Optimization of Gene Design, PCR Assembly and Site-Directed Mutagenesis for the Synthesis of *Beauveria Bassiana* Protease Gene

M.A. Azali^{1,2}, S. Mohamed², A. Harun³, S. Shamsuddin^{4,5}, M.F. Johan^{1*}

1 Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia

² School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, 22200 Besut, Terengganu, Malaysia

³ Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia

⁴ School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia

⁵ Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia

Received: 15 August 2020 / Revised: 28 December 2020 / Accepted: 2 February 2021

Abstract

Synthetic gene construction is one of the components of synthetic biology. It can be used for various purposes such as to optimize gene expression. In this study, we proposed six predetermined criteria for designing oligos for the synthesis of the Beauveria bassiana protease gene. These criteria were set up to optimize the cost and to accommodate the oligos assembly. A total of 44 overlapping oligos were designed and synthesized 0.5 µM of oligos mixture was used in assembly PCR together with high fidelity DNA polymerase to produce 1.1 kbp fragment. The gene was visualized by agarose gel electrophoresis before subcloned into pCR™2.1-TOPO. The sequence of the gene was verified by DNA sequencing. Site-directed mutagenesis was performed to repair errors resulted from the gene synthesis. A sharp and distinguished band of the expected size of the protease gene was observed in agarose gel electrophoresis. Errors in the sequence which was detected by DNA sequencing was successfully repaired using our simplified site-directed mutagenesis protocol. The result indicated long DNA sequences (>1 kbp) can be synthesized with less error by using our method. Additionally, this method was easy to perform because it would require minimum optimization to synthesize other genes by following our guidelines.

Keywords: Gene synthesis; PCR assembly; Protease gene; Site-directed mutagenesis.

Introduction

Beauveria bassiana is an entomopathogenic fungus

and commercially produced for biological control [1]. Protease is one of the enzymes secreted by *Beauveria* bassiana to degrade insect cuticle during infection [2].

* Corresponding author: Tel: +6097676200; Fax: +6097673333; Email: faridjohan@usm.my

Protease gene can increase the pathogenicity of microbial pesticides such as baculovirus through genetic modification [3]. Nowadays, synthetic gene design and synthesis are much simpler compared to earlier days with the advancement in molecular biology and webbased application for DNA and protein analysis which are available on the net for free.

There are numerous PCR-based gene syntheses have been developed such as polymerase chain assembly (PCA) or also known as assembly PCR [4], sequential overlap extension PCR (OE-PCR) [5] and thermodynamically-balance inside-out (TBIO) [6]. As for PCA, the overlapping oligos are assembled in the first reaction, and then the gene assembly is amplified by PCR using the first and the last oligos as primers. In the sequential OE-PCR method, oligo pairs axre used to produce overlapping fragments, extended in the subsequent PCR steps until a full gene is obtained. An attempt to reduce the cost of gene synthesis by OE-PCR is made by decreasing the length of the oligos for gene synthesis and leaved gaps between them through a combination of dual asymmetric PCR and OE-PCR [7]. TBIO approach involves designing the oligos in such a way that the fragments start to extend from the centre to gradually form a full gene.

PCA method has been modified to synthesize longer genes which range from 1.0 to 5.4 kb with less mutation [8]. Using this method, the DNA fragments which constitute the full gene, 500 bp in length, were first synthesized from the oligos and then joined in the second PCR by the outermost oligos. Another approach includes joining the DNA fragments into a full sequence using ligation reaction by the addition of restriction sites [9]. This method can also be used to enable the synthesis of genes up to 32 kbp in length by insertion of the fragments into vectors using ligation-independent cloning (LIC) method and then fragments were assembled into full gene by digestion/ligation reaction [10]. Besides that, unmodified PCA has been simplified by combining the gene assembly and PCR reaction into one reaction [11-13]. Moreover, a combination of PCA and TBIO techniques has been shown to enable the synthesis of genes up to 1550 bp [14].

In this study, we proposed an optimized method for the construction of the protease synthetic gene of *B. bassiana* starting from designing oligos according to our predetermined criteria until its final product. This 1.1 kbp gene was successfully synthesized with a low error rate. In addition, we also described simplified sitedirected mutagenesis (SDM) for the correction of the gene sequence.

Materials and Methods

Gene design

The synthetic *Beauveria bassiana* serine protease gene was constructed according to the sequence published in the GenBank (*Accession number*: GUI166155). The oligos for the gene construction were designed based on the following criteria:

1. The maximum length of the oligos was set to 50 nucleotides to optimize the cost.

2. The minimum overlapping region was set to 20 nucleotides.

3. The GC contents range from 40-60%.

4. Melting temperature differences between each oligonucleotide must not more than 5° C.

5. Tm of potential hairpin structures lower than annealing temperature. Delta G values are higher than - 9.0 kcal/mole. The parameters were determined using OligoAnalyzer 3.1 (available at http://sg.idtdna.com/calc/analyzer).

