Precision Tuning of a kHz-Driven Argon Plasma Jet Enables Dose-Controlled H₂O₂ Delivery to Overcome Chemoresistance in Colorectal Cancer

Document Type : Original Paper

Authors

Department of Physics and Institute for Plasma Research, Kharazmi University, Tehran, Islamic Republic of Iran

Abstract

Colorectal cancer presents a significant therapeutic challenge, largely due to robust chemoresistance mechanisms, including the upregulation of antioxidant pathways. While cold atmospheric plasma is a promising anti-cancer modality, its efficacy can be limited by these cellular defenses. This study introduces a kilohertz AC-driven argon plasma jet with independently tunable voltage (1–20 kV) and frequency (18–28 kHz) as a novel platform for overcoming this resistance. We demonstrate that precision tuning of these electrical parameters allows for the controlled delivery of extracellular hydrogen peroxide (H₂O₂), a key long-lived reactive species. In the chemoresistant HT29 colorectal cancer cell line, we achieved a modulation of H₂O₂ concentrations in the culture medium, ranging from 291 to 371 µM. This H₂O₂ dosage showed a linear correlation with dose-dependent cytotoxicity (R² = 0.995, p < 0.001). Optimized parameters (10.5 kV, 28 kHz) overwhelmed the cells' redox defenses, reducing viability to 9.2% ± 3.6% after a 3-minute treatment. This approach successfully bypasses the Nrf2/Srx antioxidant pathway, which is known to confer resistance to helium plasma jets. Our findings establish that precisely controlling H₂O₂ delivery via a tunable argon plasma jet is a potent strategy for circumventing intrinsic chemoresistance in colorectal cancer, positioning this technology as a promising modality for precision oncology.

