Document Type : Original Paper

Authors

1 Geological department faculty of science Payame noor university, Tehran.Iran

2 Institute of Geology, Kerman University

Abstract

Oligo-Miocene Bagh-e-Khoshk granitoid stock is intruded into the Eocene volcanic rocks in the southeastern part of the Urumieh-Dukhtar Magmatic assemblage in Iran. The granitoids are mainly consisting of diorite, quartz diorite and granodioritic rock types. They are metaluminous to slightly peraluminous, medium to high K calc-alkaline, with SiO2 ranging from 50.2 to 66 wt.%. The major elements mostly define linear trends and negative slopes with increasing of SiO2, while K2O is positively correlated with silica. There is a higher content of Ba, Rb, Nb and Zr elements with increasing SiO2, whereas Sr shows an opposite behavior. Primordial mantle-normalized multi-element patterns show enrichment in LILE relative to HFSE with distinctive Nb, Ta, Ti negative anomalies. These signatures are typical of subduction related magmas that formed in an active continental margin. The high Ba/La Ba/TiO2, Ba/Nb and Th/Nb ratios emphasizes the significant involvement of fluids during subduction processes. The chondrite-normalized REE patterns of the Bagh-e-Khoshk granitoids show an enrichment in light REEs ((La/Yb)n = 3.84, 7.41), very slightly HREE fractionation patterns ([Gd/Yb]n=1.26–1.83)  and small positive Eu anomalies (EuN/EuN* = 1.01, 1.44) in diorites. Whole-rock Sm–Nd isotope analysis give εNd values (+2.91 to +3.29) and Sr ratios (0.7046–0.7053). The geochemical characteristics, positive εNd and low Sr ratios of the Baghe-Khoshk granitoids suggest their formation from partial melting of the mantle wedge source, at pressures below the garnet stability field, modified by fluids during subduction processes.

Keywords

  1. Berberian M. and King G.C.P. Towards a palaeogeography and tectonic evolution of Iran. Can. J. Earth Sci. 18: 210–265 (1981).

