛/𝑏𝑛 →  0 as 𝑛 → ∞ and the notation 𝑎𝑛  =
𝑂(𝑏𝑛) means that 𝑎𝑛 ≤  C𝑏𝑛 for some positive constant 

C and for all 𝑛  sufficiently large. The quantity C can 

depend on the target CDF F, but no other variable unless 

explicitly written as a subscript. For example, 𝑎𝑛  =
 𝑂𝑥(𝑏𝑛) means that C depends on 𝑥 ∈ (0,1).  

The simulations and plots in this paper were carried 

out using MATLAB and R software. 

 

Materials and Methods 
BTKE for estimating a CDF with compact support 

Let {𝑋𝑛 , 𝑛 ≥ 1}  be a sequence of independent and 

identity random variables with density 𝑓(∙) (PDF) and 

distribution function 𝐹(∙)  (CDF) with support (0, 1). 

Throughout the paper, we make the following two basic 

assumptions: 

Assumption 1. The target CDF F has two continuous 

and bounded derivatives on (0, 1). 

Assumption 2. The bandwidth parameter 𝑏 = 𝑏𝑛 >
0 is a function of n such that 𝑏 → 0 𝑎𝑠 𝑛 → ∞. 

Chen (1999) proposed the estimation of  f  by beta 

kernel PDF estimator, 

𝑓𝑛,𝑏(𝑥)  =
1

𝑛
∑𝑘𝐵 (𝑋𝑖;  

𝑥

𝑏
+ 1,

1 − 𝑥

𝑏
 + 1) ,

𝑛

𝑖=1

 (1) 

where the kernel 𝑘𝐵(𝑢;  α, β) denotes the density 

function of a 𝐵𝑒𝑡𝑎(𝛼, 𝛽)  random variable, and the 

parameter b is the bandwidth chosen such that 𝑏 → 0 

as 𝑛 → ∞. What motivated Chen to introduce 𝑓𝑛,𝑏was the 

flexible shape of asymmetric beta kernel. In addition, the 

estimates produced by the beta kernel PDF estimator is 

always nonnegative because its support matches the 

supports of the probability densities to be estimated (17). 

Chen (17) has shown that 𝑓𝑛,𝑏 is free from boundary bias 

and is appropriate for estimating a PDF defined in the 

unit interval. Zhang and Karunamuni (23) challenged the 

results of Chen and showed that the variance of Chen’s 

estimator in the boundary region is high. Also, they 

showed that the overall performance of 𝑓𝑛,𝑏 is not better 

than that of other boundary-corrected kernel estimators. 

Motivated by the results of Mombeni et al.  (7), we 

introduce the beta kernel estimator (BTKE) for 

estimating a CDF with support (0,1) as follows: 

𝐹̂𝑛,𝑏
𝐵 (𝑥) =  𝑛−1∑ 𝐾𝐵

𝑛
𝑖=1 (𝑋𝑖;

𝑥

𝑏
+ 𝑏2,

1 –𝑥

b
+ 𝑏2).    (2) 

where 

𝐾𝐵(𝑢;  𝛼, 𝛽) = 1 − 𝐾𝐵(𝑢;  𝛼, 𝛽) = 1 −
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∫ 𝑘𝐵(𝑡;  𝛼, 𝛽)
𝑢

0
𝑑𝑡,                                            (3) 

denote the survival function of the 𝐵𝑒𝑡𝑎(𝛼, 𝛽) 
distribution and 𝑏 > 0 is the smoothing (or bandwidth) 

parameter. Through a numerical study, we justify our 

choices for the parameters of the kernel function in 

BTKE. 

 

Asymptotic properties of BTKE 

In this section, we find the asymptotic expressions for 

the bias, variance, MSE and MISE for the BTKE. Then, 

we discuss how to choose an appropriate bandwidth by 

minimizing the MISE.  

 

Lemma 1 (Bias). Under Assumptions 1 and 2, for any 

given 𝑥 ∈ (0, 1), the bias of the BTKE is  

𝐵𝑖𝑎𝑠{𝐹̂𝑛,𝑏
𝐵 (𝑥)} =

𝑏

2
𝑥(1 – 𝑥)𝑓′(𝑥) + 𝑂𝑥(𝑏

3).  

