Document Type : Original Paper

Authors

1 Department of Chemistry, Iran University of Science and Technology, Tehran, Iran

2 Department of Chemistry and Biochemistry, University of Delaware, Newark, United States

Abstract

In this work, we successfully developed electromembrane extraction via preparation of an electrospun flat membrane based on device. The polyurethane-membrane was prepared by electrospinning method and used in EME. Affecting parameters on membrane preparation were optimized by Taguchi design. The developed method was used for extraction of phthalates as typical molecules and the proposed method was used to determine phthalates in water samples. The applied voltage, extraction time, distance of electrodes and agitation rate were selected as the main factors in EME and optimized using response surface methodology based on a central composite design. Under optimum conditions, calibration curves were obtained in the range of 0.5-5000 ng mL-1 with R2>0.990. The repeatabilities were less than 12% and 14% for intra-day and inter-day, respectively. The limits of detection were found to be 0.03 and 0.02 ng mL-1 and limits of quantification were obtained 0.09 and 0.06 for bis (2- ethylhexyl phthalate), and dimethyl phthalate, respectively.

Keywords

Main Subjects

1. Mollahosseini A., Toghroli M., and Kamankesh M., Zeolite/Fe3O4 as a new sorbent in magnetic solid‐phase extraction followed by gas chromatography for determining phthalates in aqueous samples. J. Sep. Sci.  38 (21): 3750-3757 (2015).
 2. Wang, H., Wu Z., Chen B., He M., and Hu B., Chip-based array magnetic solid phase microextraction on-line coupled with inductively coupled plasma mass spectrometry for the determination of trace heavy metals in cells. Analyst 140 (16): 5619-5626 (2015).
 3. Rosting C.,  Pedersen-Bjergaard S., Hansen SH. and Janfelt C., High-throughput analysis of drugs in biological fluids by desorption electrospray ionization mass spectrometry coupled with thin liquid membrane extraction. Analyst 138 (20): 5965-5972 (2013).
 4. Davarani SS., Pourahadi A., Nojavan S., Banitaba MH. and Nasiri-Aghdam M., Electro membrane extraction of sodium diclofenac as an acidic compound from wastewater, urine, bovine milk, and plasma samples and quantification by high-performance liquid chromatography. Anal. Chim. Acta 722: 55-62 (2012).
 5. Ndungù K., Djane NK. and Mathiasson L., Determination of trace metal ions by ion-pair chromatography after enrichment using supported liquid membrane. J. Chromatogr. A 826 (1): 103-108 (1998).
 6. Berhanu T., Liu JF., Romero R., Megersa N. and Jönsson JA., Determination of trace levels of dinitrophenolic compounds in environmental water samples using hollow fiber supported liquid membrane extraction and high performance liquid chromatography. J. Chromatogr. A 1103 (1): 1-8 (2006).
 7. Audunsson G., Aqueous/aqueous extraction by means of a liquid membrane for sample cleanup and preconcentration of amines in a flow system. Anal. Chem. 58 (13): 2714-2723 (1986).
 8. Gjelstad A., Rasmussen KE. and Pedersen-Bjergaard S., Electrokinetic migration across artificial liquid membranes: tuning the membrane chemistry to different types of drug substances. J. Chromatogr. A 1124 (1-2): 29-34 (2006).
 9.  Aladaghlo Z., Fakhari AR. and Hasheminasab KS., Application of electromembrane extraction followed by corona discharge ion mobility spectrometry analysis as a fast and sensitive technique for determination of tricyclic antidepressants in urine samples. Microchem. J. 129: 41-48 (2016).
 10. Fashi A., Yaftian MR. and Zamani A., Electromembrane-microextraction of bismuth in pharmaceutical and human plasma samples: optimization using response surface methodology. Microchem. J. 130: 71-78 (2017).
 11. Davarani SS., Morteza-Najarian A., Nojavan S., Pourahadi A. and Abbassi MB., Two‐phase electromembrane extraction followed by gas chromatography‐mass spectrometry analysis. J. Sep. Sci.  36 (4): 736-743 (2013).
 12. Zahedi P., Davarani SS., Moazami HR. and Nojavan S., Surfactant assisted pulsed two-phase electromembrane extraction followed by GC analysis for quantification of basic drugs in biological samples. J. Pharmac. Biomed. Anal. 117: 485-491(2016).
13. Ramos Payán MD., Jensen H., Petersen NJ., Hansen SH. and Pedersen-Bjergaard S., Liquid-phase microextraction in a microfluidic-chip–High enrichment and sample clean-up from small sample volumes based on three-phase extraction. Anal. Chim. Acta. 735: 46-53 (2012).
 14. Huang C., Seip KF., Gjelstad A. and Pedersen-Bjergaard S., Electromembrane extraction for pharmaceutical and biomedical analysis–Quo vadis. J. Pharmac. Biomed. Anal. 113: 97-107 (2015).
15. Eibak LE., Parmer MP., Rasmussen KE., Pedersen-Bjergaard S. and Gjelstad A., Parallel electromembrane extraction in a multiwell plate. Anal. Bioanal. Chem. 406 (2): 431-440 (2014).
 16. Davarani SSH.,  Sheikhi N.,   Nojavan S.,  Ansari R.  and  Sozan Mansori, Electromembrane extraction of heavy metal cations from aqueous media based on flat membrane: method transfer from hollow fiber to flat membrane. Anal. Methods 7(6): 2680-2686 (2015).
17. Huang C., Eibak LE., Gjelstad A., Shen X., Trones R., Jensen H. and Pedersen-Bjergaard S., Development of a flat membrane based device for electromembrane extraction: a new approach for exhaustive extraction of basic drugs from human plasma. J. Chromatogr. A 1326: 7-12 (2014).
18. Zhang X., Zhang H., Liu Y. , Guo L., Ye J. and Qingcui Chu, Sensitive determination of five priority haloacetic acids by electromembrane extraction with capillary electrophoresis. Chinese J. Chem. 33 (2): 235-240 (2015).
 19. Boussu K., Van der Bruggen B., Volodin A., Van Haesendonck C., Delcour J A., Van der Meeren P. and Vandecasteele C., Characterization of commercial nanofiltration membranes and comparison with self-made polyethersulfone membranes. Desalination 191 (1-3): 245-253 (2006).
 20. Silva R., Francesco M. D. and Pozio A., Solution-cast Nafion® ionomer membranes: preparation and characterization. Electrochim. Acta. 49 (19): 3211-3219 (2004).
 21. Raaijmakers MJ., and Benes NE., Current trends in interfacial polymerization chemistry. Progress Polymer Sci. 63: 86-142 (2016).
 22. Zhu W.,  Zhang X.,  Zhao C., Wei W. and  Hou J., A novel polypropylene microporous film. Polymers Advanced Technol.  7 (9): 743-748 (1996).
 23. Trommer, K. Morgenstern B., Nonrigid microporous PVC sheets: Preparation and properties. J. Applied Polymer Sci. 115 (4): 2119-2126 (2010).
 24. Martin CR.,  Nishizawa M.,  Jirage K. and Munsik Kang, Investigations of the transport properties of gold nanotubule membranes, J. Phys. Chem. 105 (10): 1925-1934 (2001). 
 25. Bagheri, H., Najarzadekan H. and Roostaie A., Electrospun polyamide–polyethylene glycol nanofibers for headspace solid‐phase microextration. J. Sep. Sci. 37 (14): 1880-1886 (2014).
 26. Moein MM., Javanbakht M., Karimi M. and Akbari-adergani B., Fabrication of a novel electrospun molecularly imprinted nanomembrane coupled with high‐performance liquid chromatography for the selective separation and determination of acesulfame. J. Sep. Sci.  38 (8): 1372-1379 (2015).
27. Bagheri H., Piri-Moghadam H., Rastegar S. and Taheri N., Electrospun titania sol–gel‐based ceramic composite nanofibers for online micro‐solid‐phase extraction with high‐performance liquid chromatography. J. Sep. Sci.  37 (15): 1982-1988 (2014).
 