    1. Arvin M., Pan Y., Dargahi S., Malekizadeh A. and Babaei A. Petrochemistry of the Siah-Kuh granitoid stock southwest of Kerman, Iran: Implications for initiation of Neotethys subduction. J. Asian Earth Sci. 30: 474–489 (2007).
    2. Shomali Z.H., Keshvari F., Hassanzadeh J. and Mirzaei N. Lithospheric structure beneath the Zagros collision zone resolved by non-linear teleseismic tomography. Geophy. J. Int. 187: 394–406 (2011).
    3. Richards, J.P. Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: From subduction to collision. Ore. Geol. Rev. 70: 323–345 (2015).
    4. Wilmsen M., Fürsich F.T., Seyed-Emami K., Majidifard M.R. and Taheri J. The Cimmerian orogeny foreland perspective: Geophy. Res. Ab. 9: 02690 (2007).
    5. Alavi M. Regional stratigraphy of the Zagros folded-thrust belt of Iran and its proforeland evolution. Am. J. Sci. 304: 1–20 (2004).
    6. Castro A., Aghazadeh M., Badrzadeh Z. and Chichorro M. Late Eocene-Oligocene post-collisional monzonitic intrusions from the Alborz magmatic belt, NW Iran. An example of monzonite magma generation from a metasomatized mantle source. Lithos. 180–181: 109–127(2013).
    7. Nabatian G., Ghaderi M., Neubauer F., Honarmand M., Liu X., Dong Y., Jiang S.-Y., von Quadt A., and Bernroider M. Petrogenesis of Tarom high-potassic granitoids in the Alborz-Azarbaijan belt, Iran: Geochemical, U-Pb zircon and Sr-Nd-Pb isotopic constraints. Lithos. 184–187: 324–345 (2014).
    8. Whitechurch H., Omrani J., Agard P., Humbert F., Montigny R. and Jolivet L. Evidence for Paleocene-Eocene evolution of the foot of the Eurasian margin (Kermanshah ophiolite, SW Iran) from back-arc to arc: Implications for regional geodynamics and obduction. Lithos. 182-183: 11–32 (2013).
    9. Mohajjel M. and Fergusson C.L. Jurassic to Cenozoic tectonics of the Zagros orogen in northwestern Iran. Int. Geol. Rev. 56: 263–287(2014).
    10. Hosseini S.Z. Mineralogy, Geochemistry and Petrogenesis evolution of Pleistocene basaltic lava flows in the Shahre-Babak area, NW of Kerman, Iran: Implication for the evolution of Urumieh-Dokhtar Magmatic Assemblage. Unpublished Ph.D. Thesis, Shahid Bahonar University of Kerman, in Persian. 260 p (2009).
    11. Hosseini S. Z., Arvin M., Oberhansli R. and Dargahi S. Geochemistry and tectonic setting of Pleistocene basaltic lava flows in the Shahre-Babak area, NW of Kerman, Iran: Implication for the evolution of Urumieh-Dokhtar Magmatic Assemblage. J.Sci.I.R.I. 20(4): 331-342 (2009).
    12. Allen M.B. Discussion on the Eocene bimodal PIranshahr massifof the Sanadaj-Sirjan zone, West Iran: A marker of the end of collision in the Zagros orogen: J. Geol. Soc. London. 166: 981–982 (2009).
    13. Dargahi S., Arvin M., Yuanming P. and Babaei A. Petrogenesis of post-collisional A-type granitoids from the Urumieh–Dukhtar magmatic assemblage, Southwestern Kerman, Iran: Constraints on the Arabian–Eurasian continental collision. Lithos. 115: 190–204 (2010).
    14. Mouthereau F., Lacombe O. and Vergés J. Building the Zagros collisional orogen: Timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics. 532–535: 27–60 (2012).
    15. Mohajjel M. and Fergusson C.L. and Sahandi, M.r. Cretaceaos-Tertiary convergence and continental collision, Sanandaj-Sirjan zone, Western Iran. J. Asian Earth. sci. 21: 397-412 (2003).
    16. Ali S.A., Buckman, S., Aswad K.J., Jones B.G., Ismail S.A. and Nutman, A.P. The tectonic evolution of a Neo-Tethyan (Eocene-Oligocene) island-arc (Walash and Naopurdan groups) in the Kurdistan region of the northeast Iraqi Zagros suture zone: Island Arc. 22: 104–125 (2013).
    17. Paul A., Hatzfeld D., Kaviani A., Tatar M. and Péquegnat C. Seismic imaging of the lithospheric structure of the Zagros mountain belt (Iran). Geol. Soc. Spe. Publ. 330: 5–18 (2010).
    18. Dimitrijevic M.D. Geology of Kerman Region. Geological Survey of Iran, Report Number Yu/52, 334 p (1973).
    19. Middlemost E.A.K. Naming materials in the magma/igneous rock system. Earth. Sci. Rev. 37: 215-224 (1994).
    20. Wilson B.M. Igneous Petrogenesis a Global Tectonic Approach. Springer Science & Business Media, 466p. (2007).
    21. Maniar P.D., and Piccoli P.M. Tectonic discrimination of granitoids. Geolo. Soc. Ame. Bull. 101: 635–643 (1989).
    22. Zen E.An. Aluminum enrichment in silicated melts by fractional crystallization some mineralogical and petrograghic constraints. J. Petrol. 27: 1095-1118 (1986).
    23. Waight T.E., Weaver S.D. and Muir R.J. The Hohonu batholith of north westland, New Zealand., granitoid compositions controlled by source H2O contents and generated during tectonic transition. Contrib. Mineral. Petr. 130: 225-239 (1989).
    24. Driver L.A. petrogenesis of the Cretaceous Cassiar batholith, Yukon, B.C., Canada: implications for mammatism in the north American Cordilleran Interior. Ms.C. Thesis, Univercity of Alberta, 80 p (1998).
    25. Rollinson H.R. Using Geochemical Data: Evaluation, Presentation, Interpretation. Pearson Education Limited, London, 317p. (1993).
    26. Mason b. and Moore C.B. Principles of geochemistry. John Wiley and Sons. 344p (1982).
    27. Rapp R.P. and Watson E.B. Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust–mantle recycling. J. Petrol. 36: 891–931 (1995).
    28. Zhong H., Zhu W.G., Hu R.Z., Xie L.W., He D.F., Liu F. and Chu Z.Y. Zircon U–Pb age and Sr–Nd–Hf isotope geochemistry of the Panzhihua A-type syenitic intrusion in the Emeishan large igneous province, southwest China and implications for growth of juvenile crust. Lithos. 110: 109-128 (2009).
    29. Macpherson C.G., Dreher S.T. and Thirlwall M. F. Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth. Planet. Sci. Lett. 243: 581–593 (2006).
    30. Sun S.S. and McDonough W.F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Ocean Basins. Geol. Soc. London Spec. Publ. 42: 313-345 (1989).
    31. Wood D.A., Joron J.L. and Treuil M. A re-appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings. Earth. Planet. Sc. Lett. 45: 326–336 (1979).
    32. Kargardianati T. Petrography, geochemistry and petrogeneses of Baghe Khoske granitoides. North of Sirjan region. Unpublished Ms. C. Thesis, Payame Noor University, in Persian 150 p (2017).
    33. Haschke, M., Ahmadian, J., Murata, M., McDonald, I., 2010. Copper mineralization prevented by arc-root delamination during Alpine-Himalayan collision in central Iran. Econ. Geol. 105, 855–865.
    34. Castillo P. R., Janney P. E. and Solidum, R. Petrology and geochemistry of Camiguin Island, southern Philippines: insights into the source of adakite and other lavas in a complex arc tectonic setting. Contrib Mineral. Petr. 134: 33―51 (1999).
    35. Maury RC, Defant MJ, Joron J-L., 1992. Metasomatism of the sub-arc mantle inferred from trace elements in Philippine xenoliths. Nature. 360: 661–663.
    36. Gill J.B. Orogeneic Andesites and Plate Tectonics. Springer-Verlag, Berlin, 390 p (1981).
    37. Dias G. and Leterrier J. The genesis of felsic-mafic plutonic associations: a Sr and Nd isotopic study of Hercynian Braga Granitoid Massif (Northern Portugal). Lithos. 32: 207-223 (1994).
    38. Kuscu, G.G and Geneli, F., 2010. Review of post-collisional volcanism in the Central Anatolian Volcanic Province (Turkey), with special reference to the Tepekoy Volcanic Complex. Int. J. Earth. Sci. (Geol Rundsch) 99: 593–621.
    39. Karsli O., Dokuz A., Uysal I., Aydin F., Kandemir R. and Wijbrans J. Generationof the Early Cenozoic adakitic volcanismby partialmelting ofmafic lower crust, Eastern Turkey: implications for crustal thickening to delamination. Lithos. 114: 109–120 (2010).
    40. Drummond M.S. and Defant M.J. A model for trondhjemite–tonalite–dacite genesis and crustal growth via slab melting: Archaean to modern comparisons. J. Geophy. Res. 95: 21503–21521 (1990).
    41. Pearce, J.A. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed) Orogenic andesites. Wiley, London, pp. 525–548 (1982).