 

Proof. Using integration by part, we have: 

𝐸𝑓(𝐹̂𝑛,𝑏
𝐵 (𝑥)) = 𝐸𝑓 (𝐾Bet (𝑇;

𝑥

𝑏
+ 𝑏2,

1 – 𝑥

b

+ 𝑏2)) = 𝐸𝑓(1 − 𝐾Bet(𝑇))

= 𝐸𝑘(𝐹(𝑇)), 

where  𝐸𝑘(𝐹(𝑇)) is the expectation of 𝐹(𝑇) , 

when 𝑇~𝑘Bet (𝑡; 
𝑥

𝑏
+ 𝑏2,

1 –𝑥

b
+ 𝑏2). Using Assumptions 

1 and 2 and the Taylor expansion, we have: 

𝐸𝑓(𝐹̂𝑛,𝑏
𝐵 (𝑥)) = 𝐸𝑘(𝐹(𝑇))

= 𝐹(𝑥) + 𝐸(𝑇 − 𝑥)𝑓(𝑥)

+
1

2
𝐸(𝑇 − 𝑥)2𝑓′(𝑥)

+ 𝑜𝑥(𝐸(𝑇 − 𝑥)
2). 

Considering that 𝐸(𝑇) = (𝑥𝑏−1 + 𝑏2)(𝑏−1 +
2𝑏2)−1 = 𝑥 + 𝑂(𝑏3)  and 𝐸(𝑇 − 𝑥)2 ≈ Var(𝑇) =
𝑏𝑥(1 − 𝑥) + 𝑂𝑥(𝑏

4), we have: 

𝐸𝑘(𝐹(𝑇)) = 𝐹(𝑥) +
𝑏

2
𝑥(1 – 𝑥)𝑓′(𝑥) + 𝑂𝑥(𝑏

3),  

and the proof is complete.   

 

Remark 1 (Boundary bias). Note that for the case 

where 𝑥 =  𝑐𝑏, where 0 <  𝑐 <  1, (boundary region) 

we have: 

𝐵𝑖𝑎𝑠{𝐹̂𝑛,𝑏
𝐵 (𝑥)} =

𝑏2

2
𝑐𝑓′(𝑥) + 𝑂𝑥(𝑏

3). 

Hence, the rate of convergence of the bias of 𝐹̂𝑛,𝑏
𝐵  to 

zero is of order 𝑂(𝑏2) . This indicates that 𝐹̂𝑛,𝑏
𝐵  has 

uniform bias inside the unit interval in addition to being 

asymptotically unbiased at the boundary. Obviously, this 

estimator is then free of boundary bias. 

Now, we turn to derive an asymptotic expression for 

the variance of  𝐹̂𝑛,𝑏
𝐵 (𝑥). We follow (13) for the proof of 

the following Lemma.  

 

Lemma 2 (Variance). Under Assumptions 1 and 2, 

for large n (b small enough) and for any given 𝑥 ∈ (0,1) 
the variance of the BTKE is 

Var (𝐹̂𝑛,𝑏
𝐵 (𝑥)) = 𝑛−1𝐹(𝑥)(1 − 𝐹(𝑥))

−
1

2
𝑛−1b1/2𝑓(𝑥) (lim

𝑏→0
b−1/2𝐸(|𝑇1

− 𝑇2|)) + 𝑂𝑥(𝑛
−1𝑏), 

where 𝑇1, 𝑇2~Beta (
𝑥

𝑏
+ 𝑏2,

1 –𝑥

b
+ 𝑏2). 

 

Proof. Since 𝑋𝑖′𝑠 are i.i.d., we have 

Var (𝐹̂𝑛,𝑏
𝐵 (𝑥)) = 𝑛−1 {𝐸 (𝐾Bet

2 (𝑇;
𝑥

𝑏
+ 𝑏2,

1 – 𝑥

b

+ 𝑏2)) − (𝐸 (𝐹̂𝑛,𝑏
𝐵 (𝑥)))

2

},   

and by using integration by parts and a 

Taylor expansion we can write, 
 

𝐸 (𝐾Bet
2 (𝑇;

𝑥

𝑏
+ 𝑏2,

1 – 𝑥

b
+ 𝑏2)) 

= ∫ 𝐾Bet
2 (𝑡; 

𝑥

𝑏
+ 𝑏2,

1 − 𝑥

𝑏
+ 𝑏2) 𝑓(𝑡)𝑑𝑡

1

0

 

= ∫ 𝐹(𝑡) 2𝑘Bet (𝑡; 
𝑥

𝑏
+ b2,

1 − 𝑥

𝑏
+ b2)𝐾Bet (𝑡; 

𝑥

𝑏

1

0

+ 𝑏2,
1 − 𝑥

𝑏
+ 𝑏2)𝑑𝑡 

= 𝐹(𝑥) +  𝑓(𝑥)𝐸(𝑍 − 𝑥) + 𝑂𝑥(𝐸(𝑍– 𝑥)
2),  

where 𝑍~𝑔(𝑧) and 

𝑔(𝑧) =  2𝑘Bet (𝑧; 
𝑥

𝑏
+ 𝑏2,

1 − 𝑥

𝑏
+ 𝑏2)𝐾Bet (𝑧; 

𝑥

𝑏

+ 𝑏2,
1 − 𝑥

𝑏
+ 𝑏2). 

