Evaluation of MLH1 and MSH2 Gene Mutations in a Subset of Iranian Families with Hereditary Nonpolyposis Colorectal Cancer (HNPCC)

M. Salehi,1 S. Amani,1,2 S. Javan,3 M.H. Emami,2,4 M.R. Salamat,5 and M.R. Noori Daloii6,*

1Department of Genetics, Medical School, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
2Poursina Hakim Research Center, Bozorgmehr Avenue, Isfahan, Islamic Republic of Iran
3Medical Immunology Section, Central Diagnosis Lab. Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
4Department of Internal Medicine, Medical School, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
5Department of Medical Engineering, Medical School, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
6Department of Medical Genetic, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran

Received: 9 August 2008 / Revised: 5 November 2008 / Accepted: 24 December 2008

Abstract

Hereditary nonpolyposis colorectal cancer is the most common form of hereditary colorectal cancers accounting for 5 to 10% of all colon carcinoma. It is inherited in an autosomal dominant mode and caused by hereditary mutations in mismatch repair genes (MMR) chiefly MLH1 and MSH2. The lifetime risk of colon cancer in affected persons is 80%. Screening, prevention strategies and consequently treatment options will be improved by understanding of the genetic basis of this disorder. The aim of this study was to assess mutations in MLH1 and MSH2 genes in a subset of Iranian HNPCC patients. The families that fulfill Amsterdam criteria were selected as HNPCC families. Genomic DNA was extracted from the peripheral blood of the samples and mutations of MLH1 and MSH2 were detected by PCR-single strand conformation polymorphism (PCR-SSCP) and DNA sequencing techniques. Hereditary mutations were found in 20 cases. Of these mutations, 14 were found in MLH1 and 6 in MSH2 genes thus MLH1 gene had higher mutation rate than MSH2. Eighteen out of 20 detected mutations in our population were previously reported and two were novel. Our results demonstrated that mutation range as well as genes involved in HNPCC is different from one region to other and characterizing mutations could be very helpful in diagnosis of the at risk individuals.

Keywords: HNPCC; Lynch syndrome; MSH2; MLH1; Iran

Introduction

Colorectal cancer (CRC) is the second leading cause of cancer death in the United States and the sixth or seventh cause of cancer death in the developing countries (1, 2). CRC is shown in three specific figures including, sporadic, familial and inherited. Nearly 10% of the patients have an inherited predisposition to colon
cancer (3). Hereditary nonpolyposis colorectal cancer (HNPCC) and Familial Adenomatous Polyposis (FAP) are two forms of the hereditary colorectal cancers (4-6).

HNPCC or Lynch syndrome is the most common form of hereditary colorectal cancers accounts for 5 to 10% of entire colorectal cancer population and inherited in an autosomal dominant manner (7-13). Based on previous studies in our country clinical diagnosis of HNPCC was observed in 4.7% of probands in Tehran Province (14).

This syndrome is characterized by an early age of onset of CRC (average age 45 years) which is earlier than the age of CRC in general population, proximal predominance of colorectal cancer, multiple synchronous or metachronous primary tumors and tendency to have multiple extra colonic cancers. Carcinomas of some part of the body such as endometrium, gastric, small bowel, pancreas, hepatobiliary tract, brain as well as transitional carcinoma of the ureter, renal pelvis and skin lesions are the most common of these extra colonic cancers (15-20). Affected women may have up to 60% lifetime risk of endometrial cancer, although their risk of CRC tends to be lower than the affected males (21).

Unlike FAP, which is characterized by hundreds of polyps in the colon there is no dependable clinical sign for HNPCC diagnosis, so Amsterdam criteria was proposed by the international collaborative group on HNPCC in 1990. In fact these criteria were developed to facilitate genetic analysis in high-risk families and to allow identical worldwide studies. According to these criteria there should be at least 3 relatives with colorectal cancer. All of the following criteria should also be present: 1- One should be a first degree relative of the other two, 2- At least two successive generations should be affected, 3- At least one colorectal cancer should be diagnosed before the age of 50 (22-23). Since these criteria are strict and exclude small families, alternatives such as the modified Amsterdam, Amsterdam II and Bethesda criteria have been developed (24).

HNPCC is associated with germline mutations in genes coding for DNA mismatch repair (MMR) proteins. MSH2 on chromosome 2p16 and MLH1 at 3p21 are frequently affected MMR proteins. Rare mutations are also found in MSH6 on chromosome 2p16, PMS1 and PMS2 at 2p3 and 7p11 respectively (25-28).