 28. Ruggieri F., D'Archivio AA., Di Camillo D., Lozzi L., Maggi MA., Mercorio R. and Santucci S., Development of molecularly imprinted polymeric nanofibers by electrospinning and applications to pesticide adsorption. J. Sep. Sci.  38 (8): 1402-1410 (2015).
 29. Bagheri H., Najafi Mobara M., Roostaie A. and Baktash MY., Electrospun magnetic polybutylene terephthalate nanofibers for thin film microextraction. J. Sep. Sci.  40 (19): 3857-3865 (2017).
30. Bagheri H.,  Ayazi Z.,  Aghakhani A. and  Alipour N., Polypyrrole/polyamide electrospun‐based sorbent for microextraction in packed syringe of organophosphorous pesticides from aquatic samples. J. Sep. Sci.  35 (1): 114-120 (2012).
31. Bhardwaj N. and Kundu SC., Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Advances 28 (3): 325-347 (2010).
 32. Yaripour S., Mohammadi A. and Nojavan S., Electromembrane extraction of tartrazine from food samples: Effects of nano‐sorbents on membrane performance. J. Sep. Sci.  39 (13): 2642-2651 (2016).
33. Oliveira AM.,  Loureiro HC., Souza de Jesus FF. and  Pereira de Jesus D.,  Electromembrane extraction and preconcentration of carbendazim and thiabendazole in water samples before capillary electrophoresis analysis. J. Sep. Sci.  40 (7): 1532-1539 (2017).
 34. Sharafi K., Fattahi N., Mahvi AH., Pirsaheb M., Azizzadeh N. and Noori M., Trace analysis of some organophosphorus pesticides in rice samples using ultrasound‐assisted dispersive liquid–liquid microextraction and high‐performance liquid chromatography. J. Sep. Sci.  38 (6): 1010-1016 (2015).
35. Ni X., Xing X., Cao Y. and Cao G., Determination of phthalates in food packing materials by electrokinetic chromatography with polymeric pseudostationary phase. Food Chem. 190: 386-391 (2016).
36. Pérez-Outeiral J., Millán E. and Garcia-Arrona R., Determination of phthalates in food simulants and liquid samples using ultrasound-assisted dispersive liquid–liquid microextraction followed by solidification of floating organic drop. Food Control 62: 171-177 (2016).
37. Ye CW., Gao J., Yang C., Liu XJ., Li XJ and Pan SY, Development and application of an SPME/GC method for the determination of trace phthalates in beer using a calix [6] arene fiber. Anal. Chim. Acta  641 (1-2): 64-74 (2009).
38. Si Q.,  Li F., Gao C., Wang C., Wang Z. and Zhao J., Detection of phthalate esters in seawater by stir bar sorptive extraction and gas chromatography–mass spectrometry. Marine. Poll. Bull. 108 (1-2): 163-170 (2016).
39. Psillakis E. and Kalogerakis N., Hollow-fibre liquid-phase microextraction of phthalate esters from water. J. Chromatogr. A 999: 145-153 (2003).