Let 𝑇1 and 𝑇2  be two independent random variables 

with distribution 𝑘Bet (𝑡; 
𝑥

𝑏
+ 𝑏2,

1 –𝑥

b
+ 𝑏2) 

then  min{𝑇1, 𝑇2} =
1

2
(𝑇1 + 𝑇2) −

1

2
|𝑇1 −

𝑇2|~𝑔(𝑧).  Integration by parts together with the fact that 

𝐸(𝑇1) = 𝐸(𝑇2) = 𝑥 + 𝑂(𝑏
3) yields, for any given 𝑥 ∈

(0,1), 

𝐸 (𝐾Bet
2 (𝑇;

𝑥

𝑏
+ 𝑏2,

1 – 𝑥

b
+ 𝑏2)) 

= 𝐹(𝑥) +  𝑓(𝑥) (−
1

2
𝐸(|𝑇1 − 𝑇2|))

+ 𝑂𝑥(𝐸(𝑍– 𝑥)
2), 

= 𝐹(𝑥) −
1

2
b1/2𝑓(𝑥) (lim

𝑏→0
b−1/2𝐸(|𝑇1 − 𝑇2|))

+ 𝑂𝑥(𝑏), 

 

 

(Micheaux and Ouimet (13)). 

Therefore, 
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Var (𝐹̂𝑛,𝑏
𝐵 (𝑥)) = 𝑛−1 {𝐸 (𝐾Bet

2 (𝑇;
𝑥

𝑏
+ 𝑏2,

1 – 𝑥

b

+ 𝑏2)) − (𝐸 (𝐹̂𝑛,𝑏
𝐵 (𝑥)))

2

}, 

= 𝑛−1𝐹(𝑥)(1 − 𝐹(𝑥)) −
1

2
𝑛−1b1/2𝑓(𝑥) (lim

𝑏→0
b−1/2𝐸(|𝑇1 − 𝑇2|)) + 𝑂𝑥(𝑛

−1𝑏). 

 

Corollary 1 (MSE). For any given 𝑥 ∈ (0,1), 

MSE (𝐹̂𝑛,𝑏
𝐵 (𝑥)) = E [(𝐹̂𝑛,𝑏

𝐵 (𝑥) − 𝐹(𝑥))
2

]

= Var (𝐹̂𝑛,𝑏
𝐵 (𝑥)) + (Bias (𝐹̂𝑛,𝑏

𝐵 (𝑥)))
2

= 𝑛−1𝐹(𝑥)(1 − 𝐹(𝑥))

−
1

2
𝑛−1b1/2𝑓(𝑥) (lim

𝑏→0
b−1/2𝐸(|𝑇1

− 𝑇2|)) 

+
𝑏2

4
(𝑥(1 – 𝑥)𝑓′(𝑥))

2
+ 𝑂𝑥(𝑛

−1𝑏) + 𝑂𝑥(𝑏
3), 

 

where 𝑇1, 𝑇2~Beta (
𝑥

𝑏
+ 𝑏2,

1 –𝑥

b
+ 𝑏2).  

For any given 𝑥 ∈  (0,1), if 𝑓(𝑥). lim
𝑏→0

b−1/2𝐸(|𝑇1 −

 𝑇2|). 𝑓
′(𝑥) ≠ 0, the asymptotically optimal choice of b, 

with respect to MSE, is 

 

𝑏𝑜𝑝𝑡 = [

1
2
𝑓(𝑥) (lim

𝑏→0
b−1/2𝐸(|𝑇1 − 𝑇2|))

(𝑥(1 –  𝑥)𝑓′(𝑥))
2 ]

2/3

𝑛−2/3 , 

with the optimal MSE, 

 

MSE (𝐹̂𝑛,𝑏𝑜𝑝𝑡
𝐵 (𝑥)) = 𝑛−1𝐹(𝑥)(1 − 𝐹(𝑥)) −

3

4
𝑛−4/3 [

(
1

2
𝑓(𝑥)(lim

𝑏→0
b−1/2𝐸(|𝑇1− 𝑇2|)))

4

(𝑥(1 – 𝑥)𝑓′(𝑥))
2 ]

1/3

+𝑂𝑥(𝑛
−4/3 ). 