A total of 44 oligos were designed and synthesized (IDT, Singapore), the locations of the oligos in the gene were shown (Supplementary Table 1 and Supplementary Figure 1).

Gene synthesis

The gene was synthesized by assembling the 44 oligos in the first step of PCR, and then the gene was amplified in the second step PCR (Fig. 1). The oligos mixture containing all the 44 oligos was prepared by mixing 10 μ l of each oligo in a 2 ml centrifuge tube. The mixture was diluted to a final concentration of 10 μ M. The oligos mixture was used at the concentration of 0.5 - 4 μ M for optimization in PCR mix containing 1.5 mM MgCl2, 200 μ M of each dNTP and 0.4 U Phusion enzyme (Thermo Scientific, US). Assembly PCR was carried out using the following condition: 98°C for 30 s, 55 cycles of 94°C for 60 s, 62°C for 120 s, 72°C for 60 s and a final extension of 72°C for 10 minutes.

The assembled oligo was further amplified with the addition of the BamHI (SP1.2) and NotI (SP44.2) restriction sites (Table 1). The assembled oligo was diluted 5-fold in a 20 μ l PCR mix containing the same component as the first PCR. The second PCR was carried out using the following condition: 98°C for 30 s, 25 cycles of 94°C for 60 s, 62°C for 60 s, 72°C for 60 s and a final extension of 72°C for 10 minutes. The PCR product was visualized, and the size estimated by agarose gel electrophoresis. The amplicon was purified from the gel using Nucleospin Gel and PCR Clean-Up (Machery Nagel, Germany) for subcloning.

Figure 1. Schematic diagram of gene synthesis using assembly PCR. SP1 to SP 44 are the oligos covering both strands of the gene. These oligos were assembled in the first PCR and amplified in the second PCR with the addition of BamHI and NotI restriction sites forming a synthetic gene.

Tab	le 1.	Primers used in gene synthesis and SOE. Restriction sites are underlined.
Primers		Sequence (5'-3')
SP1.2	GCC	<u>GGATCCC</u> GACATAAATATGCGTTTGTCAATAATTGCAGCGGCTTTGCC
SP44.2	TCA	AGCGGCCGCAAATCTTATATGCCGCCGTTAAATGCCAGGTAGTTGAC
SPF2	CCC	CTTACGCCATGATCCAGATGTTGAAACAATAGAGC
SPR2	GCT	CTATTGTTTCAACATCTGGATCATGGCGTAAGCGG
SPF3	CCA	TTTTCGGCGTCAAGGTACTCGAAGATAGTGGTTCGGGT
SPR3	ACC	CGAACCACTATCTTCGAGTACCTTGACGCCGAAAATGG
SPF4	GAA	AAGCTGTTGATATTTTTGCACCTGGCACTGGCAT
SPR4	ATC	CCAGTGCCAGGTGCAAAAATATCAACAGCTTTTC

Subcloning and sequencing

The synthetic gene was digested with BamHI and NotI before ligated into pCRTM2.1-TOPO vector (Thermo Scientific, USA). The vector was transformed into Top10 *Erischeria coli* competent cell which was grown on Luria Bertani (LB) agar containing 50ug/ml ampicillin. Transformant colonies were screened for the presence of the gene insert in forward sequence orientation using SP1 and backbone-specific primer (M13 Forward (-20)). Plasmid from the successful transformants was extracted using NucleoSpin Plasmid (Machery Nagel, Germany) according to the manufacturer's protocol and sequenced using backbonespecific primers (M13 Reverse and M13 Forward (-20)). The DNA sequences were analyzed using Bioedit

7

version 7.0.5.3 [15].

Site-Directed Mutagenesis

Site-directed mutagenesis by overlap extension (SOE) using PCR was performed to replace the errors in the DNA sequence as described previously [16]. Initially, the forward and reverse primers containing the targeted nucleotides (Table 1) were designed to overlap with the region containing the nucleotides to be replaced or inserted, as shown in Figure 2. The primers were then combined with SP1.2 forward and SP44.2 reverse primers to produce two overlapping fragments. PCR was carried out using the following condition: 98°C for 30 s, 25 cycles of 94°C for 60 s, 62°C for 60 s, 72°C for 60 s and a final extension of 72°C for 10 min. The PCR

Figure 2. Schematic diagram of SOE. Two overlapping fragments covering the regions need to be corrected were generated in the first steps of SOE. These overlapping fragments were joined into full length gene by PCR using the outermost primers. The full-length gene was used as template to produce the next fragments.

products were then purified. The overlapping fragments were then joined to produce single fragments by PCR. The fragments were purified from the gel using NucleoSpin Gel and PCR Clean-Up (Machery Nagel, Germany) and used as the template for the next SOE. These techniques were repeated in each location to which nucleotides needed to be repaired. Next, the final fragments were subcloned and re-sequenced.