Keywords

Main Subjects

  1. Roshandel G, Ghasemi-Kebria F, Malekzadeh R. Colorectal cancer: epidemiology, risk factors, and prevention. Cancers. 2024;16(8):1530.
  2. Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Gastroenterology Review/Przegląd Gastroenterologiczny. 2019;14(2):89-103.
  3. Duineveld LA, van Asselt KM, Bemelman WA, Smits AB, Tanis PJ, van Weert HC, et al. Symptomatic and asymptomatic colon cancer recurrence: a multicenter cohort study. The Annals of Family Medicine. 2016;14(3):215-20.
  4. Saoudi González N, Salvà F, Ros J, Baraibar I, Rodríguez-Castells M, García A, et al. Unravelling the complexity of colorectal cancer: Heterogeneity, clonal evolution, and clinical implications. Cancers. 2023;15(16):4020.
  5. Kumar A, Gautam V, Sandhu A, Rawat K, Sharma A, Saha L. Current and emerging therapeutic approaches for colorectal cancer: A comprehensive review. World Journal of Gastrointestinal Surgery. 2023;15(4):495.
  6. Keidar M, Walk R, Shashurin A, Srinivasan P, Sandler A, Dasgupta S, et al. Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. British journal of cancer. 2011;105(9):1295-301.
  7. Yan D, Sherman JH, Keidar M. Cold atmospheric plasma, a novel promising anti-cancer treatment modality. Oncotarget. 2016;8(9):15977.
  8. Stańczyk B, Wiśniewski M. The promising potential of cold atmospheric plasma therapies. Plasma. 2024;7(2):465-97.
  9. Ratovitski EA, Cheng X, Yan D, Sherman JH, Canady J, Trink B, et al. Anti‐cancer therapies of 21st century: novel approach to treat human cancers using cold atmospheric plasma. Plasma Processes and Polymers. 2014;11(12):1128-37.
  10. Graves DB. Reactive species from cold atmospheric plasma: Implications for cancer therapy. Plasma Processes and Polymers. 2014;11(12):1120-7.
  11. Von Woedtke T, Schmidt A, Bekeschus S, Wende K, Weltmann K-D. Plasma medicine: A field of applied redox biology. In vivo. 2019;33(4):1011-26.
  12. Holanda AGA, Francelino LEC, Moura CEBd, Alves Junior C, Matera JM, Queiroz GFd. Cold Atmospheric Plasma in Oncology: A Review and Perspectives on Its Application in Veterinary Oncology. Animals. 2025;15(7):968.
  13. Laroussi M, Lu X, Keidar M. Perspective: The physics, diagnostics, and applications of atmospheric pressure low temperature plasma sources used in plasma medicine. Journal of Applied Physics. 2017;122(2).
  14. Weltmann KD, Polak M, Masur K, von Woedtke T, Winter J, Reuter S. Plasma processes and plasma sources in medicine. Contributions to Plasma Physics. 2012;52(7):644-54.
  15. Jablonowski H, Hoffmann U, Bansemer R, Bekeschus S, Gerling T, von Woedtke T. Characterization and comparability study of a series of miniaturized neon plasma jets. Journal of Physics D: Applied Physics. 2024;57(19):195202.
  16. Busco G, Fasani F, Dozias S, Ridou L, Douat C, Pouvesle J-M, et al. Changes in oxygen level upon cold plasma treatments: consequences for RONS production. IEEE Transactions on Radiation and Plasma Medical Sciences. 2017;2(2):147-52.
  17. Ishaq M, Evans MD, Ostrikov KK. Atmospheric pressure gas plasma-induced colorectal cancer cell death is mediated by Nox2–ASK1 apoptosis pathways and oxidative stress is mitigated by Srx–Nrf2 anti-oxidant system. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2014;1843(12):2827-37.
  18. He Y, Lu F, Jiang C, Gong F, Wu Z, Ostrikov K. Cold atmospheric plasma stabilizes mismatch repair for effective, uniform treatment of diverse colorectal cancer cell types. Scientific Reports. 2024;14(1):3599.
  19. Wang Y, Mang X, Li X, Cai Z, Tan F. Cold atmospheric plasma induces apoptosis in human colon and lung cancer cells through modulating mitochondrial pathway. Frontiers in Cell and Developmental Biology. 2022;10:915785.
  20. Schneider C, Arndt S, Zimmermann JL, Li Y, Karrer S, Bosserhoff AK. Cold atmospheric plasma treatment inhibits growth in colorectal cancer cells. Biological chemistry. 2018;400(1):111-22.
  21. Han D, Cho JH, Lee RH, Bang W, Park K, Kim MS, et al. Antitumorigenic effect of atmospheric-pressure dielectric barrier discharge on human colorectal cancer cells via regulation of Sp1 transcription factor. Scientific reports. 2017;7(1):43081.
  22. Martinet A, Miebach L, Heisterberg L, Neugebauer A, Enderle MD, Bekeschus S. Reactive Species Production and Colon Cancer Cytotoxicity of an Electrosurgical Cold Argon Plasma Device. Plasma Processes and Polymers. 2025;22(4):2400240.
  23. Ginés A, Bystrup S, Ruiz de Porras V, Guardia C, Musulén E, Martínez-Cardús A, et al. PKM2 subcellular localization is involved in oxaliplatin resistance acquisition in HT29 human colorectal cancer cell lines. PloS one. 2015;10(5):e0123830.
  24. Zhao Z, Zhang G, Li W. MT2A promotes oxaliplatin resistance in colorectal cancer cells. Cell Biochemistry and Biophysics. 2020;78(4):475-82.
  25. Kitahara T, Haraguchi N, Takahashi H, Nishimura J, Hata T, Takemasa I, et al. Identification and characterization of CD107a as a marker of low reactive oxygen species in chemoresistant cells in colorectal cancer. Annals of surgical oncology. 2017;24:1110-9.
  26. Cheraghi O, Dabirmanesh B, Ghazi F, Amanlou M, Atabakhshi-Kashi M, Fathollahi Y, et al. The effect of Nrf2 deletion on the proteomic signature in a human colorectal cancer cell line. BMC cancer. 2022;22(1):979.
  27. Kim HG, Kim CW, Lee DH, Lee J-S, Oh E-T, Park HJ. Quinacrine-mediated inhibition of Nrf2 reverses hypoxia-induced 5-fluorouracil resistance in colorectal cancer. International journal of molecular sciences. 2019;20(18):4366.
  28. Barrera JCA, Ondo-Mendez A, Giera M, Kostidis S. Metabolomic and lipidomic analysis of the colorectal adenocarcinoma cell line HT29 in hypoxia and reoxygenation. Metabolites. 2023;13(7):875.
  29. Touil Y, Igoudjil W, Corvaisier M, Dessein A-F, Vandomme J, Monté D, et al. Colon cancer cells escape 5FU chemotherapy-induced cell death by entering stemness and quiescence associated with the c-Yes/YAP axis. Clinical cancer research. 2014;20(4):837-46.
  30. Yan D, Cui H, Zhu W, Talbot A, Zhang LG, Sherman JH, et al. The strong cell-based hydrogen peroxide generation triggered by cold atmospheric plasma. Scientific reports. 2017;7(1):10831.
  31. Wang H, Wandell RJ, Locke BR. The influence of carrier gas on plasma properties and hydrogen peroxide production in a nanosecond pulsed plasma discharge generated in a water-film plasma reactor. Journal of Physics D: Applied Physics. 2018;51(9):094002.
  32. Harris B, Wagenaars E. The influence of pulse repetition frequency on reactive oxygen species production in pulsed He+ H2O plasmas at atmospheric pressure. Journal of Applied Physics. 2023;134(10).
  33. von Woedtke T, Emmert S, Metelmann H-R, Rupf S, Weltmann K-D. Perspectives on cold atmospheric plasma (CAP) applications in medicine. Physics of Plasmas. 2020;27(7).