 

Proposition1 (MISE). Suppose that Assumptions 1 

and 2 holds. Assuming that the target PDF 𝑓 =
 𝐹′ satisfies 

∫ 𝑓(𝑥) (lim
𝑏→0

b−
1
2𝐸(|𝑇1 − 𝑇2|)) 𝑑𝑥

1

0

< ∞ 

and 

∫ 𝑥2(1 – 𝑥)2(𝑓′(𝑥))
2
𝑑𝑥

1

0

< ∞, 

then we have: 

𝑀𝐼𝑆𝐸 (𝐹̂𝑛,𝑏
𝐵 (𝑥)) = ∫ Var (𝐹̂𝑛,𝑏

𝐵 (𝑥)) 𝑑𝑥
1

0

+∫ (Bias (𝐹̂𝑛,𝑏
𝐵 (𝑥)))

2

𝑑𝑥
1

0

= 𝑛−1∫ 𝐹(𝑥)(1 − 𝐹(𝑥))
1

0

𝑑𝑥

− 𝑛−1b1/2∫
1

2
𝑓(𝑥) (lim

𝑏→0
b−1/2𝐸(|𝑇1

1

0

− 𝑇2|)) 𝑑𝑥 

 

As Micheaux and Ouimet (13) have mentioned, the 

quantity lim
𝑏→0

b−1/2𝐸(|𝑇1 − 𝑇2|) needs to be 

approximated numerically. However, the optimal 

bandwidth in Eq. (4) also depends on the unknown PDF, 

𝑓(𝑥). In practice, we use a cross-validation bandwidth 

selector inspired by the approach introduced in (30). 

They define the cross-validation (CV) function as 

CV(ℎ) =
1

𝑛
∑∫{𝐼(𝑋𝑖 ≤ 𝑥) − 𝐹̂−𝑖(𝑥)}

𝑛

𝑖=1

, 

In the above expression, the symbol 𝐹̂−𝑖(𝑥)   

represents the kernel estimate based on all observations 

except the ith observation. 

 

Results and Discussion 

In this section, we illustrate the performance of the 

BTKE via a simulation study and compare the results 

with some other CDF estimators. We considered eight 

various distributions with support (0,1) including A:U(0, 

1), B: Beta (2, 2), C: Beta (2, 4), D: Beta (4, 2), E: T.Exp. 

(0.5), F: T.Normal (0,0.25), G: T.Lognormal (0,1) and H: 

T. HalfNormal (0,1), where T. denotes truncated. In this 

paper, we have compared the numerical performance of 

BTKE against three traditional estimators, the EDF, the 

OKE ((5) or (6)) and the BKE (9). In both OKE and BKE, 

the Epanechnikov kernel, i.e. k(u) = 3/4(1 − u2).I(u ≤ 1)  

was used and the optimal bandwidth proposed by (31) 

and (9) were used for OKE and BKE, respectively. 

We used samples of sizes 𝑛 =100, 500 and 1000 from 

eight various distributions. In order to estimate the 

bandwidth for the BTKE, we used the cross-validation 

method proposed by (30). As an error metric, we 

considered the integrated squared error (ISE), 𝐼𝑆𝐸 =

∫ (𝐹̂(𝑥) − 𝐹(𝑥))2𝑑𝑥
1

0
 where  𝐹̂(𝑥) denotes the above 

CDF estimators (BTKE, OKE, BKE and EDF). In our 

setting, we approximated the integral with the 

summation. 

Table 1 shows the mean and standard deviation of ISE 

(in parentheses) in 1000 repetitions for each of the 

estimators and various distributions for three different 

sample sizes. To simplify the comparison, in each case, 
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we bolded the lowest mean ISE. Note that, in all cases, 

the mean and standard deviation of the ISE decreased as 

the sample size increased. The results demonstrate the 

superiority of the BTKE in comparison with other 

competitors as the BTKE provides the lowest ISE in 

almost all scenarios. There are few cases where the BKE 

is at the par of the BTKE and there is an exception 

(Beta(4,2) with sample size 𝑛 =100) where the BKE has 

the lowest ISE among others. However, even for this 

case, the ISE of BTKE is very close and when the sample 

size increases, the BTKE gains its superiority. In Figure 

1, we illustrated the results given in Table 1 for the 

sample size 𝑛 =  1000 via boxplot. The good 

performance of the BTKE is obvious in all scenarios. 