Results

The sequence of *B. bassiana* proteinase gene in this study was modified for the optimization of gene synthesis according to a previous study [17]. The melting temperature for all 44 synthesized oligos ranges from 66.1 to 68.9° C. The minimum length was 40 nucleotides to accommodate 20 nucleotides overlaps with the adjacent oligos. Not more than 50 nucleotides in length were synthesized to minimize the cost and error for oligos synthesis. Randomly spaced gaps were introduced between the oligos to reduce the cost and accommodate the melting temperature and GC content ranges.

Restriction sites were added to the outermost oligos to facilitate cloning into the vector instead of using TOPO TA cloning. TOPO TA cloning resulted in the gene cloned in the reverse direction as indicated by negative PCR results and confirmed by DNA sequencing. The plasmid of the successful transformants was sequenced using backbone specific forward and reverse primer to cover to whole gene sequence. The forward and reverse sequences were aligned using in BioEdit software. A total of four mutated regions were detected in the sequences (Supplementary Figure 2) and this represents a total of 6 mutations with a mutation rate of 0.5%.

In order to correct the errors in the sequence, two overlapping fragments containing the correct sequences were produced using PCR containing the correct nucleotides (Fig. 3). These fragments were purified and combined in the subsequent PCR into the full-length genes. These processes were repeated for other sites where mutations occurred. Joining of the overlapping fragments also yield background amplification (Fig. 4). The successfully joined fragments, as inferred by the amplicon size, were excised, purified and used as a template for generating the next fragments. After all of the errors have been repaired, the gene was cloned and re-sequenced for verification.

Discussion

A number of previous studies described simpler and rapid methods, but the cost for oligos synthesis was higher [5,14,18]. These long oligos synthesis (>50 bases) are prone to error, and higher quality and more

Figure 3. Two overlapping fragments produced from the first step of SOE. Lane 1 and 3: negative control; lane 2 and 4: Overlapping fragments of expected sizes.

Figure 4. Full length gene produced from the amplification of the two overlapping fragments in SOE. Lane 1: negative control; lane 2: full length protease gene.

expensive oligos are required [7].

Potential hairpin formation for each oligo was eliminated by designing oligos with annealing temperatures higher than the melting temperature of the hairpin. Delta value of each oligo was kept higher than -9.0 to minimize the primer dimer formation. These oligos were assembled in the first PCR, and a 1.1 kbp fragment at the concentration of 0.5 μ M oligos mixture was visualized (Fig. 5). Smaller fragments were formed at higher concentrations of the oligos mixture. The assembled oligo was successfully amplified in the second PCR forming a 1.1 kbp band (Fig. 6).

Gene length was one of the limitations in gene synthesis methods, previously which is associated with mutations and the unsuccessfulness of gene assembly [6]. Mutation rate increases with the gene length. The oligos might not be assembled at all because of the presence of a high number of unspecific mismatches between oligos creating nonspecific annealing which leads to the formation of truncated sequences and hence premature termination of PCR [9]. In order to overcome

Figure 5. Oligos were assembled into a single fragment at the concentration of 0.5 μ M. M,100 bp DNA marker; lane 1-5, products of assembly PCR at the oligos concentrations of 0.5 μ M, 1.0 μ M, 2.0 μ M, 3.0 μ M and 4.0 μ M, respectively.

Figure 6. Assembled oligos was enriched and added with BamHI and NotI restriction sites. M is 100 bp DNA marker. Lane 1: negative control; lane 2: full length protease gene amplified from the assembled oligos.

their limitation, an extra gene fragments synthesis step was added. With this additional step, the length of the synthesized gene can be increased up to 32 kbp though mutations still cannot be eliminated [10]. Since this method involves an extra step, we would like to suggest that this method should only be performed for a long gene for when our method might not be successful.

