Document Type: Original Paper

Authors

Iran Polymer and Petrochemical Institute

Abstract

Co-precipitated Cu-MgO catalysts were prepared and evaluated for the gas-phase hydrogenation of furfural. The effect of heating rate at the calcination step was studied by comparing the performance of three catalysts prepared via the same procedure but calcined at different heating rates. The results established that altering the heating rate could influence the structural properties of the catalyst samples and hence their activity and selectivity. An extremely poor catalytic activity and selectivity (lower than 0.1% conversion of furfural and 40% selectivity towards furfuryl alcohol after 240 min time-on-stream) belonged to the catalyst that was prepared with the lowest calcination rate (1 Kmin–1), while the other two catalysts prepared with the calcination rate of 5 and 10 Kmin–1 indicated more than 88% conversion of furfural and 85% furfuryl alcohol selectivity during this run length. 

Keywords

Main Subjects

  1. Zhang X., Tu M. and Paice M.G. Routes to Potential Bioproducts from Lignocellulosic Biomass Lignin and Hemicelluloses. Bioenerg Res., 4(4):246–257 (2011).
  2. Dutta S., De S., Saha B. and Alam M.I. Advances in conversion of hemicellulosic biomass to furfural and upgrading to biofuels. Catal. Sci. Technol., 2(10):2025–2036 (2012).
  3. Yu W., Tang Y., Mo L., Chen P., Lou H. and Zheng X. One-step hydrogenation–esterification of furfural and acetic acid over bifunctional Pd catalysts for bio-oil upgrading. Bioresource Technol., 102(17):8241–8246 (2011).
  4. Halilu A., Ali T.H., Atta A.Y., Sudarsanam P., Bhargava S.K. and Abd Hamid S.B. Highly Selective Hydrogenation of Biomass-Derived Furfural into Furfuryl Alcohol Using a Novel Magnetic Nanoparticles Catalyst. Energ. Fuel., 30(3):2216–2226 (2016).
  5. Nakagawa Y., Tamura M. and Tomishige K. Catalytic Reduction of Biomass-Derived Furanic Compounds with Hydrogen. ACS Catal., 3(12):2655–2668 (2013).
  6. Triebl C., Nikolakis V. and Ierapetritou M. Simulation and economic analysis of 5-hydroxymethylfurfural conversion to 2,5-furandicarboxylic acid. Comput. Chem. Eng., 52(0):26–34 (2013).
  7. Wettstein S.G., Alonso D.M., Gürbüz E.I. and Dumesic J.A. A roadmap for conversion of lignocellulosic biomass to chemicals and fuels. Curr. Opin. Chem. Eng., 1(3):218–224 (2012).
  8. Jiménez-Gómez C.P., Cecilia J.A., Durán-Martín D., Moreno-Tost R., Santamaría-González J., Mérida-Robles J., Mariscal R. and Maireles-Torres P. Gas-phase hydrogenation of furfural to furfuryl alcohol over Cu/ZnO catalysts. J. Catal., 336:107–115 (2016).
  9. Taylor M.J., Durndell L.J., Isaacs M.A., Parlett C.M.A., Wilson K., Lee A.F. and Kyriakou G. Highly selective hydrogenation of furfural over supported Pt nanoparticles under mild conditions. Appl. Catal. B-Environ., 180:580–585 (2016).
  10. Yan K. and Chen A. Efficient hydrogenation of biomass-derived furfural and levulinic acid on the facilely synthesized noble-metal-free Cu–Cr catalyst. Energy. 58:357–363 (2013).
  11. Climent M.J., Corma A. and Iborra S. Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chem., 16(2):516–547 (2014).
  12. Ulbrich K. The Conversion of Furan Derivatives from Renewable Resources into valuable Building Blocks and their Application in Synthetic Chemistry. PhD, University of Regensburg, (2014).
  13. Zhu S., Xue Y., Guo J., Cen Y., Wang J. and Fan W. Integrated Conversion of Hemicellulose and Furfural into γ-Valerolactone over Au/ZrO2 Catalyst Combined with ZSM-5. ACS Catal., 6(3):2035–2042 (2016).
  14. Lange J. P., van der Heide E., van Buijtenen J. and Price R. Furfural—A Promising Platform for Lignocellulosic Biofuels. ChemSusChem, 5(1):150–166 (2012).
  15. Manikandan M., Venugopal A.K., Nagpure A.S., Chilukuri S. and Raja T. Promotional effect of Fe on the performance of supported Cu catalyst for ambient pressure hydrogenation of furfural. RSC Adv., 6(5):3888–3898 (2016).
