Document Type: Final File

Authors

1 Department of Geology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Islamic Republic of Iran

2 Research Institute for Earth Sciences, Geological Survey of Iran, Meraj Ave., Azadi Sq., Tehran, Islamic Republic of Iran

3 Department of Geosciences, Geobiotec Research Unit, University of Aveiro, 3810-193 Aveiro, Portugal

Abstract

The Hezar Igneous Complex (HIC) in the south-eastern part of Urumieh-Dokhtar magmatic arc, is the most prominent magmatic feature in the Kerman Porphyry Copper Belt, that understanding magmatic evolution of which may shed light on the tectonomagmatic development of this less-studied part of an important magmatic arc in the Neotethys realm. The HIC has been developed in the the intersection of the NS-striking Sabzevaran fault and the NW-SE striking Rafsanjan-Rayen fault. It is indicated that the possible place of the conduit and vent is in Jalas Mountain which has been splitted later by the Sabzevaran fault into Minor and Major Jalas. The current summit had been constructed by ascending magma chamber under the HIC that constitutes the Kamali Mountain at the south of the summit. Some plutonic rocks of the HIC are exposed at Kamali Mountain. The subalkaline rocks of this complex mainly are composed of different pyroclastic and lava flow rocks, acidic to basic in composition, showing the evidences of fractional crystallization and mineral segregation. Sequential explosive and effusive eruptions with Strombolian to Vulcanian types are evident  in the successive volcanic layers. The compositional trend shows   the melting of spinel lherzolite, not garnet lherzolite. The subduction-related mechanism of the magma genesis has been indicated by IAB nature of the magma formation in geochemical diagrams.  

Keywords

Main Subjects

1.  Shafiei B. Lead isotope signatures of the igneous rocks and porphyry copper deposits from the Kerman Cenozoic magmatic arc (SE Iran) and their magmatic-metallogenetic implications. Ore. Geol. Rev. 38: 27–36 (2010).

‏2. Chiu H. Y., Chung S. L., Zarrinkoub M. H., Mohammadi S. S., Khatib M. M., and Iizuka Y. Zircon U–Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos. 162–163: 70–87 (2013).

3. Kananian A., Sarjoughian F., Nadimi A., Ahmadian J. and Ling W. Geochemical characteristics of the Kuh-e Dom intrusion, Urumieh–Dokhtar Magmatic Arc (Iran): Implications for source regions and magmatic evolution. J. Asian Earth Sci. 90: 137–148 (2014).

‏4.  Mirzaie A., Bafti S. S. and Derakhshani R. Fault control on Cu mineralization in the Kerman porphyry copper belt, SE Iran: A fractal analysis. Ore Geol. Rev. 71: 237–247 (2015).

‏5.  Alimohammadi M., Alirezaei S. and Kontak D. J. Application of ASTER data for exploration of porphyry copper deposits: A case study of Daraloo–Sarmeshk area، southern part of the Kerman copper belt، Iran. Ore Geol. Rev. 70: 290–304 (2015).

‏6.  Omrani J, Agard P, Whitechurch H, Benoit M, Prouteau G and Jolivet L. Arc-magmatism and subduction history beneath the Zagros Mountains، Iran: A new report of adakites and geodynamic consequences. Lithos. 106: 380–398 (2008).

‏7.  Richards J. P. Tectonic, magmatic and metallogenic evolution of the Tethyan orogen: From subduction to collision. Ore Geol. Rev. 70: 323–345 (2015).

‏8.  Zarasvandi A., Rezaei M., Raith J., Lentz D., Azimzadeh A.M. and Pourkaseb H. Geochemistry and fluid characteristics of the Dalli porphyry Cu–Au deposit، Central Iran. J. Asian Earth Sci. 111: 175–191 (2015).

‏9.  Zarasvandi A., Rezaei M., Sadeghi M., Lentz D., Adelpour M. and Pourkaseb H. Rare earth element signatures of economic and sub-economic porphyry copper systems in Urumieh–Dokhtar Magmatic Arc (UDMA) Iran. Ore Geol. Rev. 70:407–423 (2015).

