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Abstract 

Ignoring measurement errors in generalized linear mixed models (GLMMs) as well as 

other regression models will inevitably lead to significant biases, deviations, and incorrect 

inferences in the estimation of the parameters. In the presence of measurement error, 

numerous approaches have been proposed to rectify this issue. Furthermore, the 

application of the frequentist approach of GLMMs is intricate due to the emergence of an 

intractable numerical integration process. In this study, the complete likelihood inference 

of a multinomial logit random effects model with covariate measurement error in 

conjunction with replicate measures is suggested via the multivariate Gauss-Hermite 

quadrature approximation. To achieve this objective, the likelihood function will be 

evaluated and approximated for two distinct scenarios; the proposed method which 

incorporates the classical additive structural measurement error model for the error-prone 

covariate and the naive method. We will describe and compare different upshots of 

parameter estimation in these two different situations. The results of performing the 

proposed method, assessed through simulation, show that the proposed method performs 

well when correcting for measurement error in terms of bias, empirical standard error, 

root of mean squared error and coverage ratio. The application of the proposed method is 

further highlighted with real-world data based on a multilevel study concerning the 

prevalence of contraceptive methods used by women in Bangladesh. 

 
Keywords: Mixed Models; Nominal Response; Multivariate Gauss-Hermite Quadrature; Multinomial 

Logit Model; Measurement Error. 

 

Introduction 

In numerous statistical scenarios, it is commonly 

assumed that the observations are independent of one 

another. However, there exist certain instances that 

                                                        
* Corresponding Author: Tel: +98 21-82884705; Email: golalizadeh@modares.ac.ir 

violate this assumption. A prime example of this is 

evident in the realm of biological sciences, where the data 

collected often possesses a hierarchical or clustered 

structure. The presence of correlation among such data is 

not coincidental or negligible (1). T1o effectively analyze 
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such correlated and longitudinally measured data, 

researchers employ mixed effects or multilevel 

(hierarchical) models, which also take into account the 

incorporation of inter-class correlation.  

The purpose of mixed effects models is to model the 

relationship between the response variable and a set of 

covariates by considering the correlation between 

repeated measurements or clustered structure. For the 

continuous outcomes, linear mixed models (LMMs) are 

used (2). In the case of non-normally distributed 

responses, generalized linear mixed models (GLMMs) 

are widely applied, specifying a nonlinear link between 

the mean of the response and the predictors, and can 

model the correlation between responses by adding 

random effects (3). The maximum likelihood (ML) 

approach is most frequently used in estimating the 

parameters in LMMs, but its usage is limited in GLMMs, 

mainly because the conditional distribution of the 

response components is not normal, so the likelihood 

function may not have a closed form. To avoid 

computational problems of the ML method, a Monte 

Carlo EM (MCEM) approach has been described for 

binary responses which can handle both fixed and 

random effects structure (4). Hereof, a Bayesian method 

with flat priors has been applied to approximate ML 

estimates (see, e.g. (5) and (6)). It is noteworthy to 

emphasize that in instances where generalized linear 

latent and mixed models are concerned, (7) have devised 

innovative approaches for the purpose of model 

identification, estimation, prediction of latent variables, 

as well as model diagnostics. It is also important to note 

that other numerical algorithms such as Laplace 

approximation or Gaussian quadrature are also used to 

overcome the integrals in the likelihood function. One 

can consult (8) and (9), for more details. 

One of the most challenging problems in regression 

analysis is the situation where some of the covariates are 

measured with error (10). There are few studies about 

the effects of covariate measurement error in estimating 

the parameters and analyzing the correlated data in the 

frequentist approach, only some approximation methods 

have been proposed, such as regression calibration (11), 

simulation extrapolation (12), corrected scores, and the 

Bayesian methods. The bootstrap approach is also a 

robust way to adjust for measurement error models (13). 

The non-informative Bayesian approach, is also 

employed in generalized linear mixed measurement 

error models, mainly because the Bayesian method is 

computationally convenient (10). Indeed, the inference 

about the parameters might change with different 

starting prior distributions. Lately a new statistical 

method called data cloning (DC), has been applied to 

compute the ML estimates and their standard errors (14). 

The DC method can also be applied in ML estimation of 

parameters and predicting the random effects, 

determining the estimability of parameters in mixed 

models (15). The data cloning approach, which avoids 

high dimensional numerical integration, has been 

applied to the generalized linear mixed measurement 

error models (16). With time-varying covariate 

measurement error, (17) proposed a joint modeling 

method in which a mechanistic nonlinear model is used 

for a longitudinal outcome that can be either discrete as 

binary and count or continuous. 

An alternative to the aforementioned methods is 

using the Monte Carlo approach. Recently, it has been 

considered that the Monte Carlo Newton-Raphson 

(MCNR) method gives accurate estimates in the setting 

of a logistic regression model for analyzing longitudinal 

biomarker data, accounting for left-censoring and 

covariate measurement error (18).  In this regard, the 

Monte Carlo approach has also been proposed to model 

the random effects covariance matrix in generalized 

linear mixed measurement error models for binary 

outcomes (19).  In this method, the Monte Carlo 

Expectation Maximization (MCEM) algorithm is 

applied to estimate the parameters. Moreover, one can 

consult (20) on the problems of modern statistical 

regression modeling with the measurement error in the 

covariates, in order to conduct further research on the 

topic. 

It is worth mentioning that a potential difficulty with 

the Monte Carlo method to approximate the integrals in 

generalized linear mixed measurement error models is 

that the integrals are computed many times and this 

might be undoubtfully expensive. The quadrature 

approach is another method of approximation that is 

computationally less expensive. This approach uses a 

weighted summation to approximate the integral and the 

integrated variable is assessed on a grid of quadrature 

points selected from the domain of the integration 

function (21). For the integrals involving the normal 

distribution, the gauss-Hermite quadrature 

approximation method is used to obtain the 

corresponding weights and quadrature points.  

There is a paucity of research accounting for 

polytomous response variables in the analysis of 

multilevel data with covariates subject to measurement 

error. Most research have concentrated on mixed effects 

models for correlated binary responses. In this paper, we 

develop the multivariate Gauss-Hermite quadrature 

method for approximating the intractable integrals of the 

likelihood function for the analysis of multilevel data 

involving nominal correlated response components and 

measurement error in the covariate. Based on simulation 

results, this method of approximating the likelihood 



Maximum Approximated Likelihood Estimation in Generalized Linear Multilevel Model for … 

335 

function can yield accurate estimates of the fixed effects 

for each category of the response variable as well as 

variance components of random effects and the 

measurement error distribution. At first, in Section 2, we 

will describe generalized linear mixed measurement 

error models for nominal outcomes when covariates are 

subject to measurement error. In Section 3, we describe 

how the likelihood function (which yields ML 

estimation) is evaluated in the presence of mixed models 

with measurement error in the covariate. We then 

describe the way by which the multivariate Gauss-

Hermite quadrature methodology can be applied to 

approximate the likelihood function including the 

measurement error model. In Section 4, the performance 

of the multivariate Gauss-Hermite quadrature method to 

correct for induced bias will be studied in a simulation 

study while the amount of reliability ratio changes, i.e., 

small error in the covariate, tolerable and intensive error. 

We will check the efficiency of our proposed approach 

to correct for measurement error and evaluate how mis-

specifying the measurement error distribution might 

result in high biases and standard errors in estimating the 

parameters. In Section 5, the improvement of the 

proposed method will be evaluated by analyzing a real 

dataset depending on a multilevel study on contraceptive 

methods utilized in Bangladesh. Concluding remarks are 

provided in the last Section. 

 

Materials and Methods 

The Generalized Linear Mixed Measurement Error 

Model, Basics and Notation  

Suppose Yi = (Yi1, … , Yini
)
T

 denotes the 

observed outcomes for the ith subject, 1 ≤ i ≤
m, where m is the total number of independent 

individuals, and ni is the number of observations for 

individual i. Assume Yi follows a generalized linear 

mixed model with a random intercept for each 

individual. The vectors of model covariates are 

indicated by Xi = (Xi1, … , Xini
)
T
and also through 

Zi = (Zi1, … , Zini
)
T

. Let Yij  be the response 

variable for subject i at the j-th occasion 
(j = 1,… ,ni) , Xij  as the vector of true 

covariates which are error-prone and 

unobserved and hence latent, and Zij  be the 

vector of error-free covariates. Furthermore, let 

Wij  be the vector of measurements that are 

observed in the absence of Xij.  

