Document Type : Final File


1 Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Vanak, Tehran, Islamic Republic of Iran

2 Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Vanak, Tehran,Islamic Republic of Iran


Bismuth oxide (Bi2O3) nanorods was prepared via one pot sol-gel method using Bi(NO3)3.5H2O and starch (as template) in water under hydrothermal condition followed by calcination at 320˚C within 3 h. The resultant solid product was characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), thermogravimetry (TGA), and FTIR techniques. Based on the obtained results, the formation of Bi2O3 nanoparticles and nanorods at lower and higher percentage of starch is promising. It was found that Bi2O3 nanorods catalyse the aromatization of 1,4-dihydropyridines (DHPs) with 100% conversion and 100% selectivity.


  1. Zhang L., Hashimoto Y., Taishi T., Nakamura I. and Ni Q. Fabrication of Flower- Shaped Bi2O3 Superstructure by a Facile Template-Free Process, Appl. Surf. Sci. 257: 6577- 6582 (2011).
  2. Gou X., Li R., Wang G., Chen Z. and Wexler D. Room-Temperature Solution Synthesis of Bi2O3 Nanowires for Gas Sensing Application. Nanotechnology 20: 495- 501(2009).
  3. Li R., Chen W., Kobayashi H. and Ma C. Platinum-Nanoparticle-Loaded Bismuth Oxide: an Efficient Plasmonic Photocatalyst Active Under Visible Light. Green Chem. 12: 212-215 (2010).
  4. Gong Y., Ji W., Zhang L., Xie B. and Wang, H. Performance of (La,Sr)MnO3 Cathode Based Solid Oxide Fuel Cells: Effect of Bbismuth Oxide Sintering Aid in Silver Paste Cathode Current Collector. J. Power Sources 196: 928- 934(2011).
  5. Malik P. and Chakraborty D. Bi2O3-Catalyzed Oxidation of Aldehydes with t-BuOOH Tetrahedron Lett. 51: 3521- 3523(2010).
  6. Huang Q., Zhang, S., Cai C. and Zhou, B. Bi2O3/TiO2 Coaxial Nanorods: Synthesis, Characterization and Photoluminescence Properties. Thin Solid Films, 518: 6638- 6641(2010).
  7. Anandan S. and Wu J.J. Microwave Assisted Rapid Synthesis of Bi2O3 Short Nanorods Mater. Lett. 63: 2387- 2389 (2009).
  8. Gujar T.P., Shinde V.R., Lokhande C.D., Mane R.S. and Han S.H. Formation of Highly Textured (1 1 1) Bi2O3 Films by Anodization of Electrodeposited Bismuth Films.
  9. Appl. Surf. Sci. 252: 2747- 2751(2006).

10. Gujar T.P., Shinde V.R. and Lokhande C.D. The Influence of Oxidation Temperature on Structural, Optical and Electrical Properties of Thermally Oxidized Bismuth Oxide Films. Appl. Surf. Sci. 254: 4186- 4190 (2008).

11. Kim H. Jin C., Park S., Lee W. I., Chin I. J. and Lee C. Structure and Optical Properties of Bi2S3 and Bi2O3 Nanostructures Synthesized via Thermal Evaporation and

12. Thermal Oxidation Routes. Chem. Eng. J. 215: 151- 156 (2013).

13. Lin G., Tan D, Luo F., Chen D., Zhao Q., Qiu J. and Xu Z. Fabrication and Photocatalytic Property of α-Bi2O3 Nanoparticles by Femtosecond Laser Ablation in Liquid. J. Alloy. Comp. 507: L43- L46 (2010).

14. Weis F., Schneider R., Seipenbusch M. and Kasper G. Synthesis of Bi2O3/SiO2 Core– Shell Nanoparticles by an Atmospheric CVS/CVD Process and Their Modification by Hydrogen or Electron-Beam induced reduction. Surf. Coating Tech. 230: 93- 100 (2013).

15. Liao X., Lin W., Lu J. and Wang C. Oxidative Aromatization of Hantzsch 1,4- Ddihydropyridines by Sodium Chlorite. Tetrahedron Lett. 51: 3859- 3861(2010).

16. Guenerich F.P., Brian W. R., Iwasak M., Sari M. A., Baarnheim C. and Berntsson P. Oxidation of Dihydropyridine Calcium Channel Blockers and Analogs by Human Liver Cytochrome P-450 IIIA4. J. Med. Chem.34: 1838- 1844(1991).

17. Heravi M.M., Oskooie H. A., Malakooti R., Alimadad B., Alinejad H. and Behbahani, F.K. Oxidative Aromatization of Hantzsch 1,4-Dihydropyridines in the Presence of a Catalytic Amount of Mn(pbdo)2Cl2/MCM-41 or Mn(pbdo)2Cl2/Al-MCM- 41 as Reusable and Green Catalysts. Catal. Commun. 10: 819- 822 (2009).