In our study, we were able to synthesize the 1.1 kbp gene with a lesser number of errors. Gene synthesis has an advantage over long-range PCR and direct cloning in a such way that it requires no template. Besides, a high number of mutations that could arise especially when amplifying long template can be completely avoided. Longer genes have not been tested in this study. However, by following our criteria, it is still possible to synthesize longer genes given that the other methods require complicated optimization including PCR conditions, oligos concentration and design [14]. Besides, the additional gene fragments synthesis step also requires additional works to be performed such as digestion/ligation reaction, DNA purifications, sequencing and analysis, resulting in more laborious works [7,9,10,18]. Nevertheless, our method may not be suitable for a large gene because the number of mutations might increase with the length of the gene though high fidelity polymerase is used. In such cases, mutations may be accumulated to the point of beyond repair.

It was reported that the fragments produced in the first step of SOE need to be further purified before fused to avoid the formation of the secondary products [16]. In this study, secondary products were still formed even though purification has been done indicating that other factors contributed to their formations. However, the band of the desired product was more dominant as it was brighter than the others. The corrected gene was purified and used directly as a template for SOE of another site without the need to subclone. However, when this method was performed on a longer gene, the desired fragments could not be produced (data not shown). The fragment could only be produced when the longer gene was subcloned into a vector. The complexity of DNA structure inherited by longer gene sequences might hinder the direct amplification of this template.

Our method requires less effort and highly reproducible by following our criteria for designing good oligos. In addition, our method also serves as a cheaper alternative to the commercial synthetic gene. This method is also ideal for sequences equal to or less than 1 kbp in length. Furthermore, this method also allows customization of the DNA sequence for the purpose of mutation study or codon modification for optimization of gene expression. Moreover, synthesizing the gene using this method can prevent direct contact with dangerous organisms such as poisonous animals and pathogenic microorganisms. Nonetheless, in a study where even a single nucleotide change must be avoided, this method might not be suitable because in our method, nucleotide change in DNA sequence not only alters the protein it codes, it is required to adjust the properties of the oligonucleotides such as the GC contents and the melting temperatures to the oligonucleotides accommodate assembly. Additionally, this method might also need extra works such as the optimization of the PCR condition and DNA purification step.

Conclusions

Gene synthesis from oligos could be challenging especially for beginners without proper planning and design. In this study, we have listed five criteria for designing a gene as a guide towards more successful gene synthesis. By following these criteria, we successfully produced synthetic *B. bassiana* protease gene using assembly PCR. Thus, the criteria would provide useful guidance for PCR-based gene synthesis. Besides, we have also described the application of SOE for repairing the errors that occurred in the synthesized gene. Even though the technique might have several disadvantages, generally it is acceptable for small genes, simple study and low scale synthesis.

Acknowledgement

This study was funded by Universiti Sains Malaysia under the Research University's grant (RUI) 1001/PPSP/8011025. The first author is supported by the SLAB scholarship from the Ministry of Education, Malaysia.

References

- Xiao G, Ying SH, Zheng P, Wang ZL, Zhang S, Xie XQ, et al. Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci Rep. 2012;2.
- Dhawan M, Joshi N. Enzymatic comparison and mortality of Beauveria bassiana against cabbage caterpillar Pieris brassicae LINN. Braz J Microbiol. 2017;48(3):522–9.
- Gramkow AW, Perecmanis S, Sousa RLB, Noronha EF, Felix CR, Nagata T, et al. Insecticidal activity of two proteases against Spodoptera frugiperda larvae infected with recombinant baculoviruses. Virol J. 2010;7(1):143.
- Stemmer WPC, Crameri A, Ha KD, Brennan TM, Heyneker HL. Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene. 1995;164(1):49–53.
- Zhang P, Ding Y, Liao W, Chen Q, Zhang H, Qi P, et al. A simple, universal, efficient PCR-based gene synthesis method: Sequential OE-PCR gene synthesis. Gene. 2013;524(2):347–54.
- Gao X, Yo P, Keith A, Ragan TJ, Harris TK. Thermodynamically balanced inside-out (TBIO) PCRbased gene synthesis: a novel method of primer design for high-fidelity assembly of longer gene sequences. Nucleic Acids Res. 2003;31(22):e143–e143.
- Young L, Dong Q. Two step total gene synthesis method. Nucleic Acids Res. 2004;32(7):e59–e59.
- Xiong AS, Yao QH, Peng RH, Li X, Fan HQ, Cheng ZM, et al. A simple, rapid, high-fidelity and cost-effective PCRbased two-step DNA synthesis method for long gene sequences. Nucleic Acids Res. 2004;32(12):e98–e98.
- Yang J, Liu L. Codon optimization through a two-step gene synthesis leads to a high-level expression of Aspergillus niger lip2 gene in Pichia pastoris. J Mol Catal B Enzym. 2010;63(3):164–9.
- 10. Reisinger SJ, Patel KG, Santi D V. Total synthesis of

multi-kilobase DNA sequences from oligonucleotides. Nat Protoc. 2006;1(6):2596–603.