 

The Outcome Model 

Let Yij be a categorical response variable with 

B categories for subject i at occasion j. 

Multicategory logit model for Yij  assuming 

within-subject variability can be defined as 

follows: 

log [
P(Yij = b|xij, zij, τi)

P(Yij = B|xij, zij, τi)
]

= β0b + βxbxij + βzbzij

+ τi,     (2.1)      
i = 1, … ,m,       j = 1, … , ni,      b = 1,… , B − 1. 
In (2.1), b is an index demonstrating different 

categories, as well as the baseline category is denoted 

by B in the notation. According to the outcome model 

(2.1), it can be seen that the fixed effects vary 

according to the response paired with the baseline. In 

(2.1), β = (β0b, βxb, βzb)
T is the vector of fixed 

parameters. We assume that the random effects τi , 

(i = 1,… ,m)  are independent, and also independent 

from the error-prone covariates Xij . Here, we suppose 

τi~N(0, στ
2)  with zero mean, where the variance is 

assumed to be constant for all subjects. 

 

The Measurement Error Model 

Assume the variable Xij is subject to measurement 

error. For a continuous variable, any type of regression 

model can be employed to specify the relation between 

true values Xij  and the observed values Wij. The most 

common model in the measurement error literature is 

based upon what is called classical measurement error, 

in which the true but latent variable is measured with 

additive error, usually assumed to have constant 

variance, i.e.; 

Wij|xij = xij + eij,                                       (2.2) 

Where eij  is the error term with 𝐸(eij|𝑥𝑖𝑗) = 0 

and 𝑉𝑎𝑟(eij|𝑥𝑖𝑗) = 𝜎𝑒
2 , assuming 𝑊𝑖𝑗  and 𝑋𝑖𝑗  are 

scalar. It is concluded that 𝐸(𝑊𝑖𝑗|𝑥𝑖𝑗) = 𝑥𝑖𝑗, so 𝑊𝑖𝑗 is 

unbiased for the unobserved 𝑥𝑖𝑗. We also consider that 

the measurement error in 𝑊𝑖𝑗 is non-differential. This 

means that 𝑌𝑖𝑗  is conditionally independent of 𝑊𝑖𝑗 , 

given 𝑥𝑖𝑗. In the following, it is assumed that we have 

homoscedastic measurement error, which refers to the 

case where the variance of 𝑊𝑖𝑗 given 𝑥𝑖𝑗 is constant. 

We designate a fully structural case for the fallible 

covariate 𝑋𝑖, which is assumed i.i.d with  

𝑋𝑖 = (𝑋𝑖1
𝑇 , … , 𝑋𝑖𝑛𝑖

𝑇 )
𝑇
~𝑁 (𝜇𝑥, Σ𝑥 = 𝑑𝑖𝑎𝑔(𝜎𝑥𝑗

2 ))      𝑖

= 1,… ,𝑚,     𝑗 = 1,… , 𝑛𝑖 , 
 

where 

𝜇𝑥 = (𝜇𝑥1 , … , 𝜇𝑥𝑗)
𝑇
    ,       Σ𝑥 =

[
 
 
 
𝜎𝑥1

2 0 …     0

0 𝜎𝑥2
2 …     0

⋮   ⋮      ⋮      0
0 0 …    𝜎𝑥𝑛𝑖

2
]
 
 
 

. 
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The measurement error in the multivariate case, 

also has a normal distribution with the following 

structure: 

𝑒𝑖~𝑁(0𝑛𝑖
, 𝜎𝑒

2𝐼𝑛𝑖
). 

It should be pointed out that to avoid complexity 

issues come to pass in estimating the parameters of 

interest in a simulation step, we will treat the mean 

together with the covariance matrix of the error-prone 

variable 𝑋𝑖  to be fixed and develop a trajectory to 

correct for induced bias in the parameter estimation 

stage. 

 

Correcting for Measurement Error Using Likelihood 

Inference Methodology 

This section provides the way of constructing the 

likelihood function based on distributional 

assumptions recalled earlier. The likelihood 

formulation for the generalized linear mixed 

measurement error model involves up to four different 

parts: The model for 𝑌𝑖𝑗  given 𝑥𝑖𝑗  for each of j 

(specific) occasions, the model for measurement error, 

the model for 𝑋𝑖𝑗  in the structural setting and the 

model for the random effects. We next exhibit how to 

build the likelihood function and later, delineate its 

proper approximation. 

 

Likelihood Function 

The method of maximum likelihood (ML) 

estimation is of course the most popular approach to 

identifying estimates of parameters in a statistical 

model. In this Section, we consider a parametric 

likelihood approach that allows for covariate 

measurement error in a multinomial logit model. 

According to (2.1) and (2.2), if 𝜃  is a vector of 

associated parameters, i.e., 𝜃 = (𝛽, 𝜎𝑒
2, 𝜎𝑥𝑗

2 , 𝜎𝜏
2)

𝑇
, the 

likelihood function that incorporates the measurement 

error process in covariates, can be outlined as follows: 

𝐿(𝜃; 𝑦, 𝑤, 𝑧)

= ∏∫ ∫ ∏
𝑓(𝑦𝑖𝑗|𝑥𝑖𝑗 , 𝑤𝑖𝑗 , 𝑧𝑖𝑗 , 𝜏𝑖; 𝛽)𝑓(𝑤𝑖𝑗|𝑥𝑖𝑗 ; 𝜎𝑒

2)𝑓(𝑥𝑖; 𝜇𝑥, 𝜎𝑥𝑗
2 )

𝑓(𝜏𝑖; 𝜎𝜏
2)𝑑𝑥𝑖𝑗𝑑𝜏𝑖 ,     (3.1)

𝑛𝑖

𝑗=1

∞

𝑅𝑛𝑖

∞

𝑅

𝑚

𝑖=1

 

 

where 𝑓(𝑦𝑖𝑗|𝑥𝑖𝑗 , 𝑤𝑖𝑗 , 𝑧𝑖𝑗 , 𝜏𝑖; 𝛽)  equaling to 

𝑓(𝑦𝑖𝑗|𝑥𝑖𝑗 , 𝑧𝑖𝑗 , 𝜏𝑖; 𝛽)  due to the assumption of non-

differential measurement error, has a multinomial 

distribution given the random effects. This density 

function is defined as follows: 

𝑓(𝑦𝑖|𝑥𝑖 , 𝑧𝑖 , 𝜏𝑖; 𝛽) = ∏∏(𝑃𝑖𝑗𝑏)
𝑦𝑖𝑗𝑏 .                   (3.2)

𝐵

𝑏=1

𝑛𝑖

𝑗=1

 

In this regard, we assume that 𝑦𝑖𝑗𝑏  for 𝑖 = 1,… ,𝑚 

and 𝑗 = 1,… , 𝑛𝑖, is a binary variable that takes the value 

one if 𝑦𝑖𝑗 = 𝑏 and zero, otherwise. The quantity 𝑃𝑖𝑗𝑏 is 

a pointwise probability which is defined as  

 

𝑃(𝑌𝑖𝑗 = 𝑏|𝑥𝑖𝑗 , 𝑧𝑖𝑗 , 𝜏𝑖)

=
𝑒𝑥𝑝(β0b + βxbxij + βzbzij + τi)

1 + ∑ 𝑒𝑥𝑝(β0h + βxhxij + βzhzij + τi)
𝐵−1
ℎ=1

.        (3.3) 

 

The likelihood conveyed by (3.1), reflects the fact 

that the occurrence of measurement error in the 

covariate typically has more intricate consequences in 

modifying the arrangement of the likelihood function 

when compared with a situation dismissing 

measurement error in the covariate. As a result, the 

likelihood function (3.1), which encompasses 

measurement error in the covariate, can be considered 

as the likelihood function corresponding to our 

proposed methodology. The suggested approach will 

be titled as the measurement error method (ME in 

abbreviation) during the succeeding sections. To have 

a comparative study about the results obtained from 

the ME methodology, we will contemplate an 

alternative scenario, subsequently.  