‏10. Agard P., Omrani J., Jolivet L. & Mouthereau F. Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. Int. J. Earth Sci. 94: 401–419 (2005).

11. Chiu H. Y., Chung S. L., Zarrinkoub M. H., Mohammadi S. S., Khatib M. M., and Iizuka Y. Zircon U–Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos 162-163: 70–87 (2013).

‏12. Hosseini M. R., Hassanzadeh J., Alirezaei S., Sun W. & Li C.Y. Age revision of the Neotethyan arc migration into the southeast Urumieh-Dokhtar belt of Iran: Geochemistry and U–Pb zircon geochronology. Lithos 284–285: 296–309 (2017).

13. Hosseini M. R., Ghaderi M., Alirezaei S. & Sun, W. Geological characteristics and geochronology of the Takht-e-Gonbad copper deposit، SE Iran: A variant of porphyry type deposits. Ore Geol. Rev. 86: 440–458 (2017).

‏14. Niktabar S. M., Moradian A., Ahmadipour H., Santos J. F. and Mendes M. H. Petrogenesis of Lalehzar granitoid intrusions (Kerman Province- Iran). J. Sci. 26 (4): 333-348 (2016).

‏15. Khajehjavaran Z. Petrology, geochemistry and petrogenesis in the western part of Hezar complex (Southwest of Rayen Kerman province). MSc. Thesis (Shahid Bahonar University of Kerman, 2010).

16. Maleki L. Petrology and volcanology of Hezar complex (southwest of Rayen- Kerman province). MSc. Thesis (Shahid Bahonar University of Kerman,  2004).

17. Dimitrijevic M. D. Geology of Kerman Region. (Geological Survey of Iran, 1973).

‏18. Noorizadeh M., Moradian A., Ahmadipour H. and Ghassemi M. R. Analysis of Geotourism Strategies in Rayen- Kerman Using SWOT method. in The 2nd National Conference on Iranian Tourism and Ecotourism (2013).

19. Noorizadeh M., Moradian A., Ahamadipour H. and Ghassemi M. R. Description and Classification of Geotourism Capabilities of the Ancient City- Rayen- Kerman Province. in The 1st Conference on Tourism, National Wealthand Future Perspectices (2015).

20. Sa,adat A., Soltanpour A. and Seddighi M. Measurement of the minimum gravity of Iran. in Geomatics 88: 11 (2009).

‏21. Noorizadeh M., Moradian A., Ahmadipour H. and Ghassemi M. R. Structural and Petrographic Evidence of Alteration around the Hezar Volcanic Complex (South of Kerman- Iran). in The 1st International Congress on Earth Sciences (2014).

22. Winter J. Introduction to Igneous and Metamorphic Petrology Prentice-Hall Inc. Up. Saddle River N. J. 7458 (2001).

23. Winchester J. and Floyd P. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 20: 325–343 (1977).

24. Pearce J. A. Role of the sub-continental lithosphere in magma genesis at active continental margins. 230-249 (1983).

25. Whitford D., Korsch M., Porritt P. and Craven S. Rare-earth element mobility around the volcanogenic polymentallic massive sulfide deposit at Que River, Tasmania, Australia. Chem. Geol. 68: 105–119 (1988).

‏26. Nude P.M., Kwayisi D., Taki N.A., Kutu J.M., Anani C.Y., Banoeng-Yakubo B., Asiedu D.K. Petrography and chemical evidence for multi-stage emplacement of western Buem volcanic rocks in the Dahomeyide orogenic belt، southeastern Ghana, West Africa. J. Afr. Earth Sci. 112,Part A: 314–327 (2015).

27. Béguelin P., Chiaradia M., Beate B. and Spikings R. The Yanaurcu volcano (Western Cordillera، Ecuador): A field, petrographic, geochemical, isotopic and geochronological study. Lithos 218: 37–53 (2015).

‏28. Pearce J. A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100: 14–48 (2008).

