Document Type : Original Paper

Authors

1 Research Institute of Petroleum Industry

2 university of Tehran

3 University of Tehran

Abstract

In this paper, conventional SAPO-34 and Cerium Hierarchical SAPO-34 zeolites are synthesized using a hydrothermal method for methanol-to-propylene (MTP) reaction. The Ce-H-SAPO-34 catalyst shows a slightly larger crystal size, bimodal pore size distribution (microporous and mesoporous) and lower surface acidity compared to conventional SAPO-34 catalysts. According to these physicochemical properties and the previously suggested reaction mechanisms on the conventional SAPO-34 catalyst, a new reaction network is introduced for Ce-H-SAPO-34 catalyst. This was based on the data collected from a catalytic micro reactor in the temperature range of 390-450°C and at atmospheric pressure. The lumped kinetic model and the reaction rate expression have been introduced by considering the reaction network. The parameters were then estimated based on the experimental data using genetic algorithms. Comparing the experiments with the predicted data suggests a good correlation between the experimental data and the model.

Keywords

Main Subjects

  1. Feng R., Yan X., Hu X., Zhang Y., Wu J., Yan Z. The effect of co-feeding ethanol on a methanol to propylene (MTP) reaction over a commercial MTP catalyst. Appl. Catal. A., 599: 117429 (2020).

    1. Rami M. D., Taghizadeh M., Akhoundzadeh H. Synthesis and characterization of nano-sized hierarchical porous AuSAPO-34 catalyst for MTO reaction: Special insight on the influence of TX-100 as a cheap and green surfactant. Microporous Mesoporous Mater. 285(1):259-270 (2019).
    2. Shang Y., Wang W., Zhai Y., Song Y., Zhao X., Ma T., Wei J., Gong Y. Seed-fused ZSM-5 nanosheet as a superior MTP catalyst: synergy of micro/mesopore and inter/external acidity. Microporous Mesoporous Mater. 276 (1):173-82 (2019).
    3. Hu H., Cao F., Ying W., Sun Q., Fang D. Study of coke behaviour of catalyst during methanol-to-olefins process based on a special TGA reactor. Chem. Eng. J. 160(2):770-8 (2010).
    4. Bjørgen M., Svelle S., Joensen F., Nerlov J., Kolboe S., Bonino F., et al. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5:On the origin of the olefinic species. J. Catal. 249(2):195-207(2007).
    5. Hu Z., Zhang H., Wang L., Zhang H., Zhang Y., Xu H., et al. Highly stable boron-modified hierarchical nanocrystalline ZSM-5 zeolite for the methanol to propylene reaction. Catal Sci Technol. 4 (9):2891-5(2014).
    6. Sun X., Mueller S., Liu Y., Shi H., Haller G.L., Sanchez-Sanchez M., et al. On reaction pathways in the conversion of methanol to hydrocarbons on HZSM-5. J. Catal. 317:185-97(2014).
    7. Li Z., Martínez-Triguero J., Yu J., Corma A. Conversion of methanol to olefins: Stabilization of nanosized SAPO-34 by hydrothermal treatment. J. Catal. 329:379-88 (2015).
    8. Dubois D.R., Obrzut D.L., Liu J., Thundimadathil J., Adekkanattu P.M., Guin J.A., et al. Conversion of methanol to olefins over cobalt-, manganese-and nickel-incorporated SAPO-34 molecular sieves. Fuel Process. Technol. 83(1-3):203-18(2003).
    9. Wu L., Hensen E.J. Comparison of mesoporous SSZ-13 and SAPO-34 zeolite catalysts for the methanol-to-olefins reaction. Catal. Today. 235:160-8(2014).

    11 .   Sun Q., Wang N., Xi D., Yang M., Yu J. Organosilane surfactant-directed synthesis of  hierarchical porous SAPO-34 catalysts with excellent MTO performance. Chem Commun. 50(49):6502-5(2014).

    1. Xi D., Sun Q., Xu J., Cho M., Cho H.S., Asahina S., et al. In situ growth-etching approach to the preparation of hierarchically macroporous zeolites with high MTO catalytic activity and selectivity. J. Mater. Chem. A. 2 (42):17994-8004 (2014).

    13.Ghalbi-Ahangari M., Rashidi-Ranjbar P., Rashidi A., Teymuri M. Synthesis of hierarchical SAPO-34 and its enhanced catalytic performance in methanol to propylene conversion process. Pet. Sci. Technol. 37(22):2231-7(2019).