With random covariate 𝑋𝑖  subject to error, we 

assume distributional assumption on error-prone 

covariate 𝑋𝑖 , i.e., structural approach in which 

covariate 𝑋𝑖 has a normal distribution with mean 𝜇𝑥 

and variance Σ𝑥 , and is independent of τi . 

Furthermore, let us consider 𝑊𝑖𝑗 as a surrogate for 𝑋𝑖𝑗 

with classical additive measurement error (2.2), where 

𝑒𝑖𝑗~𝑁(0, 𝜎𝑒
2) . Then, the conditional distribution of 

𝑊𝑖𝑗|𝑥𝑖𝑗  can be written as 𝑊𝑖𝑗|𝑥𝑖𝑗~𝑁(𝑥𝑖𝑗 , 𝜎𝑒
2) . 

Moreover, 𝜏𝑖 has a normal density with zero mean and 

variance 𝜎𝜏
2 . Consequently, the probability density 

function (p.d.f) for random effects in the single setting 

can be written as follows: 

𝑓(𝜏𝑖; 𝜎𝜏
2)

= (2𝜋𝜎𝜏
2)−

1
2𝑒𝑥𝑝 (−

1

2

𝜏𝑖
2

𝜎𝜏
2
).                              (3.4) 

In the comparative scenario, the model which 

naively disregards the difference between observed 

and true values of the covariates is nominated as the 

“naive” model. The likelihood function for this 

method assuming 𝜃∗  is a vector of associated 

parameters, i.e., 𝜃∗ = (𝛽, 𝜎𝜏
2)𝑇, is as follows: 

𝐿(𝜃∗; 𝑦, 𝑤)

= ∏∫ ∏ 𝑓(𝑦𝑖𝑗|𝑤𝑖𝑗 , 𝑧𝑖𝑗 , 𝜏𝑖; 𝛽)𝑓(𝜏𝑖; 𝜎𝜏
2)𝑑𝜏𝑖 .     (3.5)

𝑛𝑖

𝑗=1

∞

𝑅

𝑚

𝑖=1

 

Unfavorably, the integrals in equations (3.1) and 

(3.5) take place in dimensions such that their values 
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depend on the random effects along with or without 

the latent true covariate 𝑋𝑖𝑗  on 𝑛𝑖   occasions. 

Consequently, the observed data likelihood function 

for this model cannot be expressed in a tractable 

manner. This means that finding the ML estimates for 

the parameters will not be straightforward in 

application. For this case, standard numerical 

integration methods such as Multivariate Gauss-

Hermite quadrature (MGHQ) methods can be 

imposed to approximate the integral (22). 

In a simple one-dimensional setting, this means that 

the likelihood function is approximated using the Gauss-

Hermite quadrature (GHQ) method and optimized with 

common approaches. The GHQ technique approximates 

the integral by a weighted sum of the integrand which is 

evaluated at a number of quadrature points in the domain 

of the integration function (23). The location of the 

quadrature points and weights depends on the integrand 

and also on the domain of the integration function. For 

the integrals where the domain of the integration is 

(−∞,∞) or the entire real line, and the integrand is the 

product of a specific function with a normal density, the 

locations of the quadrature points are the solutions to the 

Hermite polynomial function. See, for example (24) and 

(25), for more details.   

The approximated likelihood function will then be 

maximized by invoking well-known standard algorithms 

such as the method known as Nelder and Mead or 

Newton-Raphson (27), yielding ML estimates for the 

parameters. To obtain variance components for the ML 

estimates, one can calculate the approximated observed 

information matrix. 

 

Approximation of the Log-Likelihood Function 

According to the likelihood function for the 

generalized linear mixed measurement error model 

(3.1), the log-likelihood function based on the observed 

data incorporating the measurement error distribution 

can be written as follows:  

 

𝑙(𝜃; 𝑦, 𝑤, 𝑧)

= ∑𝑙𝑜𝑔 [∫ ∫ ∏
𝑓(𝑦𝑖𝑗|𝑥𝑖𝑗 , 𝑤𝑖𝑗 , 𝑧𝑖𝑗 , 𝜏𝑖; 𝛽)𝑓(𝑤𝑖𝑗|𝑥𝑖𝑗; 𝜎𝑒

2)

𝑓(𝑥𝑖; 𝜇𝑥, 𝜎𝑥𝑗
2 )𝑓(𝜏𝑖; 𝜎𝜏

2)𝑑𝑥𝑖𝑗𝑑𝜏𝑖

𝑛𝑖

𝑗=1

∞

𝑅𝑛𝑖

∞

𝑅

].      (3.6)

𝑚

𝑖=1

 

 

Furthermore, the log-likelihood function for the naive 

method corresponding to (3.5), mis-specifying the 

measurement error in the covariate 𝑋𝑖 is 

 

𝑙(𝜃∗; 𝑦, 𝑤, 𝑧)

= ∑𝑙𝑜𝑔 [∫ ∏𝑓(𝑦𝑖𝑗|𝑤𝑖𝑗 , 𝑧𝑖𝑗 , 𝜏𝑖 ; 𝛽)𝑓(𝜏𝑖; 𝜎𝜏
2)𝑑𝜏𝑖

𝑛𝑖

𝑗=1

∞

𝑅

]

𝑚

𝑖=1

.    (3.7) 

 

For the approximation of the integral (3.6), 

multivariate forms of the Gauss-Hermite quadrature 

approximation method are needed to handle both 

unobserved covariate 𝑥𝑖𝑗   at 𝑛𝑖 occasions and the random 

effects 𝜏𝑖 . Because both 𝑥𝑖𝑗   and 𝜏𝑖  are independent of 

each other, the product of their density functions can be 

defined as a multivariate normal distribution. 

Multivariate Gauss-Hermite quadrature method 

(MGHQ) uses the idea of univariate GHQ rule for each 

coordinate of the integrated variables. For the 

approximation of the integrals in (3.6) which are 

(𝑛𝑖 + 1)  dimensional, a matrix of GHQ nodes is 

produced for latent variables 𝑋𝑖𝑗 at occasion j and also for 

the random effects 𝜏𝑖 according to the mean vector and 

variance-covariance matrix of the multivariate normal 

distribution 𝑓(𝑥𝑖 , 𝜏𝑖;  𝜎𝑥𝑗
2 , 𝜎𝜏

2) , which the integral is 

calculated. Furthermore, a vector of weights is calculated 

in the replacement with the multivariate normal 

distribution defined formerly. 

For the integrals in (3.6), the approximation process 

will be done by choosing sets of GHQ nodes 

{𝑥𝑘𝑗 = (𝑥𝑘1𝑗

(1)
, 𝑥𝑘2𝑗

(2)
, … , 𝑥𝑘(𝑛𝑖+1)𝑗

(𝑛𝑖+1)
)

′

: 1 ≤ 𝑘1 ≤ 𝑞1; 1 ≤ 𝑘2

≤ 𝑞2, … ,1 ≤ 𝑘(𝑛𝑖+1) ≤ 𝑞(𝑛𝑖+1)} 

and 

{𝜏𝑘 = (𝜏𝑘1

(1)
, 𝜏𝑘2

(2)
, … , 𝜏𝑘(𝑛𝑖+1)

(𝑛𝑖+1)
)

′

: 1 ≤ 𝑘1 ≤ 𝑞1; 1 ≤ 𝑘2

≤ 𝑞2, … ,1 ≤ 𝑘(𝑛𝑖+1) ≤ 𝑞(𝑛𝑖+1)} 

And weights 

{𝑤𝑘 = (𝑤𝑘1

(1)
, 𝑤𝑘2

(2)
, … , 𝑤𝑘(𝑛𝑖+1)

(𝑛𝑖+1)
)

′

: 1 ≤ 𝑘1 ≤ 𝑞1; 1 ≤ 𝑘2

≤ 𝑞2, … ,1 ≤ 𝑘(𝑛𝑖+1) ≤ 𝑞(𝑛𝑖+1)}. 