- Wu G, Wolf JB, Ibrahim AF, Vadasz S, Gunasinghe M, Freeland SJ. Simplified gene synthesis: A one-step approach to PCR-based gene construction. J Biotechnol. 2006;124(3):496–503.
- Ye H, Huang MC, Li M-H, Ying JY. Experimental analysis of gene assembly with TopDown one-step realtime gene synthesis. Nucleic Acids Res. 2009/03/05. 2009;37(7):e51–e51.
- Sequeira AF, Brás JLA, Guerreiro CIPD, Vincentelli R, Fontes CMGA. Development of a gene synthesis platform for the efficient large scale production of small genes encoding animal toxins. BMC Biotechnol. 2016;16(1):86.
- Shchur V V, Burankova YP, Shapira MA, Klevzhits D V, Usanov SA, Yantsevich A V. Programmed assembly of long DNA synthons: design, mechanism, and online monitoring. Appl Microbiol Biotechnol.

2019;103(21):9103-17.

- Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic acids symposium series. [London]: Information Retrieval Ltd., c1979-c2000.; 1999. p. 95–8.
- Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR. Sitedirected mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989;77(1):51–9.
- Jiang Y, Deng F, Wang H, Hu Z. An extensive analysis on the global codon usage pattern of baculoviruses. Arch Virol. 2008/11/26. 2008;153(12):2273–82.
- Gordeeva TL, Borschevskaya LN, Sineoky SP. Improved PCR-based gene synthesis method and its application to the Citrobacter freundii phytase gene codon modification. J Microbiol Methods. 2010;81(2):147–52.

Name	Sequence (5'-3')	Length	GC(%)	Tm(°C)
SP1	ATAAATATGCGTTTGTCAATAATTGCAGCGGCTTTGCCTTTAGCCATTGC	50	40.0	67.0
SP2	CAGGTTCAACAACGGGAGCTGCAATGGCTAAAGGCAAAGC	40	52.5	68.7
SP3	AGCTCCCGTTGTTGAACCTGCTCCTTTAATTGAAGCGAGA	40	47.5	67.2
SP4	GACAATGTACTTACCCGCTATGGTCTGCCCTCTCGCTTCAATTAAAGGAG	50	48.0	67.6
SP5	TAGCGGGTAAGTACATTGTCAAGCACAAGGACACTGCGACCATTGGTATC	50	44.0	66.9
SP6	ACCTTGGACGCAGCATCCATGATACCAATAGTTGCAGTGT	40	47.5	67.3
SP7	ATGGATGCTGCGTCCAAGGTGCCAAACACAGAATTGGTTTATGAAAAGGT	50	44.0	68.8
SP8	TGGTTAAGAGTGGCACTGAATCCCTTGAGGACCTTTTCATAAACCAATTC	50	42.0	66.5
SP9	TTCAGTGCCACTCTTAACCAAGAACAACTTGACCGCTTACGCCATGATCC	50	48.0	68.9
SP10	ATGGCATCCTGCTCTATTGTTTCAACATCTGGATCATGGCGTAAGCGGTC	50	48.0	68.9
SP11	ACAATAGAGCAGGATGCCATTGTTAGCATCAACGCAGTTGTCAGACAAGC	50	46.0	68.4
SP12	CTAAACCCCAAGGAGCACCTGCTTGTCTGACAACTGCGTT	40	52.5	68.7
SP13	AGGTGCTCCTTGGGGTTTAGGTCGTATTAGTCACCGTGCT	40	52.5	68.7
SP14	ACTGTCATAATCATACGTTGTCGCACCACGAGCACGGTGACTAATACGAC	50	48.0	68.1
SP15	CAACGTATGATTATGACAGTTCGGCAGGTGCTGGTACATGTGTATATGTT	50	42.0	66.1
SP16	TGGGTGGCTGTCGTAGACGCCAGTGTCAATAACATATACACATGTACCAG	50	48.0	68.1
SP17	GCGTCTACGACAGCCACCCAGACTTTGAAGGAAGAGCAAA	40	52.5	68.3
SP18	GAAGTACCAGAGACAAAGGACTTGATCTGCTTTGCTCTTCCTTC	50	44.0	66.2
SP19	TCCTTTGTCTCTGGTACTTCAGATGGTCACGGTCACGGTA	40	50.0	67.1
SP20	TATAGTTCCTGCACAGTGTGTACCGTGACCGTGACCATCT	40	50.0	67.3
SP21	CACACTGTGCAGGAACTATAGGCTCCAAGACTTACGGTGTTGCTAAAAAA	50	44.0	67.1
SP22	TTCGAGTACCTTGACGCCGAAAATGGATGCTTTTTTAGCAACACCGTAAG	50	44.0	67.5
SP23	TCGGCGTCAAGGTACTCGAAGATAGTGGTTCGGGTTCGTT	40	52.5	68.5
SP24	ACAAAGTCCATTCCTGCAATAACACCGCTCAACGAACCCGAACCACTATC	50	48.0	68.9
SP25	ATTGCAGGAATGGACTTTGTCGCTACGGATAGAAAAAGTCGTCCTTGCAG	50	46.0	68.0
SP26	CCAAGACTCATACTTGCTACGGTGCCTTTGCTGCAAGGACGACTTTTTCT	50	48.0	68.9
SP27	GTAGCAAGTATGAGTCTTGGTGGTGGTCACAGTGCAACAGTTAATCAAGC	50	46.0	67.3
SP28	AAGCCTGTAAACGAGCTGCTGCTTGATTAACTGTTGCACT	40	45.0	66.7
SP29	AGCAGCTCGTTTACAGGCTTCGGGTGTTTTTGTAGCAGTA	40	47.5	67.2
SP30	CTATIGICGITGCCIGCIGCTACIGCTACAAAAACACCCCG	40	50.0	66.8
SP31	GCAGCAGGCAACGACAATAGGGATGCAGCACAAACAAGTC	40	52.5	68.4
SP32	TACAGATGGTTCACTTGCTGGACTTGTTTGTGCTGCATCC	40	47.5	66.7
SP33		50	52.0	68.9
SP34		50	46.0	67.3
SP35	GCTTCTCCAACTTTGGAAAAGCTGTTGATATTTTTGCACCTGGCACTGGC	50	46.0	68.4
SP36	AGTACCACCGTTATTCCATGTAGATAAAATGCCAGTGCCAGGTGCGAAAA	50	44.0	68.0
SP3/		50	46.0	66.6
SP38		40	57.5	68.6
SP39		40	55.0	68.6
SP40 SD41		40	50.0	67.0
SP41 SD42		45	48.9	66.9
5P42	AAUUAAUUUUAUIAAUAAUAIIIIIIIGIGGAGAGAGAUUUAUAIAGITTGA	50	40.0	00.1
SP43 SD44		40	52.5 52.4	68.1
SP44	CITATATGCCGCCGTTAAATGCCAGGTAGTTGACGGTGCCTG	42	52.4	68.2