Mombeni et al. (7) showed that the performance of 

estimators depends on the design point where the 

estimation is performed. Figure 2 depicts the MSE of the 

three kernel type estimators (the BTKE, the OKE, and the 

BKE) at various points of the support of the considered 

distributions in 1000 repetitions for the sample size 𝑛 =
1000. Poor performance of the OKE is significant in the 

boundary regions. The MSE of the two estimators BTKE 

and BKE in the boundary regions is considerably much 

less than the MSE of the OKE. These two estimators 

show almost the same performance in most places. 

In order to evaluate the variance of the proposed 

estimator in various design points, in Figure 3, we depict 

the variance of estimating the considered distributions by 

BTKE, EDF, BKE and OKE in 1000 repetitions for the 

sample size 𝑛 =1000. As can be expected, in all cases, 

EDF poses the largest variance in most design points 

even for a sample of size 1000. The variance of OKE in 

the boundary region is very large although in the interior 

region it has a smaller variance than the other estimators. 

In most cases, the variance of the proposed estimator is 

less than the variance of the BKE in almost all design 

points. 

To see an example of the estimated distributions, in 

Figure 4, we showed 30 estimates of U(0,1) via four 

methods in blue with the actual CDF in bold red 

(𝑛 =200). As expected, the OKE in the boundary region 

is biased and the empirical estimates are not smooth. In 

fact, the proposed estimator does not have a boundary 

problem and provides smooth estimates. 

 

The kernel parameters in BTKE 

This section is devoted to discussing the kernel choice 

in our proposed estimator. At first, motivated by Chen’s 

estimator (17), we decided to use the following beta 

kernel estimator for a CDF with support (0,1) 

𝐹̂𝑛,𝑏
𝑐ℎ𝑒𝑛(𝑥)  =  𝑛−1∑ 𝐾𝐵

𝑛
𝑖=1 (𝑋𝑖;

𝑥

𝑏
+ 1,

1 –𝑥

b
+  1),                                 

Table 1. The mean and standard deviation of the ISE (1000 repetitions) in estimating eight distributions via four methods (seethe 

text for explanation) for 𝑛 =100, 500 and 1000.(values are ⋯× 10−4 ). 

Distribution Sample 

size 

BTKE OKE BKE EDF 

 100 11.0(11.8) 15.1(11.9) 13.0(13.1) 16.6(11.1) 

U(0, 1) 500 2.4(2.6) 4.1(2.5) 2.7(2.7) 3.2(2.8) 

 1000 1.3(1.3) 2.5(1.3) 1.4(1.4) 1.6(1.4) 

 100 9.4(9.6) 11.5(10.4) 9.7(10.3) 12.9(11.0) 

Beta (2, 2) 500 2.1(2.1) 2.8(2.3) 2.2(2.2) 2.6(2.3) 

 1000 1.1(1.0) 1.5(1.1) 1.2(1.0) 1.3(1.0) 

 100 8.0(7.9) 9.3(8.3) 8.2(7.9) 10.0(8.5) 

Beta (2, 4) 500 1.7(1.5) 2.2(1.7) 1.7(1.6) 1.9(1.6) 

 1000 0.91(0.88) 1.2(0.93) 0.93(0.89) 0.99(0.88) 

 100 8.0(7.9) 9.5(8.0) 7.9(8.1) 9.9(8.2) 

Beta (4, 2) 500 1.8(1.7) 2.3(1.9) 1.8(1.7) 2.1(1.8) 

 1000 0.88(0.83) 1.2(0.92) 0.89(0.82) 0.98(0.83) 

 100 10.4(11.9) 14.3(12.4) 10.91(11.22) 13.9(11.5) 

T.Exp. (0.5) 500 2.2(2.2) 3.9(2.4) 2.3(2.2) 2.7(2.3) 

 1000 1.2(1.2) 2.4(1.4) 1.3(1.1) 1.4(1.2) 

 100 9.8(11.3) 13.0(11.7) 10.5(11.0) 13.8(11.6) 

T.Normal (0,0.25) 500 2.3(2.5) 3.5(2.8) 2.4(2.4) 2.8(2.5) 

 1000 1.1(1.1) 2.0(1.2) 1.2 (1.1) 1.3(1.1) 

 100 9.5(10.3) 13.5(11.2) 10.9(11.5) 14.3(12.3) 

T.Lognormal (0,1) 500 2.2(2.3) 3.5(2.4) 2.5(2.4) 2.9(2.5) 

 1000 1.1(1. 1) 1.9(1. 2) 1.2(1. 2) 1.4(1. 2) 

 100 10.4(11.7) 14.5(12.1) 12.8(12.3) 13.7(15.8) 

T.Half Normal(0,1) 500 2.7(2.9) 4.2(2.8) 3.0(2.9) 3.1(3.3) 

 1000 1.3(1. 1) 2.3(1. 2) 1.5(1. 3) 1.3(1. 5) 
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where 𝐾𝐵(𝑢;  𝛼, 𝛽) is defined in Eq.(3), and 𝑏 > 0 is 

the smoothing (or bandwidth) parameter. We 

investigated the performance of 𝐹̂𝑛,𝑏
𝑐ℎ𝑒𝑛(𝑥)  via a 

simulation study and what was found was discouraging. 