    1. Ghalbi-Ahangari M., Ranjbar P.R., Rashidi A., Teymuri M. The high selectivity of Ce hierarchical SAPO-34 nanocatalyst for the methanol to propylene conversion process. React Kinet. Mech. Catal. 122(2):1265-79 (2017).
    2. Huang F., Cao J., Wang L., Wang X., Liu F. Enhanced catalytic behavior for methanol to lower olefins over SAPO-34 composited with ZrO2. Chem. Eng. J.; 380:122626(2020).
    3. Yuan X., Li H., Ye M., Liu Z. Comparative study of MTO kinetics over SAPO-34 catalyst in fixed and fluidized bed reactors. Chem. Eng. J. 329 (1):35-44(2017).
    4. Lesthaeghe D., Delcour G., Van-Speybroeck V., Marin G.B., Waroquier M. Theoretical study on the alteration of fundamental zeolite properties by methylene functionalization. Microporous. Mesoporous. Mater, 96 (1-3):350-356 (2006).
    5. Hadi N., Niaei A., Nabavi S.R., Farzi A. Kinetic Study of Methanol to Propylene Processon High Silica H-ZSM5 Catalyst. IRAN. J. CHEM. CHEM. ENG. 4(10): 16-27 (2013).
    6. Olsbye U., Bjørgen M., Svelle S., K. Lillerud P., Kolboe S. Mechanistic insight into the methanol-to-hydrocarbons reaction. Catal. Today, 106 (1-4): 108-111 (2005).
    7. Gayubo A.G., Aguayo A.T., Alonso A., Bilbao J. Kinetic modeling of the methanol-to-olefins process on a silicoaluminophosphate (SAPO-18) catalyst by considering deactivation and the formation of individual olefins. Ind. Eng. Chem. Res, 46(7):1981-9(2007).
    8. Aguayo A.T., Mier D., Gayubo A.G., Gamero M., Bilbao J. Kinetics of methanol transformation into hydrocarbons on a HZSM-5 zeolite catalyst at high temperature (400−550 C). Ind. Eng. Chem. Res, 49(24):12371-8(2010).
    9. Najafabadi A.T., Fatemi S., Sohrabi M. Kinetic modeling and optimization of the operating condition of MTO process on SAPO-34 catalyst. J. Ind. Eng. Chem, 18 (1), 29-37 (2012).
    10. Treacy M.M.J., Higgins J.B. Collection of Simulated XRD Powder Patterns for Zeolites, 4th Structure Commission of the International Zeolite Association. Amsterdam, Netherlands. p 380, (2001).

    24.  Shamanaeva I., V. Parkhomchuk E. Influence of the Precursor Preparation Procedure on the Physicochemical Properties of Silicoaluminophosphate SAPO-11. Pet.Chem.  59(8): 854-859 (2019). 

    1. Li J., Li Z., Han D., Wu J. Facile synthesis of SAPO-34 with small crystal size for conversion of methanol to olefins. Powder Technol, 262: 177-182 (2014).
    2. Gayubo A.G., guayo A. T., Sánchez A.E. Kinetic Modeling of Methanol Transformation into Olefins on a SAPO-34 Catalyst. Ind. Eng. Chem. Res, 39 (2): 292-301 (2000).
    3. Bos A.N.R., Tromp P.J.J., Akse H.N. Conversion of Methanol to Lower Olefins. Kinetic Modeling, Reactor Simulation, and Selection. Ind. Eng. Chem. Res, 34(11): 3808-3818 (1995).

     

    1. Park T.Y., Froment G.F. Kinetic modeling of the methanol to olefins process. 1. Model

    formulation. Ind. Eng. Chem. Res.;40 (20):4172-86 (2001).

    1. Park T.Y., Froment G.F. Kinetic Modeling of the Methanol to Olefins Process. 2. Experimental Results, Model Discrimination, and Parameter Estimation Ind. Eng. Chem. Res, 40: 4187-4197 (2001).
    2. Abraha M.G., Wu X., Anthony R.G. Effects of particle size and modified SAPO-34 on conversion of methanol to light olefins and dimethyl ether. Stud. Surf. Sci. Catal. 133: Elsevier; 2 11 – 218(2001).
    3. Daneshpayeh M., Khodadadi A., Mostoufi N., Mortazavi Y., Sotudeh-Gharebagh R., Talebizadeh A. Kinetic modeling of oxidative coupling of methane over Mn/Na2WO4/SiO2 catalyst. Fuel. Process. Technol. 90(3):403-410 (2009).
    4. Alwahabi S.M., Froment G.F. Single event kinetic modeling of the methanol-to-olefins process on SAPO-34. Ind. Eng. Chem. Res. 43(17):5098-111(2004).
    5. Maeder M., Neuhold Y.M., Puxty G. Application of a genetic algorithm: near optimal estimation of the rate and equilibrium constants of complex reaction mechanisms. Chemom. Intell. Lab. Syst., Lab. Inf. Manage. 70 (2): 193-203 (2004).
    6. Lucasius C.B., Kateman G. Understanding and using genetic algorithms Part 2. Representation, configuration and hybridization. Chemom. Intell. Lab. Syst. 25: 99-145 (1994).
    7. Maeder M. , Neuhold Y. M., Puxty G., King P. Analysis of reactions in aqueous solution at non-constant pH: no more buffers?. Phys. Chem. Chem. Phys. 5: 2836-2841 (2003)
    8. Evans M., Polanyi M. Inertia and driving force of chemical reactions. Trans. Faraday Soc, 34: 11-24 (1938).