Supplmentary Table 1. Oligos used for the synthesis of the protease gene in this study.

Supplementary Figure 1. The location of the oligos in the gene.

10 	20 .	30 	40 	50 . .	60 7 .	'0 80 '	090 	0 10	0	
<mark>ATAAAT.</mark> TATTTA'	<mark>ATGCO</mark> TACGO	<mark>STTTG</mark> CAAAC	TCAAT AGTTA	TTAA	<mark>GCAGC</mark> CGTCG	GGCTT CCGA/	ITGCC AACGC	CTTTAC GAAAT	GCCAT CGGTA	<mark>TGC</mark> AGCTCCCGTTGTTGAACCTGCTCCTTTAATTGAAGCGAGAGGGCAGACCA \ACGTCGAGGGCAACAACTTGGACGAGGAAATTAACTTCGCTCTCCCGTCTGGT
110	120	130	140	150	160	170	180	190	200	
				. .	.					
TAGCGG ATCGCC	GTAA CATTO	GTACA CATGT	ATTGT AACA	CAAGC TTCG	<mark>ACAA(</mark> TGTTC	<mark>BGACA</mark> C <mark>TGT(</mark>	.CTGC. JACGI	AACTA TGAT	ATTGG' AACCA	<mark>TATCATGGATGCTGCGTCCAAGGTGCCAAACACAGAATTGGTTTATGAAAAGGT TAGTACCTACGACGCAGGTTCCA</mark> CGGTTTGTGT <mark>CTTAACCAAATACTTTTCCA</mark>
210	220	220	240	250	260	270	280	200	200	
210 	220 	230 	240 	250 	200 .	270 !	280	290	500	
CCTCAA	GGGA	TTCAG	TGCC.	ACTCT	TAACO	CAAGA	ACAA(CTTGA	CCGC	TTACGCCATGATCCAGATGTTGAA <mark>ACAATAGAGCAGGATGCCATTGTTAGCATC</mark>
GGAGII	CCCI	AGIU	ACGG	TGAGA	IATIG	51 ICI	IGIIC	jaa <mark>ci</mark>	GGCG	AATGCGGTACTAGGTCTACAACITTGTTATCTCGTCCTACGGTA
310	320	330	340	350	360	370	380	390	400	
				. . <mark>CACC</mark>	.		CCTT	TACCI	CCTA	TTACTCACCCTCCTCCTCCCACAACCTATCATTATCACACTTCCCCACCTC
ITGCGT	CAAC	AGTCT	GTTC	GTCCA	CGAG	GAACC	CCAA	ATCCA	GCATA	ATCAGTGGCACGAGCACCACGCTGTTGCATACTATACTGCAGTCGCAGGCGCGCCACG
	100	100				150	100	10.0		
410	420	430	440	450	460	470	480	490	500	
CTGGTA	CATG	FGTAT	ATGT	ATTG.	ACACT	'G <mark>GCG'</mark>	ГСТАС	GACA	GCCAC	CCAGACTTTGAAGGAAGAGCAAAGGCAGATCAAGTCCTTTGTCTCTGGTACTTC
GACCAT	GTAC	ACATA	TACA	ATAAC	TGTGA	CCGC	AGATO	GCTGT	CGGT	GGCI CTGAAACTTCCTTCTCGTTTCGTCTAGTTCAGGAAACAGAGACCATGAAG
510	520	530	540	550	560	570	580	590	600	