Actually, the performance of the estimator in the 

boundary region is poor, though its performance in the 

interior region is appropriate. To clarify the discussion, 

consider the following example. Lets simulate 100 

samples of size 100 from a truncated exponential (T. 

Exp.) distribution with the CDF 

𝐹(𝑥) =

{
 
 

 
 

0, 𝑥 < 0

1 − exp (−
𝑥
𝑎
)

1 − exp (−
1
𝑎
)
, 0 < 𝑥 < 1

1, 𝑥 > 1

  

with parameter 𝑎 = 0.25 and then estimate the CDF 

using 𝐹̂𝑛,𝑏
𝑐ℎ𝑒𝑛(𝑥) . In Figure 5a, 100 estimates (dashed 

curves) and the true distribution (bold solid curve) are 

presented. We labelled 𝐹̂𝑛,𝑏
𝑐ℎ𝑒𝑛(𝑥)  as CBTKE in the 

figures. The severe bias of the estimates at the left 

boundary is obvious. Figure 6a depicts the MSE of the 

100 estimates using 𝐹̃𝑛,𝑏(𝑥) in various design points x 

where the estimation is performed. In order to assess the 

performance of the 𝐹̂𝑛,𝑏
𝑐ℎ𝑒𝑛(𝑥), we added the MSE in 100 

estimations by the OKE and the BKE. As can be seen, the 

MSE of  𝐹̂𝑛,𝑏
𝑐ℎ𝑒𝑛(𝑥)  and the OKE are increased as 𝑥 

approaches the left bound zero. The performance of 

𝐹̂𝑛,𝑏
𝑐ℎ𝑒𝑛(𝑥) is even worse than the OKE at the boundary 

region. 

In order to remedy the bad performance of 

𝐹̂𝑛,𝑏
𝑐ℎ𝑒𝑛(𝑥) at the boundary region, we introduced 𝐹̂𝑛,𝑏

𝐵 (𝑥) 

for estimating a CDF with support (0,1) . Figure 5b 

shows 100 estimates (dashed curves) by the BTKE and 

the true distribution of the truncated exponential 

distribution with parameter 𝑎 = 0.25 (bold solid curve). 

The sample size is 100. The estimates converge to the 

true CDF in the boundary region and expose a very good 

performance. Figure 6b compares the MSE of the BTKE, 

the OKE and the BKE in 100 estimates of CDF of the 

truncated exponential distribution with parameter 𝑎 =
0.25. Consider that the MSE of the proposed estimator is 

even lower than the MSE of the BKE at the left boundary 

region.  

As a part of our study, we investigated an estimator 

of the form 

𝐹̂𝑛,𝑏
𝐵(𝑠,𝑡)

(𝑥) =  𝑛−1∑𝐾𝐵

𝑛

𝑖=1

(𝑋𝑖;
𝑥

𝑏𝑠
+ 𝑏𝑡 ,

1 – 𝑥

𝑏𝑠
+ 𝑏𝑡), 

to find the best combination of 𝑡 > 0 and 𝑠 > 0. In 

two Lemmas 3.1 and 3.2, we have derived the bias and 

variance of BTKE, where s is 1 and t is 2, respectively. 

Theoretically, it is difficult to conclude about the best 

combination of s and t. Therefore, we resorted to a 

numerical study to find the best s and t combination and 

we considered many different distributions. What we 

found was that there is almost the same pattern for 

various distributions. To explain the pattern, consider 

Figure 7 which shows the MISE of 𝐹̂𝑛,𝑏
𝐵(𝑠,𝑡)

 for t and s 

values from 0.1 to 0.9 and 1 to 20 in estimating four 

CDFs: a)T.Exp. (0.5), b)T.Lognormal(0,1), c)T.Normal 

(0,0.25), and d)Beta (4, 2),where T. denotes truncated, 

using 1000 simulated samples of size 100 from these 

distributions. As can be seen in Figure 7, the MISE 

decreases with a large slope for s values between 0.1 and 

 