 

In this setting, k refers to the indices 

𝑘1, 𝑘2, … , 𝑘(𝑛𝑖+1) , each index shows different sets of 

quadrature points assigned, in order to approximate each 

of (𝑛𝑖 + 1) integrals (26). Moreover, 𝑥𝑘1𝑗
(𝑡)

 and 𝜏𝑘𝑡

(𝑡)
 (1 ≤

𝑡 ≤ (𝑛𝑖 + 1))  are the t-th root of the multivariate 

Hermite polynomial having degree t, i.e., 𝐻𝑞𝑡
(𝑥𝑗 , 𝜏) at 

occasion j (𝑗 = 1,… , 𝑛𝑖).  

It is important to note that the total number of the 

integration quadrature points is 𝑞 = 𝑞1𝑞2 …𝑞(𝑛𝑖+1). But, 

if 𝑞1 = 𝑞2 = ⋯ = 𝑞(𝑛𝑖+1) = 𝑞0 , i.e., the number of 

quadrature points for each dimension are assumed equal, 

then 𝑞 = 𝑞0

(𝑛𝑖+1)
. Adequate approximation usually needs 

a larger number of grids for standard errors. It is 

recommended to increase the number of grids basically 

until the changes are negligible and inconsequential in 
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both estimates and standard errors. 

Thereupon, the MGHQ approximation to the log-

likelihood function (3.6) will have the following form: 

 

𝑙(𝜃; 𝑦, 𝑤, 𝑧)

= ∑ 𝑙𝑜𝑔 [∑ ∑ … ∑ 𝑤𝑘1

(1)
𝑤𝑘2

(2)
…𝑤𝑘(𝑛𝑖+1)

(𝑛𝑖+1)

𝑞(𝑛𝑖+1)

𝑘(𝑛𝑖+1)=1

∏𝑓 (𝑦𝑖𝑗|𝑥𝑘𝑗
, 𝑧𝑖𝑗, 𝜏𝑘; 𝛽) 𝑓 (𝑤𝑖𝑗|𝑥𝑘𝑗

; 𝜎𝑒
2)

𝑛𝑖

𝑗=1

𝑞2

𝑘2=1

𝑞1

𝑘1=1

]

𝑚

𝑖=1

   (3.8) 

 

Under the assumption of naive methodology, to 

evaluate the integral (3.7) which includes only random 

effects 𝜏𝑖  as an integrated variable, a q-length vector 

comprised of quadrature points and the associated 

weights should be calculated from a Hermite polynomial 

with degree q. So, in this case, the set of GHQ nodes 

which are replaced to the random effects 𝜏𝑖 , with the 

corresponding weights, are defined in the following 

way:  

{𝜏𝑘 = (𝜏1, … , 𝜏𝑞)
′
, 𝑤𝑘 = (𝑤1, … , 𝑤𝑞)

′
}     (3.9) 

As a notation, 𝜏𝑡  (𝑡 = 1,… , 𝑞) is the t-th zero of the 

Hermite polynomial, and 𝑤𝑡  is the quadrature weight 

related with the quadrature point 𝜏𝑡. With the associated 

nodes and weights in (3.9), the GHQ approximation of 

the log-likelihood function (3.7) will be of the following 

form: 

𝑙(𝜃∗; 𝑦, 𝑤, 𝑧)

= ∑ 𝑙𝑜𝑔 [∑ ∏ 𝑓(𝑦𝑖𝑗|𝑤𝑖𝑗 , 𝑧𝑖𝑗 , 𝜏𝑘; 𝛽)

𝑛𝑖

𝑗=1

𝑞

𝑘=1

𝑤𝑘].           (3.10)

𝑚

𝑖=1

 

 

Simulations and Inferences 

Now, we are going to conduct a simulation study to 

compare and appraise the efficiency of the Multivariate 

(Multidimensional) Gauss-Hermite Quadrature (MGHQ) 

approximation method in the analysis of multilevel data 

with measurement error in the covariate, i.e., the 

measurement error (ME) method to the aspect where the 

covariate measurement error has been mis-specified 

(Naive method). We aim to investigate how measurement 

error in the covariate might result in bias, the root of 

mean squared error (RMSE) and coverage 

probability/ratio (CR). We are interested in modeling the 

relationship between categorical nominal responses and 

two continuous covariates. The response variables are 

generated from a multinomial distribution. Following is 

the multinomial logit random effects model, used for data 

simulation: 

𝑙𝑜𝑔 [
𝑃(𝑌𝑖𝑗 = 𝑏|𝑥𝑖𝑗 , 𝑧𝑖𝑗 , 𝜏𝑖)

𝑃(𝑌𝑖𝑗 = 𝐵|𝑥𝑖𝑗 , 𝑧𝑖𝑗 , 𝜏𝑖)
]

= 𝛽0𝑏 + 𝛽𝑥𝑏𝑥𝑖𝑗 + 𝛽𝑧𝑏𝑧𝑖𝑗 + 𝜏𝑖    𝑏

= 1,… , 𝐵 − 1, 
for 𝑖 = 1,… ,𝑚  individuals and 𝑗 = 1,… , 𝑛𝑖 

occasions, with 𝑌𝑖𝑗  considered as a nominal response 

with B categories for the i-th subject at level-2, associated 

with level-1 measurement at occasion j. The probability 

that 𝑌𝑖𝑗 = 𝑏  or the response corresponding to the i-th 

subject at occasion j, occurs in category b is given by: 

𝑃𝑖𝑗𝑏 = 𝑃(𝑌𝑖𝑗 = 𝑏|𝑥𝑖𝑗 , 𝑧𝑖𝑗 , 𝜏𝑖)

=
𝑒𝑥𝑝(β0b + βxbxij + βzbzij + τi)

1 + ∑ 𝑒𝑥𝑝(β0h + βxhxij + βzhzij + τi)
𝐵−1
ℎ=1

, 

for 𝑏 = 1,… ,𝐵  different categories of the 

outcome variable. 

In this section, we assume a multinomial response 

with three different categories (𝐵 = 3) , where 

(𝛽01, 𝛽𝑥1, 𝛽𝑧1) are the intercept and covariates’ fixed 

effects coefficients for the first category, and 

(𝛽02, 𝛽𝑥2, 𝛽𝑧2)  are the fixed effects based on the 

second category, and the third category is regarded as 

the baseline (reference). 

We assume that 𝑧𝑖𝑗  is an error-free or exactly 

measured covariate generated as a normally 

distributed variable following 𝑁(0, 42)  distribution, 

which is treated fixed during the simulation study. The 

measurement error model that we have contemplated 

is the classical additive model. In this case, we 

generate a surrogate variable 𝑊𝑖𝑗 for the error-prone 

covariate 𝑋𝑖𝑗, as in (2.2), where 𝑒𝑖𝑗is the measurement 

error variable for 𝑋𝑖𝑗 , independently and identically 

distributed following 𝑁(0, 𝜎𝑒
2), albeit we will change 

the magnitude of 𝜎𝑒
2 during the simulation study. This 

is because we are going to check the impact of 

considering measurement error on the estimation 

procedure. For this purpose, we have nominated three 

different levels of measurement error variation: 

𝜎𝑒
2 =0.5, 1.3 and 2 corresponding to small, moderate 

and intensive error scenarios, respectively. 

The true but latent covariate 𝑋𝑖𝑗 is assumed to have 

a structural modeling, generated from a parametric 

homogenous normal distribution, so that: 

𝑋𝑖𝑗 = 𝜇𝑥 + 𝑉𝑖𝑗 , 

where the 𝑉𝑖𝑗 variables are independent following 

𝑁(0, 𝜎𝑥𝑗
2 ) for 𝑗 = 1,2,3, and 𝜎𝑥𝑗

2 = 1. The covariance 

matrix regarding to 𝑋𝑖  at different occasions can be 

expressed as: 

Σ𝑥 = [

𝜎𝑥1
2 = 1 0 0

0 𝜎𝑥2
2 = 1 0

0 0 𝜎𝑥3
2 = 1

]. 