29. Dilek Y. and Furnes H. Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geol. Soc. Am. Bull. 123: 387–411 (2011).

30. Dilek Y. and Furnes H. Ophiolites and their origins. Elements 10: 93–100 (2014).

‏31. Pease V., Scarrow J., Silva I. N. and Cambeses A. Devonian magmatism in the Timan Range، Arctic Russia—subduction، post-orogenic extension، or rifting? Tectonophysics 691: 185-197 (2016).

‏32. Verma S. P. Statistical evaluation of bivariate، ternary and discriminant function tectonomagmatic discrimination diagrams. Turk. J. Earth Sci. 19: 185–238 (2010).

‏33. Mullen E. D. MnO/TiO2/P2O5: a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth Planet. Sci. Lett. 62: 53–62 (1983).

‏34. Verma S. P., Guevara M. and Agrawal  S. Discriminating four tectonic settings: Five new geochemical diagrams for basic and ultrabasic volcanic rocks based on log—ratio transformation of major-element data. J. Earth Syst. Sci. 115: 485–528 (2006).

35. Wood D. A. The application of a Th Hf Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth Planet. Sci. Lett. 50:11–30 (1980).

‏36. Agrawal S., Guevara M. and Verma S. P. Tectonic discrimination of basic and ultrabasic volcanic rocks through log-transformed ratios of immobile trace elements. Int. Geol. Rev. 50: 1057–1079 (2008).

‏37. Tamura Y., Ishizuka O., Stern R.J., Shukuno H., Kawabata H., Embley R.W., Hirahara Y., Chang Q., Kimura J.I., Tatsumi Y., Nunokawa A. Two primary basalt magma types from northwest Rota-1 volcano، Mariana arc and its mantle diapir or mantle wedge plume. J. Petrol. 52(6):1143-83 (2011).

‏38. Cox K. J., Bell J. D. and Pankhurst R. J. The Interpretation of Igneous Rocks. (Allen and Unwin، 1979).

39. Schandl E. S. and Gorton M. P. Application of high field strength elements to discriminate tectonic settings in VMS environments. Econ. Geol. 97: 629–642 (2002).

‏40. Harris N. B., Pearce J. A. and Tindle A. G. Geochemical characteristics of collision-zone magmatism. Geol. Soc. Lond. Spec. Publ. 19: 67–81 (1986).

‏41. Pearce J. A., Harris N. B. and Tindle A. G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 25: 956–983 (1984).

‏42. Gil-Rodriguez J. Petrology of the Betulia Igneous Complex, Cauca, Colombia. J. South Am. Earth Sci. 56: 339–356 (2014).

‏43. Irvine T. and Baragar W. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci. 8 523–548 (1971).

‏44. Aldanmaz E., Pearce J. A., Thirlwall M. and Mitchell J. Petrogenetic evolution of late Cenozoic، post-collision volcanism in western Anatolia, Turkey. J. Volcanol. Geotherm. Res. 102: 67–95 (2000).

‏45. McKenzie D. and O’nions R. Partial melt distributions from inversion of rare earth element concentrations. J. Petrol. 32: 1021–1091 (1991).

 

‏46. Sun S. S. and McDonough W. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 42: 313–345 (1989).

‏47. Peters T. J., Menzies M., Thirlwall M. and Kyle P. R. Zuni–Bandera volcanism, Rio Grande, USA—Melt formation in garnet-and spinel-facies mantle straddling the asthenosphere–lithosphere boundary. Lithos 102: 295–315 (2008).

‏48. Piercey S.J., Nelson J.L., Colpron M., Dusel-Bacon C., Simard R.L., Roots C.F. Paleozoic magmatism and crustal recycling along the ancient Pacific margin of North America، northern Cordillera. Paleoz. Evol. Metallog. Pericratonic Terranes Anc. Pac. Margin N. Am. Can. Alaskan Cordill. Geol. Assoc. Can. Spec. Pap. 45: 281–322 (2006).

‏49. McDonough W. F. and Sun S.-S. The composition of the Earth. Chem. Geol. 120: 223–253 (1995).

‏50. Nakamura N. Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochim. Cosmochim. Acta. 38: 757–775 (1974).