Figure 1. Boxplots of the ISE in 1000 repetitions (n = 1000) for the BTKE, the OKE, the BKE and the EDF. 
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1, but then for values of s larger than 1, the decrease in 

the MISE is not substantial. As seen for t, the results for 

t equal to 2 are acceptable. Of course, lower values of the 

MISE are possible for t larger than2 and s larger than 1, 

but the reduction is not very significant, and due to the 

simplicity of the form, we suggest the combination 𝑠 =
1 and 𝑡 = 2 i.e. BTKE. Our comprehensive simulations 

with various distributions and various sample sizes, from 

which only a part is presented in simulation, 

demonstrated that the change we use in the beta kernel is 

 

 

 

 
 

Figure 2. The plot of the MSE in estimating eight distribution functions via four methods in 1000 repetitions (n = 1000) (see the 

text for further explanation). 

 

 
 

  

  

  

Figure 3. The plot of the variance in estimating eight distribution functions via four methods in 1000 repetitions (n = 1000) (see the 

text for further explanation). 
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very effective and that the BTKE outperforms not only 

the BKE but also the other competitors. 

 

 

Simulation by BTKE to improve the performance of 

the kernel PDF estimation 

Kernel PDF estimation is a fundamental tool in 

nonparametric inference and has applications in many 

various fields. Many authors have shown the consistency 

of symmetric and asymmetric kernel PDF estimators 

((17), (32) and (33)). Often, the MISE of the kernel PDF 

estimators is 𝑂(𝑛−4/5) . Therefore, we expect lower 

MISE and more accurate estimates for larger sample 

sizes. When the sample size is small, we can use 𝐹̂𝑛,𝑏 
𝐵 to 

simulate a larger sample in order to improve the 

performance of the kernel PDF estimation. In fact, in 

statistical inferences, the quality of estimates will be 

improved by increasing the sample size. Although we 

focused on the problem of PDF estimation in this section, 

the method proposed here can be used to enhance the 

performance in any estimation problem. Note that, unlike 

the classic symmetric kernels where we obtain the 

estimate of CDF by integrating the PDF estimate, the 𝐹̂𝑛,𝑏
𝐵  

estimates the CDF directly from the data. 

In statistics, in order to generate a random variable 

from a continuous CDF F, we use 𝑋 = 𝐹−1(𝑈) =
inf {𝑥: 𝐹(𝑥) ≥ 𝑈}  where 𝑈~𝑈(0,1).  When F is 

unknown, given i.i.d. random sample 𝑋1, … , 𝑋𝑛 from F, 

 

Figure 4. Thirty estimates of U(0,1) via four methods in blue with the actual CDF in bold red (𝑛 =200). The top plot (a) shows 

the PDF of U(0,1). 

  
(a) (b) 

Figure 5. One hundred estimates (dashed curves) of CDF of T.Exp. distribution with parameter a=0.5 (a) using 𝐹̃𝑏(𝑥)and (b) using 

𝐹̂𝐵𝑇𝐾𝐾(𝑥). The true c.d.f. is shown by the bold solid curve. 
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we generate new samples X1
∗ , … , Xn

∗  from the distribution 

F using sampling by replacement from the original 

samples. Another approach is to use a smooth estimate of 

the CDF to generate new samples (see (28) p. 266 for 

more details). In this section, we propose useing 

𝐹̂𝑛,𝑏
𝐵  estimated from original sample 𝑋1, … , 𝑋𝑛  to 

generate new samples 𝑋1
∗, … , 𝑋𝑚

∗  for an arbitrarily large 

m and then useing simulated data for PDF estimation. For 

this purpose, we generate U1, … , U𝑚  from U(0,1)  and 

then find 𝑋𝑖
∗ = (𝐹̂𝑛,𝑏

𝐵 )
−1
(𝑈𝑖) by interpolating in the plot 

of 𝐹̂𝑛,𝑏
𝐵 (𝑥) versus x for 𝑖 = 1, … ,𝑚.  

In order to show the effectiveness of our method, we 

simulated samples of sizes 𝑛 =100, 500 and 1000 from 

eight distributions introduced. For the sake of simplicity, 

  

(a) (b) 

Figure 6. The MSE in 100 estimations of T. Exp. distribution with parameter a=0.5 via three estimators. (a) 𝐹̃𝑏(𝑥) (solid curve), the 

OKE (dashed curve), and the BKE (dotted curve). (b) the BTKE (solid curve), the OKE (dashed curve), and the BKE (dotted curve). 