Moreover, we consider random effects 𝜏𝑖 to have a 

homogenous variance for all individuals, that is 

𝜏𝑖~𝑁(0, 𝜎𝜏
2). Here, we consider m=100 subjects with 

𝑛𝑖 = 3 , as the number of follow-up for each 

individual. The vector of initial values including the 

fixed effects for both categories and the random 
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effects variance are set to the following values: 

𝜃 = (𝛽01, 𝛽𝑥1, 𝛽𝑧1, 𝛽02 , 𝛽𝑥2 , 𝛽𝑧2, 𝜎𝜏
2)′

= (0.02,0.6,0.5,0.05,0.4,0.5,2.4)′. 
Due to the fact that there are latent true covariates 

𝑋𝑖𝑗 for each of three different occasions and random 

effects 𝜏𝑖 needed to be integrated out to approximate 

the likelihood function via the MGHQ method, the 

number of quadrature points used in each of the 

dimensions was set to 3, note that this restriction leads 

to generate eighty-one nodes for both 𝑋𝑖𝑗  and 𝜏𝑖 

integrands, along with a vector of weights with a 

length equal to eighty-one. 

It is important to note that the likelihood function 

(3.1) is approximated with the MGHQ approximation 

method and then the Newton-Raphson algorithm can 

be applied to calculate the MLEs of both fixed and 

random effects. Afterwards numerically 

approximating the likelihood function, the score 

function and the observed information matrix can be 

determined subsequently. Therefore, the variance 

components of the MGHQ estimates are derived by 

inverting the negative of the Hessian matrix. 

With the intention of checking how covariate 

measurement error might influence the 

estimation procedure, we generate R=1000 

different data sets, we then fit two distinct 

scenarios. The first one is defining a model 

ignoring the covariate measurement error (Naive 

method) and using the observed values of 𝑋𝑖 . The 

second scenario is the ME method that incorporates 

covariate measurement error in the likelihood 

function, also considering homogenous variance 

for the random effects.  

 

Results 

Within the framework previously reported, we 

express the simulation results, and evaluate the 

performance of the two aforementioned methods. 

The results are presented in terms of the mean of 

absolute bias, 

𝐵𝑖𝑎𝑠𝜃0
=

1

𝑅
∑|�̂�0

(𝑟)
− 𝜃0|,

𝑅

𝑟=1

 

where 𝜃0  is considered as an initial and true 

value of a particular parameter, and �̂�0
(𝑟)

 is the 

estimated value of 𝜃0  in the r-th simulation run, 

empirical standard error (SE) or standard deviation 

of the estimates over the simulations and root of 

mean squared error, i.e., 

𝑅𝑀𝑆𝐸 = √𝐵𝑖𝑎𝑠𝜃0

2 + 𝑉𝑎𝑟𝜃0
, 

where 𝑉𝑎𝑟𝜃0
 is the average of 𝑉𝑎𝑟(�̂�0) over R 

simulation runs. Furthermore, it is important to 

point out that the coverage probability is calculated 

as the proportion of times that the true value of a 

parameter is covered by the 95% confidence 

interval during the simulations. 

In Table 1, the results of the two methods (Naive 

and ME approach) for R=1000 simulated data sets 

based on different magnitudes of covariate 

measurement error variance are presented. The 

simulation results for the fixed effects of the first 

category are denoted by (𝛽01 , 𝛽𝑥1, 𝛽𝑧1), as well as 

the results based on the second category are shown 

as (𝛽02 , 𝛽𝑥2, 𝛽𝑧2) . Furthermore, the estimation of 

random effect variance and the measurement error 

variation are also indexed as 𝜎𝜏
2  and 𝜎𝑒

2 , 

respectively. 

From the results of Table 1 with small error 

(𝜎𝑒
2 = 0.5) , it is completely perspicuous that 

considering and correcting for measurement error 

leads to fewer biases in estimating the fixed effects 

of the first and second category in comparison with 

the Naive approach (0.0141 for 𝛽01, 0.0151 for 𝛽𝑥1 

0.0090 for 𝛽𝑧1  and 0.0110 for 𝛽02 , 0.0087 for 𝛽𝑥2 

and 0.0120 for 𝛽𝑧2). The empirical standard errors 

for the ME approach are also smaller than the 

corresponding values of the Naive approach. In 

addition, the ME approach shows smaller RMSEs 

and better CRs for the nominal value confidence 

interval in estimating the fixed effects for both 

categories unlike the Naive approach. In the case at 

hand, the estimation of measurement error variance 

was found acceptable concerning the nominal 

approximate confidence interval. 

In the tolerable measurement error case (𝜎𝑒
2 =

1.3) , we can discern considerable biases in 

estimating the fixed effects of both categories in the 

Naive approach (0.0166 for 𝛽01 , 0.0169 for 𝛽𝑥1 

0.0140 for 𝛽𝑧1, also for the parameters of the second 

category: 0.0287 for 𝛽02, 0.0087 for 𝛽𝑥2 and 0.0132 
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for 𝛽𝑧2). The results also illustrate small standard 

errors, RMSEs and good CRs for the ME approach 

compared with the corresponding Naive method. 

The outcomes demonstrate that the estimated 

measurement error variance is reasonable and the 

reliability ratio at the j-th occasion can be 

scrutinized as the ratio of the variability of 𝑥𝑖𝑗 to that 

of 𝑤𝑖𝑗, i.e., 𝜆𝑗 =
𝜎𝑥𝑗

2

𝜎𝑥𝑗
2 +�̂�𝑒

2 = 0.43. 

From the consequences of intensive 

measurement error (𝜎𝑒
2 = 2), it can be concluded 

that the biases in fixed effects estimates are larger 

for the misspecification of the measurement error 

situation, and as expected, the ME approach 

provides fewer biases. In other words, the biases of 

parameter estimation in the ME method are fairly 

small approach (0.0016 for 𝛽01 , 0.0083 for 𝛽𝑥1 

0.0093 for 𝛽𝑧1, and 0.0016 for 𝛽02, 0.0069 for 𝛽𝑥2 

and 0.0118 for 𝛽𝑧2). Moreover, the RMSEs of the 

ME approach are much smaller, as well as good 

CRs. It is concluded from the estimation results that 

𝜎𝑒
2 has also become reasonable corresponding to the 

nominal approximate confidence interval, in this 

case. 

To find the model that minimizes the 

information loss, we have calculated the Akaike 

Information Criterion (AIC) value as a goodness of 

fit test assessed by the logarithm of the likelihood 

function for the Naive and the ME models. The 

mean of the AIC value over simulations selected the 

Table 1. Parameter estimation (Est), absolute of bias (Bias), standard error (SE), root of mean squared error (RMSE), and 

coverage rate (CR) of the parameter estimates with 𝑛𝑖 = 3  replicates and 1000 simulation run for the Naive and ME 

approaches. 

 Naive  ME 

  
Scale of 

Error 

Real 

value 

Est Bias  SE RMSE CR Est Bias  SE RMSE CR 

Small 

error 

(𝝈𝒆
𝟐

= 𝟎. 𝟓) 

 

𝛽01

= 0.02 

0.0395 0.0195  0.2595 0.2605 0.951  0.0341 0.0141  0.2465 0.2469 0.953 

𝛽𝑥1

= 0.6 

0.6206 0.0206  0.1814 0.1826 0.950  0.6151 0.0151  0.1696 0.1703 0.951 

𝛽𝑧1

= 0.5 

0.5130 0.0130  0.0806 0.0816 0.947  0.5090 0.0090  0.0720 0.0725 0.947 

𝛽02

= 0.05 

0.0731 0.0231  0.2627 0.2637 0.942  0.0610 0.0110  0.2455 0.2458 0.948 

𝛽𝑥2

= 0.4 

0.4089 0.0089  0.1771 0.1773 0.952  0.4087 0.0087  0.1728 0.1730 0.953 

𝛽𝑧2

= 0.5 

0.5133 0.0133  0.0804 0.0815 0.949  0.5120 0.0120  0.0730 0.0739 0.952 

𝜎𝜏
2 = 2.4 2.5266 0.1266  1.0946 1.1019 0.944  2.4547 0.0547  0.9557 0.9573 0.952 

𝜎𝑒
2 = 0.5 - -  - - -  0.6544 0.1544  0.0917 0.1796 0.643 

AIC  -
517.6758 

 -1484.882 
 

Tolerable 

error 

(𝝈𝒆
𝟐

= 𝟏. 𝟑) 

 

