Determination of the Second Virial Coefficient for Binary Mixtures of Ar with CH4 and CO using Van der Waals and Dieterici Models

Document Type: Original Paper



2 Department of Chemistry, Payam Noor University, Abhar, Iran


In this paper, we calculate the second virial coefficient for binary mixtures of Ar with CH4 and CO in order to evaluate the performance of equations of state (EOSs). The investigated EOSs are van der Waals (vdW), Redlich-Kwong (RK), Peng-Robinson (PR), Carnahan-Starling–van der Waals (CS-vdW) and Guggenheim-van der Waals (G-vdW) based on van der Waals model. In our work, we also use Dieterici model of EOS consists of Dieterici (D) and Dieterici-Carnahan-Starling (DCS). In this study, the ability of these EOSs to predict second virial coefficients of binary mixtures is illustrated and since these models represent two different physical attitudes of contribution of interaction between molecules to thermodynamic functions, therefor from this view point, a comparison between the two models of equations of state is also reported.


Main Subjects

1. Wei Y.S.  and Sadus R. J., Equations of state for the calculation of fluid‐phase equilibria, AIChE J., 46:169(2000).

2. Valderrama J. O., The State of the Cubic Equations of State, Ind. Eng. Chem. Res., 2:1603(2003).

3. Guevara-Rodriguez F de J., A methodology to define the Cubic Equation of State of a simple fluid Fluid Phase Equilibr., 307:190(2011).

5. Ghoderao P. N. P., Dalvi V. H. and Narayan M., A four-parameter cubic equation of state for pure compounds and mixtures, Chem. Eng. Sci., 190:173(2018).

10. Meng L., Duan Y-Y and Lei Li, Correlations for second and third virial coefficients of pure fluids Fluid Phase Equilibr., 226:109(2004).

11. Assael M. J., Trusler J.P.M. and Tsolakis T. F., An introduction to their Prediction Thermophysical Properties of Fluids, Imperial College Press, London, UK, (1996).

15. Di Nicola G., Coccia G., Pierantozzi M. and Falone M., A semi-empirical correlation for the estimation of the secondvirialcoefficientsof refrigerants, Int. J. Refrigeration, 68:242(2016) .

23. Van der Waals J. D., On the Continuity of the Gaseous and Liquid State Doctoral Dissertation, University of Leiden, Holland, (1873).

24. Polishuk I., Gonzalez R., Verab J. H. and Segura H., Phase behavior of Dieterici fluids, Phys. Chem. Chem. Phys., 6:5189(2004).

25. Sadus R. J., Equations of state for fluids: The Dieterici approach revisited, J. Chem. Phys., 115:1460(2001) .


26. Sadus R. J., New Dieterici-type equations of state for fluid phase equilibria, Fluid Phase Equilibr., 212:31(2003) .

27. Dymond J. H., and Smith E. B., The Virial Coefficients of Pure Gases and Mixtures: A Critical Compilation, Clarendon Press Oxford (1980)

28. Byrne M. A., Jones M. R. and Staveley L. A. K., Second virial coefficients of argon, krypton and methane and their binary mixtures at low temperatures, Trans. Faraday Soc., 64:1747(1968).

29. Strein K., Lichtenthaler R. N., Schramm B. and Schafer K., Meßwerte des zweiten Virialkoeffizienten einiger gesättigter Kohlenwasserstoffe von 300—500 K, Ber. Bunsenges. Phys. Chem., 75:1308(1971).

30. Bellm J., Reineke W., Schafer K. and Schramm B., Messungen zweiter Virialkoeffizienten im Temperaturbereich von 300–550 K, Ber. Bunsenges. Phys. Chem. 78:282(1974).