Document Type: Original Paper

Authors

1 NSTRI, AEOI

2 Department of Chemistry, Payam Noor University, Abhar, Iran

Abstract

In this paper, we calculate the second virial coefficient for binary mixtures of Ar with CH4 and CO in order to evaluate the performance of equations of state (EOSs). The investigated EOSs are van der Waals (vdW), Redlich-Kwong (RK), Peng-Robinson (PR), Carnahan-Starling–van der Waals (CS-vdW) and Guggenheim-van der Waals (G-vdW) based on van der Waals model. In our work, we also use Dieterici model of EOS consists of Dieterici (D) and Dieterici-Carnahan-Starling (DCS). In this study, the ability of these EOSs to predict second virial coefficients of binary mixtures is illustrated and since these models represent two different physical attitudes of contribution of interaction between molecules to thermodynamic functions, therefor from this view point, a comparison between the two models of equations of state is also reported.

Keywords

Main Subjects

1. Wei Y.S.  and Sadus R. J., Equations of state for the calculation of fluid‐phase equilibria, AIChE J., 46:169(2000).

2. Valderrama J. O., The State of the Cubic Equations of State, Ind. Eng. Chem. Res., 2:1603(2003).

3. Guevara-Rodriguez F de J., A methodology to define the Cubic Equation of State of a simple fluid Fluid Phase Equilibr., 307:190(2011).

4. Guennec Y. L., Privat R., Lasala S. and Jaubert J.,  On the imperative need to use a consistent α-function for the prediction of pure-compound supercritical properties with a cubic equation of state, Fluid Phase Equilibri., 445:45(2017).

5. Ghoderao P. N. P., Dalvi V. H. and Narayan M., A four-parameter cubic equation of state for pure compounds and mixtures, Chem. Eng. Sci., 190:173(2018).

6. Forero L. and Velásquez J. A., A generalized cubic equation of state for non-polar and polar substances, Fluid Phase Equilibri., 418:47(2016).

7.Coelho J. A. P., Filipe R. M. and Naydenova G. P., Semi-empirical models and a cubic equation of state for correlation of solids solubility in ScCO2: Dyes and calix[4]arenes as illustrative examples, Fluid Phase Equilibr., 426:37(2016).

8.Guevara-Rodríguez F. de J. and Romero-Martínez A., An empirical extension for a generalized cubic equation of state, applied to a pure substance with small molecules, Fluid Phase Equilibri., 347:22(2013).

9.Glass M., Djelassi H. and Mitsos A., Parameter estimation for cubic equations of state models subject to sufficient criteria for thermodynamic stability, Chem. Eng. Sci., 192:981(2018).

10. Meng L., Duan Y-Y and Lei Li, Correlations for second and third virial coefficients of pure fluids Fluid Phase Equilibr., 226:109(2004).

11. Assael M. J., Trusler J.P.M. and Tsolakis T. F., An introduction to their Prediction Thermophysical Properties of Fluids, Imperial College Press, London, UK, (1996).

12. Van Tat P. and Deiters U. K., Calculation of cross secondvirialcoefficientsusing ab initio intermolecular potential energy surfaces for dimer H2-N2, Chem. Phys., 517:208(2019).

13.  Pérez-Polo M. F., Pérez-Molina M., Varó E. F. and Chica J., Estimation of the virial coefficients by means of chaotic oscillations of pressure and density: Application to quantum gases with cubic equations of state, Fluid Phase Equilibri., 473:262(2018).

14. Peyrovedin H., Esmaeilzadeh F. and M. Binazadeh, Calculation of the second virial coefficient and molecular radius of polar and non-polar substances using a new potential function, Fluid Phase Equilibri., 492:88(2019).

15. Di Nicola G., Coccia G., Pierantozzi M. and Falone M., A semi-empirical correlation for the estimation of the secondvirialcoefficientsof refrigerants, Int. J. Refrigeration, 68:242(2016) .

16. Mamedov B. A. and Somuncu E., Accurate calculation of secondvirialcoefficient of the Exp-6 potential and its application, Physica A: Statistical Mechanics and its Applications, 420:246(2015) .

17. Khoshsima A. and Hosseini A., Prediction of the Boyle temperature, secondvirialcoefficientand Zeno line using the cubic and volume – translated cubic equations of state, J. Mol. Liq., 242:625(2017).

18. Bonneville R., Asymptotic expression of the virial coefficients for hard sphere systems, Fluid Phase Equilibri., 397:111(2015) .

19. Yin J. and Wu J., Gas phase PVT properties and second virial coefficients of dimethyl ether, Fluid Phase Equilibri., 298:298(2010).

20. Gámez F., Numerical evaluation of the secondvirialcoefficientsof anisotropic multipolar intermolecular potentials, J. Mol. Liq., 220:731(2016) .

21. Shaheen M. E., Ghazy A. R., Kenawy E. and El-Mekawy F., Application of laser light scattering to the determination of molecular weight, secondvirialcoefficient, and radius of gyration of chitosan, Polymer, 158:18(2018).

22. Vtulkina E. D. and Elfimova E. A., Fourth and fifth virial coefficients and thermodynamic properties of the dipolar hard sphere fluids in zero external magnetic field, Fluid Phase Equilibri., 417:109(2016).

23. Van der Waals J. D., On the Continuity of the Gaseous and Liquid State Doctoral Dissertation, University of Leiden, Holland, (1873).

24. Polishuk I., Gonzalez R., Verab J. H. and Segura H., Phase behavior of Dieterici fluids, Phys. Chem. Chem. Phys., 6:5189(2004).

25. Sadus R. J., Equations of state for fluids: The Dieterici approach revisited, J. Chem. Phys., 115:1460(2001) .

 

26. Sadus R. J., New Dieterici-type equations of state for fluid phase equilibria, Fluid Phase Equilibr., 212:31(2003) .

27. Dymond J. H., and Smith E. B., The Virial Coefficients of Pure Gases and Mixtures: A Critical Compilation, Clarendon Press Oxford (1980)

28. Byrne M. A., Jones M. R. and Staveley L. A. K., Second virial coefficients of argon, krypton and methane and their binary mixtures at low temperatures, Trans. Faraday Soc., 64:1747(1968).

29. Strein K., Lichtenthaler R. N., Schramm B. and Schafer K., Meßwerte des zweiten Virialkoeffizienten einiger gesättigter Kohlenwasserstoffe von 300—500 K, Ber. Bunsenges. Phys. Chem., 75:1308(1971).

30. Bellm J., Reineke W., Schafer K. and Schramm B., Messungen zweiter Virialkoeffizienten im Temperaturbereich von 300–550 K, Ber. Bunsenges. Phys. Chem. 78:282(1974).