Predictive genetic testing for HNPCC offers the occasion to identify whether an asymptomatic person inherited the genetic predilection and therefore is useful for removing the doubt about the carries status. Furthermore Identification of mutations in MMR genes facilitates genetic testing of at risk relatives and thus an objective evaluation of their lifetime cancer risk and participation in severe surveillance programs. Lifetime risk for patients with MMR gene mutations is over 80% therefore, intensive medical follow-up is recommended and regular surveillance reduces morbidity and mortality from colon cancer. For individuals who did not inherit mutation intensive medical follow-up is not necessary (29-31).

This study was performed to evaluate the germline mutations of MLH1 and MSH2 in a group of Iranian HNPCC families.

Materials and Methods

Patient Samples

Referred patients and families to CRC clinic were classified as HNPCC group according to the Amsterdam criteria. After genetic counseling written informed consent was obtained from each patient. Five ml blood was obtained from each sample and DNA extracted using salting out method as described previously (32).

PCR Amplification

Extracted DNA was PCR amplified using specific primers for each exon of MSH2 and MLH1 genes (33). All PCR amplification was performed in 25 µl volume containing 1.2 µl (50-100 ng) template DNA, 1.5 mM MgCl₂, 0.2 mM dNTP, 0.2 µM R-primer, 0.2 µM F-primer, and 0.2 µl of 5U/µl Taq DNA polymerase. PCR cycles included initial denaturation at 95°C for 5 minutes followed by 32 cycles of 95°C for 1 minute, 58°C for 1 minute, 72°C for 1 minute and final extension at 72°C for 10 minutes. Annealing temperature was different in each PCR amplification depending on primer set.

SSCP Analysis and Sequencing

Prior to loading on Non-denaturating polyacrylamide gel, PCR products were heated to 95°C for 4 minutes to denature the ampiclons and then quenched on ice. Electrophoresis was performed at 20 mA for 18 h at room temperature. The ratio of acrylamide: bisacrylamide in Non-denaturing polyacrylamide gel containing 10% glycerol was 30:0.8. After electrophoresis the DNAs on the gel were detected by silver staining using standard methods. The nucleotide sequences of the PCR products that showed an abnormal electrophoretic mobility on SSCP gel were determined using direct sequencing, (Gene Fanavaran Company; Tehran, Iran).
Results

In this study we searched for mutations in the MLH1 and MSH2 genes in 32 HNPCC Iranian families by PCR-SSCP method.

Germline mutations of MLH1 and MSH2 genes were identified in 20 samples (62.5%). Of these, 14 mutations were found in MLH1 (70%) and 6 in MSH2 (30%) genes. Nonsense mutation in exon 8 of MLH1 gene at position 694 was detected in two patients. In addition 7 nonsense and 5 missense mutations were also detected in MLH1 gene. Four of the detected MSH2 gene mutations were reported previously, including 3 missense and 1 nonsense mutations, and 2 were novel.

The novel mutations were T deletion at 2586 and G deletion at 2556 in exon 15 of MSH2 gene.

Mutations were detected on a non-denaturating gel by analyzing migration patterns due to the conformational variability of single-stranded DNA and sequencing. Figure 1 represents an example of the SSCP gels that was detected a potential mutation in exon 15 of the MLH1 gene.

Figure 2 represents sequencing results of the differentially migrated bands, in which one of the novel mutations in MSH2 gene is demonstrated. The results of the detected mutations are summarized in Table 1.

Discussion

In a group of distinct inherited syndromes, germline mutations result in an autosomal dominant disorder with a remarkable tendency for colorectal cancer named hereditary nonpolyposis colorectal cancer (HNPCC) (9). HNPCC is caused by germline mutations in the mismatch repair (MMR) genes including, MSH1, MSH2, MSH6, PMS1 and PMS2. Of these, MSH2 and MLH1 have been related with the enormous majority of HNPCC families (34, 21).

A better understanding of the molecular basis of hereditary nonpolyposis colorectal cancer syndrome would have deep consequences for both the diagnosis and treatment of (pre)malignant neoplastic lesions (35).

Identification of mutations in MMR genes enables at risk relatives to be informed about their cancer risks and to benefit from intensive surveillance programs that have been proven to reduce their overall mortality by 65% (36).

In this study we examined MLH1 and MSH2 gene mutations among a group of Iranian families affected by HNPCC.