				. .	.					
AGATGG	ACTC	GGTCA	CGGT	ACACA	CTGT	GCAGG	AACT	ATAGO	GACC	AAGACTTACGGTGTTGCTAAAAAAGCATCCATTT <mark>TCGGCGTCAAGGTACTCGAA</mark>
ICTACE.	AGIG	CAGI	GUUA	19191	GACAU		IIGA		GAGG	IICI <mark>GAAIGUACAAAGAIIIIIIIGIAGGIAAAAGUUGUAGIICUAIGAGUII</mark>
610	620	630	640	650	660	670	680	690	700	
		 CCCC1	 [TCCT	. . <mark>T</mark> CACC	. 'ССТС'	 TT <mark>ATT</mark>	CCAC	CAATO	CACT	TTETCECTACCEATACAAAAACTCCTCCTCCACCAACCACCCCCACC
CTATCA	CCAA	GCCCA	AGCA	ACTCG	CCAC/	ATAA	CGTC	CTTAC	CTGAA	ACA GCGATGCCTA TCTTTTTCAGCAGGAACGTCGTTTCCGTGGCATCGTTCAT
710	720	730	740	750	760	770	780	790	800	
				. .						
IGAGTC	TTGG	FGGTG	GTCA	CAGTO	CAAC	AGTTA	ATCA	AGC <mark>AC</mark>	CAGC	TCGTTTACAGGCTTCGGGTGTTTTTGTAGCAGTA <mark>GCAGCAGGCAACGACAATAG</mark>
AUTUAG	AACC	AUCAU	CAGI	GICAU	GIIGI	CAAL	IAGII	CGIU	GIUGA	IGUAAA IGIUUGAA GUUCAUAAAAA CA IUGIUA IUGIUGIUGI IGUIGI IA IU
810	820	830	840	850	860	870	880	890	900	
		 САЛАС		. <mark>ССАС(</mark>	.		ATCT	CTATC	CACA	<u>ΡΤΟΟΓ Α Ο ΓΤΑ Ο Α Ο ΤΟΟΤΟΤΟ Α Ο</u> ΟΟΤΟ Α ΤΤΟΤ Α <mark>Ο ΟΤΤΟΤΟΓ Α Α ΟΤΤΤΟΟ Α Α Α</mark>
CCTACG	TCGT(GTTTG	TTCA	GTCG	TTCAC	TTGG	FAGAC	CATAC	GTGTC	CAGCCTCGATGTCTGAGCAGACTGGCAGTAAGATCGAAGAGGTTGAAAACCTTTT
910	020	030	940	950	960	970	080	000	1000	
)40 		.			770	1000	
GCTGTT	GATA	TTTT	GCACO	TGGC	ACTGG	CATTI	TATC	TA <mark>CA</mark>	IGGAA	TAACGGTGGTACTAATACCATCTCGGGTACGAGTATGGCTACTCCTCACATTG
CGACAA	CIGI	AAAAG	icgig	GACCU	FIGAC	CGTAA	AATA	GATG	ACCT	<mark>TA FIGULAULA IGA</mark> TTA IGGTAGA <mark>GCCCA IGCICA IACUGA IGAGGAGIGIAAC</mark>
1010	1020	103	0 104	0 10	50 10	60 10	070 1	080	1090	1100
				. .				TACAC		
GTCCAG	AGCC	ACGTA	ACCT	AAACO	CGAGA	GCCAT	TCCC	ATGTO	CAGG	TAACCCCTGTCAAACTATCTGGACTCTCTCCACAAAAAA ATTGGGGACAGTTTGATAGACCTGAGAGAGGGGTGTTTTTTACAAGAATGACCGCA
1110	1120	113	0 114	0						
TCCTTC			CAAC	LACCT	CCAT	CTTAA (reeco	CCAT		2