18. Litvic M. F., Litvic M. and Vinkovic V. Rapid, Efficient, Room Temperature Aromatization of Hantzsch-1,4- Dihydropyridines with Vanadium(V) Salts: Superiority

19. of Classical Technique Versus Mmicrowave Promoted reaction. Tetrahedron 64: 10912- 10918 (2008).

20. Safaiee M., Zolfigol M. A., Tavasoli M. and Mokhlesi, M. Application of Silica Vanadic Acid [SiO2-VO(OH)2] as a Heterogeneous and Recyclable Catalyst for Oxidative Aromatization of Hantzsch 1,4-dihydropyridines at Room Temperature. J. Iran Chem. Soc. 11: 1593-1597 (2014).



Shen L., Cao S., Wu J., Li H, Zhang J., Wu M. and Qian X. K2CO3-Assisted One- Pot Sequential Synthesis of 2-Trifluoromethyl- 6-Difluoromethylpyridine -3,5- icarboxylates Under Solvent-Free Conditions. Tetrahedron Lett. 51: 4866- 4869 (2010).

22. Shamim T. Gupta M. and Paul S. The oxidative aromatization of Hantzsch 1,4- Dihydropyridines by Molecular Oxygen Using Surface Functionalized Silica Supported Cobalt Catalysts. J. Mol. Catal. Chem. A 302: 15-19 (2009).

23. Angel L. M. S., Sathicq G., Thomas G. T. B. H. and Romanelli, G. P. Vanadium- Substituted Wells-Dawson Heteropolyacid as Catalyst for Liquid Phase Oxidation of 1,4- Dihydropyridine Derivative. Catal. Lett. 144: 172- 180(2014).

24. Sharbatdaran M. Foruzin L. J., Farzaneh F. and Majd, M. L. Synthesis and Characterization of Si-Zr-Mo Nanocomposite as a Rapid and Efficient Catalyst for Aromatization of Hantzsch 1,4-dihydropyridines. C. R. Chimie. 16: 176-182(2013).

25. Shahabi D., Amrollahi M. A. and Jafari A.A. NaI Readily Mediated Oxidative Aromatization of Hantzsch 1,4-Dihydropyridines with Hydrogen Peroxide at Room Temperature: A Green Procedure. J. Iran Chem. Soc. 8: 1052- 1057(2011).

26. Litvic, M. Regovic, M. Šmic, K. Lovric, M. and Litvic, M. F. Remarkably fast and Selective Aromatization of Hantzsch Esters with MoOCl4 and MoCl5: A Chemical Model for Possible Biologically Relevant Properties of Molybdenum-Containing Enzymes, Bioorg. Med. Chem. Lett. 22: 3676- 3681(2012).

27. Jia X., Yu L., Huo C., Wang Y. Liu J. and Wang, X. Catalytic Aromatization of 1,4- Dihydropyridines by Radical Cation Salt Prompted Aerobic Oxidation. Tetrahedron Lett. 55: 264- 266 (2014).

28. Zolfigol M. and Safaiee M. Synthesis of 1,4-Dihydropyridines under Solvent-free Conditions, Synlett. 5: 827- 828(2004).

29. Soest J. J. G. Hulleman S. H. D. Wit D. and Vliegenthart, J. F. G. Crystallinity in Starch Bioplastics. Ind. Crop. Prod. 5: 11- 22(1996).

30. Yang X., Lian X. Liu S., Jiang C., Tian J., Wang G., Chen J. and Wang R. Visible Light Photoelectrochemical Properties of β-Bi2O3 Nanoporous Films: A Study of the

31. Dependence on Thermal Treatment and Film Thickness. Appl. Surf. Sci. 282: 538- 543(2013).

32. Starches D. T. Jiang Q. Gao W. Li and Zhang X. J. Characteristics of Native and Enzymatically H ydrolyzed Zeamays. Food Hydrocolloids 25: 521- 528(2011).

33. Abdullah E. A. Abdullah A. H. Zaina, Z. Husseni M. Z. and Ban T. K. Synthesis and Characterisation of Penta-Bismuth Hepta-Oxide Nitrate, Bi5 O7 NO3, as a New Adsorbent for Methyl Orange Removal from an Aqueous Solution. E-J. Chem. 9: 2429- 2438(2012).

34. Wang C. Shao C. Wang L. Zhang L., Li X. and Li Y. Electrospinning Preparation, Characterization and Photocatalytic Properties of Bi2O3 Nanofibers. J. Colloid. Interface Sci. 333: 242- 248(2009).

35. Ma M.G., Zhu J.F. Sun R.C. and Zhu Y.J. Microwave-Assisted Synthesis of Hierarchical Bi2O3 Spheres Assembled from Nanosheets with Pore Structure. Mater.Lett. 64: 1524- 1527(2010).