  16. Li J., Liu J. L., Zhou H. J. and Fu Y. Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol over Nitrogen-Doped Carbon-Supported Iron Catalysts. ChemSusChem, 9(11):1339–1347 (2016).
  17. Aldosari O.F., Iqbal S., Miedziak P.J., Brett G.L., Jones D.R., Liu X., Edwards J.K., Morgan D.J., Knight D.K. and Hutchings G.J. Pd–Ru/TiO2 Catalyst–an Active and Selective Catalyst for Furfural Hydrogenation. Catal. Sci. Technol., 6(1):234–242 (2016).
  18. Zhang H., Canlas C., Kropf A.J., Elam J.W., Dumesic J.A. and Marshall C.L. Enhancing the Stability of Copper Chromite Catalysts for the Selective Hydrogenation of Furfural with ALD Overcoating (II)–Comparison between TiO2 and Al2O3 Overcoatings. J. Catal., 326:172–181 (2015).
  19. Yan K., Wu X., An X. and Xie X. Novel Preparation of Nano-Composite CuO-Cr2O3 Using CTAB-Template Method and Efficient for Hydrogenation of Biomass-Derived Furfural. Funct Mater Lett, 6(01):1350007-1350001–1350007-1350005 (2013).
  20. Sulmonetti T.P., Pang S.H., Claure M.T., Lee S., Cullen D.A., Agrawal P.K. and Jones C.W. Vapor phase hydrogenation of furfural over nickel mixed metal oxide catalysts derived from layered double hydroxides. Appl. Catal. A-Gen., 517:187–195 (2016).
  21. Vargas-Hernández D., Rubio-Caballero J.M., Santamaría-González J., Moreno-Tost R., Mérida-Robles J.M., Pérez-Cruz M.A., Jiménez-López A., Hernández-Huesca R. and Maireles-Torres P. Furfuryl alcohol from furfural hydrogenation over copper supported on SBA-15 silica catalysts. J Mol. Catal. A-Chem., 383–384:106–113 (2014).
  22. Xu Y., Qiu S., Long J., Wang C., Chang J., Tan J., Liu Q., Ma L., Wang T. and Zhang Q. In Situ Hydrogenation of Furfural with Additives over a Raney Ni Catalyst. RSC Adv., 5(111):91190–91195 (2015).
  23. Nagaraja B.M., Padmasri A.H., David Raju B. and Rama Rao K.S. Vapor phase selective hydrogenation of furfural to furfuryl alcohol over Cu–MgO coprecipitated catalysts. J. Mol. Catal. A., 265(1–2):90–97 (2007).
  24. Yuan Q., Zhang D., van Haandel L., Ye F., Xue T., Hensen E.J.M. and Guan Y. Selective liquid phase hydrogenation of furfural to furfuryl alcohol by Ru/Zr-MOFs. J. Mol. Catal. A-Chem., 406:58–64 (2015).
  25. Sharma R.V., Das U., Sammynaiken R. and Dalai A.K. Liquid phase chemo-selective catalytic hydrogenation of furfural to furfuryl alcohol. Appl Catal A-Gen, 454:127–136 (2013).
  26. Villaverde M.M., Garetto T.F. and Marchi A.J. Liquid-phase transfer hydrogenation of furfural to furfuryl alcohol on Cu–Mg–Al catalysts. Catal. Commun., 58:6–10 (2015).
  27. Li M., Hao Y., Cárdenas-Lizana F. and Keane M.A. Selective production of furfuryl alcohol via gas phase hydrogenation of furfural over Au/Al2O3. Catal. Commun., 69:119–122 (2015).
  28. Sadjadi S., Farzaneh V., Shirvani S. and Ghashghaee M. Preparation of Cu-MgO catalysts with different copper precursors and precipitating agents for the vapor-phase hydrogenation of furfural. Korean J. Chem. Eng., 34(3):692–700 (2017).
  29. Ghashghaee M., Shirvani S. and Farzaneh V. Effect of Promoter on Selective Hydrogenation of Furfural over Cu-Cr/TiO2 Catalyst. Russ. J. Appl. Chem., 90(2):304–309 (2017).
  30. Shirvani S. and Ghashghaee M. Mechanism Discrimination for Bimolecular Reactions: Revisited with a Practical Hydrogenation Case Study. Phys. Chem. Res., 5(4):727–736 (2017).
  31. Villaverde M.M., Bertero N.M., Garetto T.F. and Marchi A.J. Selective liquid-phase hydrogenation of furfural to furfuryl alcohol over Cu-based catalysts. Catal. Today., 213:87–92 (2013).
  32. Kijeński J., Winiarek P., Paryjczak T., Lewicki A. and Mikołajska A. Platinum deposited on monolayer supports in selective hydrogenation of furfural to furfuryl alcohol. Appl. Catal. A-Gen., 233(1–2):171–182 (2002).