ACCHICAGGCACCGTCAACTACCTGGCATTTTAACGCCGCCGCATATAAG AGGAAGTCCGTGGCAGTTGATGGACCGTAAATTGCCGCCGTATATTC Supplementary Figure 2. The alignment of the expected sequence with the DNA sequence of the synthesised gene. The primer target sites were highlighted with yellow while the mutated sequences were highlighted with blue.

10 20 30 40 50 60 70 80 90 100 ATAAATATGCGTTTGTCAATAATTGCAGCGGCTTTGCCTTTAGCCATTGCAGCTCCCGTTGTTGAACCTGCTCCTTTAATTGAAGCGAGAGGGCAGACCA

120 130 140 150 160 170 180 190 200

TAGCGGGTAAGTACATTGTCAAGCACAAGGACACTGCAACTATTGGTATCATGGATGCTGCGTCCAAGGTGCCAAACACAGAATTGGTTTATGAAAAGGT TAGCGGGTAAGTACATTGTCAAGCACAAGGACACTGCAACTATTGGTATCATGGATGCTGCGTCCAAGGTGCCAAACACAGAATTGGTTTATGAAAAGGT

220 230 240 250 260 270 280 290 300

CCTCAAGGGATTCAGTGCCACTCTTAACCAAGAACAACTTGACCGCCATGATCCAGATGTTGAAACAATAGAGCAGGATGCCATTGTTAGCATC CCTCAAGGGATTCAGTGCCACTCTTAACCAAGAACAACTTGACCGCCTTACGCCATGATCCAGATGTTGAAACAATAGAGCAGGATGCCATTGTTAGCATC

340 350 360 370 380 390 400 330 310 320 and a second sec AACGCAGTTGTCAGACAAGCAGGTGCTCCTTGGGGGTTTAGGTCGTATTAGTCACCGTGCTCGTGGTGCGACAACGTATGATTATGACAGTTCGGCAGGTG

420 430 440 450 460 470 480 490 500 410 ..|...

510 520 530 540 550 560 570 580 590 600 AGATGGTCACGGTCACGGTACACACTGTGCAGGAACTATAGGCTCCAAGACTTACGGTGTTGCTAAAAAAGCAT<mark>CCATTTTCGGCGTCAAGGTACTCGAA</mark>AGATGGTCACGGTACACACTGTGCAGGAACTATAGGCTCCAAGACTTACGGTGTGCTAAAAAAGCATCCATTTTCGGCGTCAAGGT

610 620 630 640 650 660 670 680 690 700

and and a second s GATAGTGGTTCGGGTTCGTTGAGCGGTGTTATTGCAGGAATGGACTTTGTCGCTACGGATAGAAAAAGTCGTCCTTGCAGCAAAGGCACCGTAGCAAGGA

720 730 740 750 760 770 780 790 800

830 840 850 860 870 880 890 900 820 810

GGATGCAGCACAAACAAGTCCAGCAAGTGAACCATCTGTATGCACAGTCGGAGCTACAGACTCGTCTGACCGTCATTCTAGCTTCTCCAACTTTG<mark>GA</mark>

GGATGCAGCACAAACAAGTCCAGCAAGTGAACCATCTGTATGCACAGTCGGAGCTACAGACTCGTCTGACCGTCATTCTAGCTTCTCCAACTTTGGAAAA

GCTGTTGATATTTC GCACCTGGCACTGGCATTTTATCTACATGGAATAACGGTGGTACTAATACCATCTCGGGTACGAGTATGGCTACTCCTCACATTG

1010 1020 1030 1040 1050 1060 1070 1080 1090 1100

CAGGTCTCGGTGCATACCTTTTTGGCTCTCGGTAAGGGTACAGCAGGTAACCCCCTGTCAAACTATCTGGACTCTCTCCACAAAAATGTTCTTACTGGCGT

1110 1120 1130 1140

TCCTTCAGGCACCGTCAACTACCTGGCATTTAACGGCGGCATA-TAAG

TCCTTCAGGCACCGTCAACTACCTGGCATTTAACGGCGGCATA