Document Type : Final File

Authors

1 Department of Geology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Islamic Republic of Iran

2 Department of Mining Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Islamic Republic of Iran

3 Department of Geology, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Islamic Republic of Iran

Abstract

The study area is located in Jabal-Barez Ranges, southeastern part of Kerman Copper Belt (KCB), where the porphyry copper mineralization such as Kerver occurs. This article deals with the enhancement of hydrothermal alteration minerals for exploration of porphyry Cu mineralization, and differentiates intense hydrothermal alteration zones from those with low intensity. Shortwave Infrared (SWIR) bands of ASTER data were used for mineral enhancement. The spectra of representative alteration mineral assemblages consisting of sericite + illite, kaolinite + montmorillonite and epidote + chlorite were extracted from SWIR bands of ASTER. The spectra were applied for mineral discrimination using Mixture Tuned Matched Filtering (MTMF) technique. The image processing results were verified using field observation, spectral measurements, thin section and X-ray diffraction studies of the samples. Findings exhibit ASTER capability to discriminate different alteration zones. Findings also significantly show the role of MTMF algorithm as a useful technique for mineral exploration.   

Keywords

Main Subjects

1. Abrams M., Tsu H., Hulley G., Iwao K., Pieri D., Cudahy T. and Kargel J. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) after fifteen years: Review of global products. Int. J. Appl. Earth Obs., 38: 292-301 (2015).
2. Aramesh Asl R., Afzal P., Adib A. and Yasrebi A.B. Application of multifractal modeling for the identification of alteration zones and major faults based on ETM+multispectral data. Arab. J. Geosci., 8(5): 2997-3006 (2015).
3. Tommaso I.D. and Rubinstein N. Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina. Ore Geol. Rev., 32(2): 275-290 (2007).
4. Crosta A.P., DE Souza Filho C.R., Azevedo F. and Brodie C. Targeting key alteration minerals in epithermal deposit in Patagonia, Argentina, using ASTER imagery and principal component analysis. Int. J. Remote Sens., 10(21): 4233-4240 (2003).
5. Amer R., Mezayen A. and Hasanein M. ASTER spectral analysis for alteration minerals associated with gold mineralization. Ore Geol. Rev., 75: 239-251 (2016).
6. Tangestani M.H., Mazhari N., Agar B. and Moore F. Evaluating Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data for alteration zone enhancement in a semi-arid area, northern Shahr-e-Babak, SE Iran. Int. J. Remote Sens., 29(10): 2833-2850 (2008). 
7. Tangestani M.H. and Moore F. Comparison of three principal component analysis techniques to porphyry copper alteration mapping a case study in Meiduk area, Kerman, Iran. Can. J. Remote Sens., 27(2): 176–182 (2001).
8. Maroufi K., Hezarkhani A. and Asadzadeh S. Mapping the alteration footprint and structural control of Taknar IOCG deposit in east of Iran, using ASTER satellite data. Int. J. Appl. Earth Obs., 33: 57-66 (2014).
9. Shafiei B., Haschke M. and Shahabpour J. Recycling of OrogenicArc Crust Triggers Porphyry Cu Mineralization in Kerman Cenozoic Arc Rocks, Southeastern Iran. Miner Deposita 44: 265–283 (2009).
10. Yousefi S.J., Ranjbar H., Alirezaei S., Dargahi S. and Lentz D.R. Comparison of hydrothermal alteration patterns associated with porphyry Cu deposits hosted by granitoids and intermediate-mafic volcanic rocks, Kerman Magmatic Arc, Iran: Application of geological, mineralogical and remote sensing data. J Afr Earth Sci., 146: 112-123 (2018).
11. Mars J.C. Regional Mapping of Hydrothermally Altered Igneous Rocks Along the Urumieh–Dokhtar, Chagai, and Alborz Belts of Western Asia Using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Data and Interactive Data Language (IDL) Logical Operators — A Tool for Porphyry Copper Exploration and Assessment. U.S. Geological Survey. Sci. Inv. Rep., 2010–5090-O: 36 (2014).
 
12. Moradi M., Basiri S., Kananian A. and Kabiri K. Fuzzy logic modeling for hydrothermal gold mineralization mapping using geochemical, geological, ASTER imageries and other geo-data, a case study in Central Alborz, Iran. Earth Sci. Inform., 8: 197-205 (2015).
13. Zarasvandi A., Liaghat S. and Zentilli M. Geology of the Darreh-Zerreshk and Ali-Abad porphyry copper deposits, Central Iran. Int. Geol. Rev., 47(6): 620-646 (2005).
14. McInnes B.I.A., Evans N.J., Belousova E. and Griffin W.L. Porphyry Copper Deposits of the Kerman Belt, Iran: Timing of Mineralization and Exhumation Processes. CSIRO Scientific Research Report, 41 (2003).
15. Yousefi S.J., Ranjbar H., Alirezaei S. and Dargahi S. Discrimination of Sericite Phyllic and Quartz-rich Phyllic Alterations by Using a Combination of ASTER TIR and SWIR Data to explore Porphyry Cu Deposits Hosted by Granitoids, Kerman Copper Belt, Iran. J. Indian Soc. Remote Sens., doi.org/10.1007/s12524-017-0745-z.
16. Richards J.P., Spell T., Rameh E., Razique A. and Fletcher T. High Sr/Y Magmas Reflect Arc Maturity, High Magmatic Water Content, and Porphyry Cu ± Mo ± Au Potential: Examples from the Tethyan Arcs of Central and Eastern Iran and Western Pakistan. Econ. Geol., 107: 295–332 (2012).
17. Atapour H. Geochemistry and Metallogenic of Igneous Rocks in Dehaj–Sardoieh Belt, Kerman, Iran. Ph.D. Thesis, Shahid Bahonar University of Kerman, Kerman: 280 (2007).
18. Tayebi M., Tangestani M., Vincent R. and Neal D. Spectral properties and ASTER-based alteration mapping of Masahim volcano facies, SE Iran. J. Volcanol. Geoth. Res., 287: 40-50 (2014).
19. Zoheir B. and Emam A. Field and ASTER imagery data for the setting of gold mineralization in Western Allaqi–Heiani belt, Egypt: A case study from the Haimur deposit. J. Afr. Earth Sci., 99(1): 150-164 (2014). 
20. Son Moon Y.S., Kang K. and Yoon W.J. Lithological and mineralogical survey of the Oyu Tolgoi region, Southeastern Gobi, Mongolia using ASTER reflectance and emissivity data. Int. J. Appl. Earth Obs., 26: 205-216 (2014). 
21. Laeiq A., Tahir S. and Khan S.D. Reflectance spectroscopy and remote sensing data for finding sulfide-bearing alteration zones and mapping geology in Gilgit-Baltistan, Pakistan. Earth Sci. Inform., 9(1): 113-121 (2016).
22. Mundt J.T., Streutker D.R. and Glenn N.F. Partial Unmixing of Hyperspectral Imagery: Theory and methods. ASPRS Annual Conference Tampa, Florida, 1-12 (2007).
23. Eldosouky A.M., Abdelkareem M. and Elkhateeb S. Integration of remote sensing and aeromagnetic data for mapping structural features and hydrothermal alteration zones in Wadi Allaqi area, South Eastern Desert of Egypt. J. Afr. Earth Sci., 130: 28-37 (2017).
24. Valeh N., Pazirandeh M., Tehrani K. and Mitrovie R. Geological map of Jabal-Barez, (1:100000), Geological survey of Iran: Sheet 7647 (1973).