  33. Nagaraja B.M., Padmasri A.H., Raju B.D. and Rama Rao K.S. Production of hydrogen through the coupling of dehydrogenation and hydrogenation for the synthesis of cyclohexanone and furfuryl alcohol over different promoters supported on Cu–MgO catalysts. Int. J. Hydrogen. Energ., 36(5):3417–3425 (2011).
  34. Nakagawa Y., Takada K., Tamura M. and Tomishige K. Total Hydrogenation of Furfural and 5-Hydroxymethylfurfural over Supported Pd–Ir Alloy Catalyst. ACS Catal., 4(8):2718–2726 (2014).
  35. Lesiak M., Binczarski M., Karski S., Maniukiewicz W., Rogowski J., Szubiakiewicz E., Berlowska J., Dziugan P. and Witońska I. Hydrogenation of Furfural over Pd–Cu/Al2O3 Catalysts. The Role of Interaction between Palladium and Copper on Determining Catalytic Properties. J. Mol. Catal. A-Chem., 395:337–348 (2014).
  36. 3An K., Musselwhite N., Kennedy G., Pushkarev V.V., Robert Baker L. and Somorjai G.A. Preparation of mesoporous oxides and their support effects on Pt nanoparticle catalysts in catalytic hydrogenation of furfural. J. Colloid. Interf. Sci., 392:122–128 (2013).
  37. Nagaraja B.M., Kumar V.S., Shasikala V., Padmasri A.H., Sreedhar B., Raju B.D. and Rao K.S. A highly efficient Cu/MgO catalyst for vapour phase hydrogenation of furfural to furfuryl alcohol. Catal. Commun., 4(6):287–293 (2003).
  38. Cui H., Wu X., Chen Y., Zhang J. and Boughton R.I. Influence of copper doping on chlorine adsorption and antibacterial behavior of MgO prepared by co-precipitation method. Mater Res. Bull, 61:511–518 (2015).
  39. Estrup A.J. Selective Hydrogenation of Furfural to Furfuyl Alcohol over Copper Magnesium Oxide. MSc, University of Maine, (2015).
  40. Liu H., Hu Q., Fan G., Yang L. and Li F. Surface synergistic effect in well-dispersed Cu/MgO catalysts for highly efficient vapor-phase hydrogenation of carbonyl compounds. Catal. Sci. Technol., 5(8):3960–3969 (2015).
  41. Ghashghaee M., Shirvani S. and Ghambarian M. Kinetic models for hydroconversion of furfural over the ecofriendly Cu-MgO catalyst: An experimental and theoretical study. Appl. Catal. A-Gen., 545:134–147 (2017).
  42. 42. Ghashghaee M., Sadjadi S., Shirvani S. and Farzaneh V. A Novel Consecutive Approach for the Preparation of Cu–MgO Catalysts with High Activity for Hydrogenation of Furfural to Furfuryl Alcohol. Catal. Lett., 147(2):318–327 (2017).
  43. Shirvani S., Ghashghaee M., Farzaneh V. and Sadjadi S. Influence of catalyst additives on vapor-phase hydrogenation of furfural to furfuryl alcohol on impregnated copper/magnesia. Biomass Conv. Bioref.:1–10 (2017).
  44. Farzaneh V., Shirvani S., Sadjadi S. and Ghashghaee M. Promoting Effects of Calcium on the Performance of Cu-MgO Catalyst in Hydrogenation of Furfuraldehyde. Iran J. Catal., 7(1):53–79 (2017).
  45. Feyzi M., Irandoust M. and Mirzaei A.A. Effects of promoters and calcination conditions on the catalytic performance of iron–manganese catalysts for Fischer–Tropsch synthesis. Fuel Process Technol., 92(5):1136–1143 (2011).
  46. Rafiee H.R., Feyzi M., Jafari F. and Safari B. Preparation and Characterization of Promoted Fe-V/SiO2 Nanocatalysts for Oxidation of Alcohols. J. Chem., 2013:10 (2013).
  47. Schumann J., Behrens M., Schlögl R. and Schomäcker R. Cu, Zn-based catalysts for methanol synthesis. PhD Thesis, Technische Universität Berlin, Berlin (2015).
  48. Liu D., Zemlyanov D., Wu T., Lobo-Lapidus R.J., Dumesic J.A., Miller J.T. and Marshall C.L. Deactivation mechanistic studies of copper chromite catalyst for selective hydrogenation of 2-furfuraldehyde. J. Catal., 299:336–345 (2013).
  49. Nagaraja B.M., Aytam H.P., Podila S., Reddy K.H.P., Raju B.D. and Kamaraju S.R.R. A highly active Cu-MgO-Cr2O3 catalyst for simultaneous synthesis of furfuryl alcohol and cyclohexanone by a novel coupling route—Combination of furfural hydrogenation and cyclohexanol dehydrogenation. J. Mol. Catal. A., 278(1–2):29–37 (2007).