𝛽01

= 0.02 

0.0366 0.0166  0.2570 0.2576 0.953  0.0205 0.0005  0.2541 0.2541 0.955 

𝛽𝑥1

= 0.6 

0.6169 0.0169  0.1457 0.1466 0.938  0.6150 0.0150  0.1442 0.1450 0.952 

𝛽𝑧1

= 0.5 

0.5140 0.0140  0.0800 0.0812 0.945  0.5074 0.0074  0.0759 0.0762 0.947 

𝛽02

= 0.05 

0.0787 0.0287  0.2550 0.2566 0.946  0.0472 0.0028  0.2437 0.2438 0.954 

𝛽𝑥2

= 0.4 

0.4087 0.0087  0.1395 0.1397 0.946  0.4112 0.0112  0.1377 0.1381 0.949 

𝛽𝑧2

= 0.5 

0.5132 0.0132  0.0790 0.0800 0.949  0.5091 0.0091  0.0756 0.0761 0.949 

𝜎𝜏
2 = 2.4 2.5207 0.1207  1.1187 1.1252 0.945  2.5019 0.1019  0.9714 0.9767 0.946 

𝜎𝑒
2 = 1.3 - -  - - -  1.3279 0.0279  0.1886 0.1907 0.950 

AIC  -

528.2558 

 -1615.688 

Intensive 

error 

(𝝈𝒆
𝟐 = 𝟐) 

 

𝛽01

= 0.02 

0.0080 0.0120  0.2640 0.2643 0.949  0.0216 0.0016  0.2442 0.2442 0.951 

𝛽𝑥1

= 0.6 

0.6187 0.0187  0.1358 0.1370 0.949  0.6083 0.0083  0.1308 0.1311 0.957 

𝛽𝑧1

= 0.5 

0.5116 0.0116  0.0813 0.0821 0.940  0.5093 0.0093  0.0751 0.0757 0.953 

𝛽02

= 0.05 

0.0435 0.0065  0.2603 0.2604 0.947  0.0484 0.0016  0.2377 0.2377 0.950 

𝛽𝑥2

= 0.4 

0.4108 0.0108  0.1297 0.1301 0.943  0.4069 0.0069  0.1250 0.1252 0.949 

𝛽𝑧2

= 0.5 

0.5120 0.0120  0.0836 0.0844 0.942  0.5118 0.0118  0.0755 0.0764 0.950 

𝜎𝜏
2 = 2.4 2.5226 0.1226  1.1283 1.1349 0.952  2.4975 0.0975  0.9560 0.9609 0.954 

𝜎𝑒
2 = 2 - -  - - -  2.0080 0.0080  0.2367 0.2368 0.952 

AIC -513.7156                                                                         -1671.052 
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correct model which illustrates the fact that the ME 

approach minimizes the information loss and 

provides a better fit than the Naive approach for all 

three different levels of measurement error 

variation.  

In Figure 1, we have evaluated the RMSEs in 

Naive and ME approaches for the parameters of the 

first and second level of the response variable and 

also the random effect component based on three 

different levels of measurement error variation. It is 

important to note that the major feature of the plot is 

that the standard errors of the Naive method are 

larger than those of the ME method, and the ME 

method consistently gives smaller estimates of the 

standard errors for all fixed parameters as well as the 

variance component of the random effect involved 

in the simulation study.  

In Table 2, the results of the estimation of fixed and 

random coefficients for the first and second categories 

under 𝑛𝑖 = 5  follow-up and intensive measurement 

error variation over R=1000 simulation runs are 

presented. In this case, to calculate the likelihood 

function, six-dimensional integration must be 

approximated via the MGHQ method. From the 

results, it is obvious that the ME approach performs 

better than the corresponding Naive method in terms 

of Bias, SE, RMSE and CR for the 95% nominal 

approximate confidence interval. As expected, the 

RMSEs for both approaches tend to decrease with 

increasing the number of follow-up.  

The RMSE estimates of the first and second level 

parameters of the response variable and the variance 

component of the random effect for the ME approach 

with 𝜎𝑒
2 = 2 based on  𝑛𝑖 = 3  and 𝑛𝑖 = 5  replicates 

are plotted in Figure. 2. The particular component 

recognized in this plot is that just as the number of 

follow-up increases, the RMSEs tend to decrease.  

 

Application: Contraceptive Data in Bangladesh 

Contraception methods or using birth control 

techniques have increased rapidly in all regions of 

Bangladesh since 1975. Due to the high prevalence 

rate of contraceptive use, Bangladesh has encountered 

a decline in fertility and population growth. Some 

researchers believe that most of the childbearing 

decline is due to the efforts of Bangladesh national 

 

Figure 1. Comparison of RMSEs of Naive and measurement error parameters in multinomial logit random effect 

model based on simulation studies between two methods. The solid line corresponds to the RMSE estimates of the 

measurement error (ME) approach, while the dashed line, represents the Naive RMSE estimates. The three plots in 

(a), (b) and (c) corresponds to RMSEs against parameters of the first level of the response variable, with different 

levels of measurement error variance, while (d), (e) and (f) represents the RMSEs against the parameters of the 

second level of the response variable as well as the variance component of random effects.  
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family planning programs. Instead, others believe that 

changing social and economic situations also played 

an important role in the substantial decline in the 

fertility rate (28). Meanwhile, for the policy 

consequences purpose, it is also important to identify 

the factors associated with the use of different 

contraception methods. 

In this Section, we use a sub-sample data from the 

1989 Bangladesh Fertility Survey (29). The aim of the 

analysis is to identify the covariates associated with 

the contraceptive behavior, concurrently accounting 

for measurement error in some covariates. It is 

important to consider the fact that due to the 

deficiency of data associated with the analysis carried 

out in the ensuing article, i.e., scarcity of available data 

corresponding to correlated nominal response, in 

addition to validation data sources to overcome the 

issue of measurement error in the covariates, the 

proposed method has been applied to analyze a dataset 

from the contraception methods utilized in 

Bangladesh, as an illustration. Although the suggested 

methodology has been formulated for the multilevel 

data structure, it can also be assigned to data with a 

longitudinal design together with family studies, in 

 

Table 2. Parameter estimation (Est), absolute of bias (Bias), standard error (SE), root of mean squared error (RMSE), and coverage 

rate (CR) of the parameter estimates with 𝑛𝑖 = 5 replicates and 1000 simulation run for the Naive and ME approaches. 

 Naive  ME 

  
Scale of 

Error 

Real value Est Bias  SE RMSE CR Est Bias  SE RMSE CR 

Intensive 

error 

(𝝈𝒆
𝟐 = 𝟐) 

 

𝛽01

= 0.02 

0.0062 0.0138  0.2260 0.2264 0.944  0.0339 0.0139  0.2151 0.2156 0.947 

𝛽𝑥1 = 0.6 0.6076 0.0076  0.1024 0.1026 0.942  0.6057 0.0057  0.1004 0.1006 0.951 

𝛽𝑧1 = 0.5 0.5027 0.0027  0.0578 0.0579 0.941  0.5025 0.0025  0.0565 0.0565 0.953 

𝛽02

= 0.05 

0.0348 0.0152  0.2209 0.2214 0.952  0.0642 0.0142  0.2076 0.2081 0.956 

𝛽𝑥2 = 0.4 0.4029 0.0029  0.0990 0.0990 0.951  0.4017 0.0017  0.0973 0.0973 0.954 

𝛽𝑧2 = 0.5 0.5039 0.0039  0.0571 0.0573 0.948  0.5018 0.0018  0.0563 0.0563 0.956 

𝜎𝜏
2 = 2.4 2.2358 0.1642  0.6473 0.6678 0.939  2.2605 0.1395  0.6470 0.6619 0.944 

𝜎𝑒
2 = 2 - -  - - -  1.9957 0.0043  0.1875 0.1875 0.940 

AIC  -

872.5785 

 -2784.728 

 

 

 

 
 

Figure 2. Comparison of RMSE estimates of measurement error approach parameters according to the first and second level of the 

response variable as well as the variance of the random effects in multinomial logit random effect model based on 1000 simulation 

studies with 𝑛𝑖= 3 and 𝑛𝑖 = 5 replicates and intensive error. The solid line corresponds to RMSEs of measurement error (ME) 

parameters with 𝑛𝑖 = 5, while the dashed line, represents the RMSEs based on 𝑛𝑖 = 3 replicates.  
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which the association of parameters is a subject of 

interest. In Table 3, we have cited information about 

some factors that might be incorporated in modelling 

fertility behavior in Bangladesh. According to the 

descriptive statistics of the data in Table 3, it can be 

concluded that 10.5% of women (or their husbands) 

were sterilized, 19.4% were using a modern reversible 

method (mainly pills in Bangladesh), 9.8% were using 

a traditional method, and 60.3% were not using any 

contraception (30). The multinomial response variable 

that we have used, consists of four categories, that 

distinguishes between different contraception 

methods, including sterilization, modern or efficient 

methods (e.g. pills and IUDs), traditional or inefficient 

methods (e.g. withdrawals) and not using 

contraception.  