We detected 20 mutations, 6 of them in MSH2 and 14 in MLH1 genes. The mutation rate in our study population (62.5%) was higher in comparison with some other studies. For example the mutation rate in a survey on Taiwanese hereditary non-polyposis colorectal population was lower than our study. The mutation rate of MSH2 and MLH1 genes in that study was 0% and 20% respectively. In that study 72 Taiwanese affected individual that fulfilled Amsterdam criteria had been analyzed using RNA and DNA based methods (37). It seems that the observed differences in mutation frequencies in these studies are probably because of geographical or genetic differences between two populations.

The ratio of mutations is different between MLH1 and MSH2 genes in various countries. In our population the MLH1 gene had higher mutation rate than MSH2 gene (70% in MLH vs. 30% in MSH2 gene). Same as our study, mutation rate in MLH1 (32%) gene has been reported to be higher than MSH2 (8%) in HNPCC families in Brazil (16). The rate of mutations in MLH1...
Table 1. The detected MLH1 and MSH2 genes mutations in our subset of HNPCC families

<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Exon</th>
<th>Position</th>
<th>Nucleotide change</th>
<th>Protein change</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLH1</td>
<td>15</td>
<td>1693</td>
<td>A>T</td>
<td>p.Ile565Phe</td>
</tr>
<tr>
<td>MLH1</td>
<td>15</td>
<td>1721</td>
<td>T>C</td>
<td>p.Leu547Pro</td>
</tr>
<tr>
<td>MLH1</td>
<td>19</td>
<td>2135</td>
<td>G>A</td>
<td>p.Trp712X</td>
</tr>
<tr>
<td>MLH1</td>
<td>19</td>
<td>2142</td>
<td>G>A</td>
<td>p.Trp714X</td>
</tr>
<tr>
<td>MLH1</td>
<td>19</td>
<td>2146</td>
<td>G>A</td>
<td>p.Val716Met</td>
</tr>
<tr>
<td>MLH1</td>
<td>3</td>
<td>230</td>
<td>G>A</td>
<td>p.Cys77Tyr</td>
</tr>
<tr>
<td>MLH1</td>
<td>3</td>
<td>265</td>
<td>G>T</td>
<td>p.Glu89X</td>
</tr>
<tr>
<td>MLH1</td>
<td>2</td>
<td>184</td>
<td>C>T</td>
<td>p.Gln62X</td>
</tr>
<tr>
<td>MLH1</td>
<td>17</td>
<td>1988</td>
<td>A>G</td>
<td>p.Glu663Gly</td>
</tr>
<tr>
<td>MLH1</td>
<td>8</td>
<td>649</td>
<td>C>T</td>
<td>p.Arg217Cys</td>
</tr>
<tr>
<td>MLH1</td>
<td>8</td>
<td>649</td>
<td>C>T</td>
<td>p.Arg217Cys</td>
</tr>
<tr>
<td>MLH1</td>
<td>6</td>
<td>506</td>
<td>C>T</td>
<td>p.Pro169Leu</td>
</tr>
<tr>
<td>MLH1</td>
<td>3</td>
<td>265</td>
<td>G>T</td>
<td>p.Glu89X</td>
</tr>
<tr>
<td>MLH1</td>
<td>12</td>
<td>1151</td>
<td>T>A</td>
<td>p.Val384Asp</td>
</tr>
<tr>
<td>MSH2</td>
<td>13</td>
<td>2011</td>
<td>A>T</td>
<td>p.Asn671Tyr</td>
</tr>
<tr>
<td>MSH2</td>
<td>12</td>
<td>2038</td>
<td>C>T</td>
<td>p.Arg680X</td>
</tr>
<tr>
<td>MSH2</td>
<td>13</td>
<td>2071</td>
<td>dupA</td>
<td>p.Ile691Asn6sX8</td>
</tr>
<tr>
<td>MSH2</td>
<td>12</td>
<td>1939</td>
<td>G>T</td>
<td>p.Glu647X</td>
</tr>
<tr>
<td>MSH2</td>
<td>15</td>
<td>2586</td>
<td>Tdel</td>
<td>Frame shift</td>
</tr>
<tr>
<td>MSH2</td>
<td>15</td>
<td>2556</td>
<td>Gdel</td>
<td>Frame shift</td>
</tr>
</tbody>
</table>

were reported only once previously (38, 39). Other detected mutations in this study have been recorded frequently from other places (42).

These differences in frequency of mutations also have been observed in MSH2 gene (43, 44).

From our results as well as others it can be concluded that mutation range and genes involved in HNPCC is unique in each region and knowing this spectrum is very important in diagnosis of at risk individuals in HNPCC families.

Acknowledgment

This work was funded by the Deputy for Research, Isfahan University of Medical Sciences. We also would like to thank Poursina Hakim Research Center for their help and support.

References