 

  1. Lu X, Reuter S, Laroussi M, Liu D. Nonequilibrium atmospheric pressure plasma jets: Fundamentals, diagnostics, and medical applications: CRC Press; 2019.
  2. Bekeschus S, Lin A, Fridman A, Wende K, Weltmann K-D, Miller V. A comparison of floating-electrode DBD and kINPen jet: plasma parameters to achieve similar growth reduction in colon cancer cells under standardized conditions. Plasma Chemistry and Plasma Processing. 2018;38:1-12.
  3. Schweigert I, Alexandrov A, Zakrevsky D, Milakhina E, Patrakova E, Troitskaya O, et al. Mismatch of frequencies of ac voltage and streamers propagation in cold atmospheric plasma jet for typical regimes of cancer cell treatment. Journal of Physics: Conference Series. 2021;2100(1):012020.
  4. Bauer G, Graves DB. Mechanisms of selective antitumor action of cold atmospheric plasma‐derived reactive oxygen and nitrogen species. Plasma processes and polymers. 2016;13(12):1157-78.
  5. Yan D, Horkowitz A, Wang Q, Keidar M. On the selective killing of cold atmospheric plasma cancer treatment: Status and beyond. Plasma Processes and Polymers. 2021;18(10):2100020.
  6. Yan D, Talbot A, Nourmohammadi N, Sherman JH, Cheng X, Keidar M. Toward understanding the selective anticancer capacity of cold atmospheric plasma—A model based on aquaporins. Biointerphases. 2015;10(4).
  7. Semmler ML, Bekeschus S, Schäfer M, Bernhardt T, Fischer T, Witzke K, et al. Molecular Mechanisms of the Efficacy of Cold Atmospheric Pressure Plasma (CAP) in Cancer Treatment. Cancers (Basel). 2020;12(2).
  8. Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nature reviews Drug discovery. 2009;8(7):579-91.
  9. Roshan M, Farnia P, Ghomi H, Jafari S. Apoptotic effects of cold atmospheric pressure plasma on A549 and LL/2 lung carcinoma cell lines. Scientific Reports. 2025;15(1):19567.
  10. Yan D, Talbot A, Nourmohammadi N, Cheng X, Canady J, Sherman J, et al. Principles of using cold atmospheric plasma stimulated media for cancer treatment. Scientific reports. 2015;5(1):18339.
  11. Girard P, Arbabian A, Fleury M, Bauville G, Puech V, Dutreix M. Synergistic effect of H2O2 and NO2 in cell death induced by cold atmospheric he plasma. Sci Rep. 2016; 6: 29098. Epub 2016/07/02. doi: 10.1038/srep29098. PubMed PMID: 27364563.
  12. Kurake N, Tanaka H, Ishikawa K, Kondo T, Sekine M, Nakamura K, et al. Cell survival of glioblastoma grown in medium containing hydrogen peroxide and/or nitrite, or in plasma-activated medium. Archives of biochemistry and biophysics. 2016;605:102-8.
  13. Dezhpour A, Ghafouri H, Jafari S, Nilkar M. Effects of cold atmospheric-pressure plasma in combination with doxorubicin drug against breast cancer cells in vitro and in vivo. Free Radical Biology and Medicine. 2023;209:202-10