     

    1. Dilek Y., Imamverdiyer N. and Altunkaynak S. Geochemitry and tectonic od Cenozoic volcanism in the lesser Cacasus (Azarbijan) andperi-Arabian collision-induced mantle dynamics and its magmatic fingerprint. Int. Geol. Rev. 52: 536-575 (2010).
    2. Hawkesworth C.J., Turner S.P., McDermott F., Peate D.W. and Van Calsteren, P. U–Th isotopes in arc magmas: implication for element transfer from the subducted crust. Science. 276: 551–555 (1997).
    3. Zhang X., Mao Q., Zhang H., Zhai M., Yang Y. and Hu Z. Mafic and felsic magma interaction during the construction of high-K calc-alkaline plutons within a metacratonic passive margin: the early Permian Guyang batholiths from the northern North China Craton. Lithos. 125 (1): 569–591 (2011).
    4. Pearce J.A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos. 100: 14-48 (2008).
    5. Rudnick R.L. and Fountain D.M. Nature and composition of the continental crust: a lower crustal perspective. Rev. Geophy. 33: 267–309 (1995).
    6. Rosu E., Seghedi I., Downes H., Alderton D.H.M., Szakacs A., Pecskay Z., Panaiotu C., Panaiotu C.E. and Nedelcu L. Extension related Miocene calc-alkaline magmatism in the Apuseni Mountains, Romania: origin of magmas. Schweiz. Minenral. Petrogr. Mitt. 84: 153–172 (2004).
    7. Shahabpour J. Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz. J. Asian Earth. Sci. 24: 405-417 (2005).
    8. Pearce J.A., Harris N.B.W. and Tindle A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 25: 956–983 (1984).