Since multilevel models are well qualified for 

recognizing hierarchical variation among regions, we 

will examine the geographical district influences by 

fitting a multinomial logit random effect model with 

2867 women nested within 60 districts (30, 31). The 

main covariates incorporated in this analysis are 

women’s age, region of residence (urban, and rural as 

the reference), religion (Hindu, and Muslim as the 

reference), having children and women’s education. 

The main reason for taking these covariates into 

consideration is because they are found to have 

meaningful effects on contraceptive behavior among 

married women in some researches.  

Based on the results of observed data in Table. 3, it 

has been concluded that the use of contraceptive 

prevalence involves the married women aged between 

15-49 years who were currently using at least one 

method of contraception with a mean 29.3 and a 

standard deviation 8.7. Women’s age plays an 

important role in using contraceptive methods. 

According to related researches (see, for example (31), 

middle aged women have a higher chance of using 

contraception and as women become older, the use of 

contraception methods decreases. The women in the 

analysis mostly have low level of education with 2.4 

children. In the subsequent, we consider the situation 

where there has been inaccurate measurement 

occurrence in recording the covariate age for the 

women covered in the analysis, no matter of the region 

of residence.  

In the contraceptive behavior dataset in 

Bangladesh, to have a precise and rigorous analysis, 

there are some important factors to be included in the 

model such as measurement problems in gathering 

data, which have been originated from the quality of 

family planning services in recording the covariates. 

According to (32), the development of family 

planning services would not be effective in increasing 

contraceptive use, which is principally due to social 

and economic conditions in Bangladesh.  

Bangladesh is predominantly rural and is 

economically reliant on agriculture; so desired family 

size is so high and children are valuable in the family 

for their beneficial role in production. Due to these 

Table 3. Descriptive statistics for the variables associated with the analysis, 

Bangladesh, 1989. Abbreviation: Sd refers to standard deviation. No. is number of. 

Variables Frequency (%) Mean (Sd) 

Contraceptive 

methods 

  

Sterilization 302 (10.53) - 

Modern methods 555 (19.36) - 

Traditional methods 282 (9.84) - 

Not using 

contraception 

1728 (60.27) - 

Age - 29.3076 (8.6998) 

No. children in the 

family 

- 2.4405 (1.0528) 

District   

Urban 804 (28.04) - 

Rural 2063 (71.96) - 

Religion   

Muslim 2480 (86.5) - 

Hindu 387 (13.49) - 

Education level   

Lower primary 1806 (62.99) - 

Upper primary 439 (15.31) - 

Secondary and above 265 (9.24) - 

None 357 (12.45) - 

Total 2867  
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facts, infant and child mortality rates are relatively 

high; and education levels are very low, mainly for 

women. These factors are consistently related to the 

decrease in the quality of family planning services and 

policy. In this regard, we consider the fact that there 

has been an inaccurate measurement episode in 

documenting the covariate age for the women 

involved in the analysis. Hence, we focus on the 

perception where there exists a variability in age 

measurement reported by the interviewers or informed 

by the women associated with the interview.  

Let 𝑌𝑖𝑗  be a nominal response variable, with four 

categories comprising sterilization, modern reversible 

methods, traditional methods, and not using 

contraception, which has been determined as the 

reference category in the model. The model we have 

dealt with, is of the following form: 

 

log [
𝑃(𝑌𝑖𝑗 = 𝑏)

𝑃(𝑌𝑖𝑗 = 𝐵)
] = 𝛽0𝑏 + 𝛽1𝑏𝐴𝑔𝑒𝑖𝑗 + 𝛽2𝑏𝑈𝑟𝑏𝑎𝑛𝑖𝑗

+ 𝛽3𝑏𝐻𝑖𝑛𝑑𝑢𝑖𝑗 + 𝛽4𝑏𝐿𝑐𝑖𝑗

+ 𝛽5𝑏𝐸𝑑𝑢𝑐𝑖𝑗 + 𝜏𝑗 .   (5.1) 

for 𝑖 = 1,… ,2867 women nested in 𝑗 =
1,… ,60 districts, involving b = 1, 2, 3 categories and 

B =4 is the reference level (not using contraception). 

It is worth noting that 𝑈𝑟𝑏𝑎𝑛𝑖𝑗  is a binary covariate 

indicating the residence area of individual 𝑖  at district 

𝑗 , along with 𝐻𝑖𝑛𝑑𝑢𝑖𝑗  showing whether the 

individual’s religion is Muslim or Hindu, 𝐿𝑐𝑖𝑗 is the 

number of children living in the family, and 𝐸𝑑𝑢𝑐𝑖𝑗  is 

the education level of women 𝑖  at district 𝑗 . In this 

setting, 𝐴𝑔𝑒𝑖𝑗 represents the true age of individual 𝑖 at 

district 𝑗, which is latent and treated as the error-prone 

covariate. The Kolmogorov-Smirnov test has been 

implemented to test the normality of variable Age. 

The value of the test statistic is D = 0.16778 with p-

value=0.3295, accordingly the test has accepted the 

null-hypothesis. It is assumed that 𝑊𝑖𝑗  is the age 

recorded for woman 𝑖  at district 𝑗 , following the 

classical additive structural measurement error model 

𝑊𝑖𝑗  = 𝐴𝑔𝑒𝑖𝑗 + 𝑒𝑖𝑗 . It is assumed that 

𝐴𝑔𝑒𝑖𝑗  ~ 𝑁(𝜇𝑥 , 𝜎𝑥
2)  and the measurement error 

variable follows independent normal distribution with 

mean 0 and variance 𝜎𝜏
2 . Here, to specify the district 

effects on the probability of using each of the 

contraception methods defined earlier, it is assumed 

that the distribution of district effects 𝜏𝑗   is normal 

with mean 0 and variance 𝜎𝜏
2 .  

We have employed the Naive and ME approaches 

to analyze the data. These two approaches are used for 

studying the effect of ignoring measurement error in 

regression coefficients and variance components. The 

results of parameter estimation and corresponding 

standard errors based on the Naive and ME likelihood 

approaches are displayed in Table 4 and Table 5, 

respectively.  

From the results of Table 4, it can be concluded 

that age has an inverse association with the use of 

sterilization than not using contraception. The effect 

of age covariate also shows that with the increase in 

women’s age, the log odds of using modern and 

traditional contraception methods decrease 

concerning not using any contraception. No 

significant variation can be found in using sterilization 

than not using contraception in urban areas compared 

with rural regions. The results show that the log odds 

of using modern or traditional contraceptive methods 

rather than  

not using contraception increases in urban areas than 

women living in rural regions. Due to the fact that by 

using the sterilization method, there is no chance of 

fertility but in modern or traditional methods, there is 

still an attempt for women to be pregnant, this matter 

clearly shows families’ demand for having additional 

children.  

From Table 4, it can be concluded that there is no 

significant variation in contraceptive behavior 

according to religion. The results show that with the 

increase in the number of living children in the family, 

there is a positive effect on using each of the 

contraception methods than not using contraception. 

Based on the results, it can be seen that an increase in 

the women’s education level does not have much 

impact on the choice of contraception methods. 

To establish the significant determinants of 

contraceptive behavior in Bangladesh, producing true 

estimates, and taking the intrinsic measurement error 

on the covariate age into account, we have applied the 

proposed model in this paper to the Bangladesh data 

set. From the results of Table 5, it can be concluded 

that as women’s age increases, the log odds of using 

any of the contraception methods decrease compared 

with not using contraception. For the women in urban 

areas, the log odds of using the sterilization method 

decrease compared with not using contraception, and 

it can be seen that married women in urban areas use 

mostly modern and traditional methods rather than 

not using any ways of contraception.  