  
(a) T.Exp. (0.5) (b) T.Lognormal (0,1) 

  
(c) T.Normal (0,0.25) (d) Beta (4, 2) 

Figure 7. The MISE in 1000 estimations of four distributions: a) T. Exp. (0.5), b) T.Lognormal (0,1), c) T.Normal (0,0.25) and d) 

Beta (4, 2), where T. denotes truncated, for combinations of 𝑡, 𝑠 = 0.1,0.2,… ,0.9,1,2,… ,20. 
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we refer to these samples as original samples. Table 2 

shows the MISE in 100 repetitions in estimating PDF of 

eight distributions using “kde.boundary” command in R 

package ks via two approaches. In the first approach, 

PDFs are estimated from the original samples whereas in 

the second approach, the original samples are used to 

estimate 𝐹̂𝑛,𝑏
𝐵  and then simulate a sample of size 

𝑚 = 10000 to estimate PDF. The command 

“kde.boundary” employs the second form of the beta 

boundary kernel of (17) and the bandwidth is selected by 

the plug-in method. In Table 2, the lower MISE is shown 

by bold face in each case and the last column shows the 

ratio of MISEs. The results indicate that our proposed 

method is effective, especially for small and medium 

sample sizes. The only exceptions are U (0,1) with 𝑛 =
500  and Beta (4,2) with 𝑛 =1000. In all other cases, 

MISE is substantially decreased when we use simulated 

data generated from 𝐹̂𝑛,𝑏
𝐵 .  

 

 

An application to health cost data 

In order to obtain consumption coefficients for 

calculating the cost-of-living index and household 

budget, the Statistical Center of Iran has annually 

Table 2. The MISE (100 repetitions) in estimating eight PDF using ks package from the original sample and simulated sample 

(seethe text for explanation) for 𝑛 =100, 500 and 1000. 

  MISE  

Distribution Sample size Original sample Simulated 

sample 

MISE (Simulate)/ MISE 

(Original) 

 100 0.1121 0.0641 0.5716 

T.Normal (0,0.25) 500 0.0601 0.0434 0.7239 

 1000 0.0453 0.0387 0.8529 

 100 0.0436 0.0224 0.5133 

T.Exp. (0.5) 500 0.0205 0.0143 0.6964 

 1000 0.0145 0.0114 0.7904 

 100 0.0391 0.0344 0.8781 

T.Lognormal 

(0,1) 

500 0.0149 0.0125 0.8427 

 1000 0.0091 0.0083 0.9132 

 100 0.0795 0.0558 0.702 

T.weibull (2,3) 500 0.0439 0.0376 0.8582 

 1000 0.0373 0.0341 0.9147 

 100 0.0447 0.0235 0.5266 

U (0, 1) 500 0.0186 0.0233 1.2523 

 1000 0.0138 0.0118 0.8549 

 100 0.0424 0.0300 0.7072 

Beta (2, 4) 500 0.0134 0.0117 0.8761 

 1000 0.0082 0.0080 0.9885 

 100 0.0438 0.0342 0.7803 

Beta (4, 2) 500 0.0139 0.0135 0.9691 

 1000 0.0078 0.0087 1.1279 

 100 0.0315 0.0232 0.7375 

Beta (2, 2) 500 0.0104 0.0089 0.8541 

 

  
(b) (a) 

Figure 8. (a) Histogram of the ratio of the health cost to the total household cost in the urban area. (b) The same histogram 

for the rural area. 
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collected statistics on household expenditure and income 

in various sectors through an extensive sampling 

program from all urban and rural areas of the country for 

more than half a century. Prior to measures taken by this 

center, such statistics were collected by the Central Bank 

of Iran and Bank Melli Iran for several decades. 

Household health cost and its portion in the household 

cost basket in urban and rural areas is one of the main 

concerns of the health system in any country. In this 

section, the CDF of the ratio of health costs to total 

household costs in urban and rural areas of Iran in 1398 

AH (2019 AD) has been estimated using the BTKE. The 

data of this section are the ratio of the health cost to the 

total household cost and related to 19821 urban 

households and 18370 rural households taken from the 

site www.amar.org.ir. Figures 8a and 8b show the 

histogram of the ratio of health cost to total household 

cost for urban and rural households, respectively. Data 

distribution is positively skewed and their focus on the 

border area is evident. 

Figures 9a and 9c show the estimates of the CDF of 

the ratio of the health cost to the total household cost for 

urban and rural households, respectively. In addition to 

the BTKE, the OKE is also plotted in these figures for 

more comparison. Figures 9b and 9d zoom on the 

boundary region to show more details for urban and rural 

households, respectively. The bias of the OKE in the 

boundary region is obvious. 
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