Moreover, Table 5 shows that there is a significant 

variation in terms of religious attitude. Non-Muslim 

women are using more of each of contraceptive 

behaviors than Muslims. Muslim women are less 

likely to use each of contraceptive method compared 

with non-Muslim women. This is mainly due to the 
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fact that religious beliefs can decrease the 

contraceptive behavior. The results show that there is 

not any significant variation between the increase of 

living children in the family and using sterilization or 

traditional methods rather than not using 

contraception. However, it is realized that with the 

increase in the number of living children, the log odds 

of using modern reversible methods increases than not 

using any contraception. According to the results 

derived in Table 5, it can be seen that there is an 

inverse association between the increase in women’s 

level of education and using sterilization or traditional 

methods compared with not using any contraception, 

and there is no significant variation between women’s 

education and using modern methods rather than not 

using any of contraceptive behavior.  

According to the results of Table 4 and Table 5, it 

can be concluded that using the observed and mis-

measured covariates and estimating the parameters 

based on the Naive approach will inevitably mis-

Table 4. Coefficients and standard errors (SE) based on the Naive approach for the contraceptive status other than not using 

contraception, Bangladesh, 1989. Abbreviation: * refers to significant at 0.05, - shows the reference level. 

 

Explanatory 

Variables 

Sterilization Modern Methods Traditional Methods 

Coefficient SE Coefficient SE Coefficient SE 

Constant 1.1381 0.8622 -1.4692 0.8337 1.8807* 0.8922 

Age -0.0696* 0.0260 -0.1001* 0.0267 -0.1258* 0.0286 

Residence 

Rural 

Urban 

 

- - - - - - 

0.1614 0.2824 1.8275* 0.2621 0.5727* 0.2854 

Religion  

Muslim 

Hindu 

- - - - - - 

0.2337 0.2080 -0.3578 0.2060 -0.0327 0.2285 

No. children in the 

family 

0.6751* 0.1184 0.6328* 0.1131 0.2885* 0.1227 

Education level -1.3422* 0.22 -0.0485 0.1928 -0.6435* 0.2116 

Random effects 

variance 

𝝈𝝉
𝟐 

 

Coefficient SE  

1.0379* 0.2215 

AIC= -6461.77 

 

Table 5. Coefficients and standard errors (SE) based on the ME approach for the contraceptive status other than not using 

contraception, Bangladesh, 1989. Abbreviation: * refers to significant at 0.05, - shows the reference level. 

 

Explanatory 

Variables 

Sterilization Modern Methods Traditional Methods 

Coefficient SE Coefficient SE Coefficient SE 

Constant 3.8691* 0.5570 1.8591* 0.6025 4.0592* 0.5548 

Age -0.0721* 0.0082 -0.1340* 0.0089 -0.1855* 0.0087 

Residence 

Rural 

Urban 

 

- - - - - - 

-0.5806* 0.1561 0.8440* 0.1712 0.6799* 0.1462 

Religion  

Muslim 

Hindu 

- - - - - - 

-0.9716* 0.1813 -0.6290* 0.1874 -0.5711* 0.1784 

No. children in the 

family 

0.0517 0.0760 0.2972* 0.0858 -0.1007 0.0741 

Education level -0.7727* 0.0874 -0.0419 0.1001 -0.1807* 0.0832 

Other model and 

measurement 

error parameters 

   

Coefficient SE 

𝝁𝒙 29.5705* 0.1984 

𝝈𝒙
𝟐 46.6062* 1.7705 

𝝈𝝉
𝟐 2.8092* 0.2215 

𝝈𝒆
𝟐 26.6204* 1.4112 

AIC= -27479.1  
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specify the structure of fixed and random effects. This 

is why the results of the Naive and ME approaches are 

different. To avoid misleading results, the ME 

approach has been employed to correct for additive 

error using multivariate Gauss-Hermite quadrature 

approximation technique in a multilevel setting. For 

the Bangladesh data, the estimated reliability ratio is 

0.6364, in other words   
�̂�𝑥

2

�̂�𝑥
2+�̂�𝑒

2 = 0.6364 , which 

expresses that there is about 36% error joined with the 

covariate age. It’s worth mentioning that the ME 

approach provides a better fit compared with the 

Naive method, using the Akaike Information Criterion 

value. 

 

Discussion 

Longitudinal and hierarchical studies are effective 

statistical inference methods in evaluating time-

varying and multi -level structured response variables 

with the relevant covariates. A plethora of methods are 

available for inference and parameter estimation in the 

context of multilevel studies. The application of these 

methods relies on the assumption that the variables 

used in the study are precisely measured. However, 

there are many situations where this assumption is 

violated for some of the variables. Measurement error 

in any of the covariates leads to biased coefficients and 

incorrect inferences in estimating the parameters. 

Measurement errors may arise for different reasons 

and from various sources (10, 33). In the presence of 

covariate measurement error, an approximate based 

method called regression calibration or a simulation-

based method called simulation extrapolation is 

frequently used, and the common difficulty with the 

likelihood-based method for the estimation of model 

parameters under covariate measurement error is 

intractable numerical integration.  

In this paper, we proposed multivariate Gauss-

Hermite quadrature approximation method for the 

likelihood inference of the generalized linear mixed 

model with repeatedly measured covariates subject to 

measurement error. We analytically derived the 

likelihood function for the case of multinomial 

outcome, with structural covariate subject to classical 

additive measurement error. To emphasize on the 

importance of involving measurement error in the 

covariate in the analysis of longitudinal data with 

nominal response, we compared the measurement 

error approach to the method where the covariate 

measurement error has been mis-specified. We then 

illustrated the measurement error effects on parameter 

estimation. For this purpose, we showed how the 

multivariate Gauss-Hermite quadrature ML method 

can be applied to approximate and to optimize the 

observed data likelihood. We investigated the 

procedure of multivariate Gauss-Hermite ML, a 

method which directly approximates the likelihood-

product of the integrals on the error-prone covariates 

at different occasions and also on the random effects, 

together with a matrix of quadrature points and a 

vector of weights associated with the quadrature 

points. 

Simulation studies indicated that mis-specifying 

the covariate measurement error distribution in the 

likelihood function, causes larger biases and standard 

errors in the parameter estimation. Comparisons of the 

ME and the Naive approach in terms of absolute bias, 

empirical standard error, root of mean squared error 

and coverage rate show that the multivariate Gauss-

Hermite quadrature ML performs well in handling 

measurement error in the likelihood approximation 

and also corrects for the induced bias. Based on real 

dataset analysis, we scrutinized that in the presence of 

covariate measurement error, using the Naive 

approach to estimating the parameters will 

inaccurately specify the fixed and random effects 

components. To correct for mis-measured covariates, 

the ME approach has been applied using the 

multivariate Gauss-Hermite quadrature technique.  

It is perceptible to enlighten that a general concern 

with covariate measurement error problems is whether 

the model is identifiable or not. In the presence of 

measurement error, usually all the parameters are not 

identifiable. To overcome this, it is often assumed that 

some additional assumptions or data being in the form 

of validation data, replication data, or instrumental 

ones are available to accomplish a measurement error 

analysis. As stated in (19), in longitudinal studies, 

repeated measurements are collected for error-prone 

covariates, and for identifying model parameters, 

these measurements can be used as replicates. In the 

present article, the aforementioned numerical 

adventure did not suggest that there is a matter with 

non-identifiability for the models considered 

(simulation study together with the real data 

application).  

An exclusive type of measurement error for the 

discrete variables is called misclassification. As seen 

in our simulation studies, Naive analysis ignoring 

measurement error leads to inaccurate results, this is 

an imperative matter to consider that discounting for 

misclassification also brings about biased estimates of 

model parameters. In our future work, we aim to 

investigate the analysis of correlated data with 

measurement error in the covariate and handle 
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categorical response misclassification, 

simultaneously. As there are many statistical models 

for analyzing correlated data originating from 

longitudinal and heirarachical studies, extending 

existing methods to transition or marginal models 

containing measurement error in the covariate and 

misclassification in the categorical response variable, 

will be the subject of our forthcoming endeavor. 
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