Document Type: Review Article

Authors

1 1Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Islamic Republic of Iran

2 2Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Islamic Republic of Iran

Abstract

    Combustion of sulfur components of fossil fuels such as oil causes the emission of SO2 in the atmosphere and lead to the formation of acidic rain in the environment. The conventional approach for desulfurization of fossil fuels is the chemical procedure of hydrodesulfurization (HDS). However, this method has low efficiency for desulfurization of ring components of sulfur such as dibenzothiophene (DBT) that include a significant percentage of the total sulfur content of fossil fuel. biodesulfurization (BDS), is a biological method proposed for desulfurization of ring components of sulfur which is a non-destructive pathway to remove sulfur from hydrocarbons of petroleum in the mild conditions which potentially used as complementary with HDS. For industrial application of BDS, the approach needs the new challenge to enhance desulfurization activity by genetic engineering methods and bioreactor development to achieve from a fantasy technique to an industrial and reality method for reduction of sulfur from fossil fuels. In this review, we studied and evaluated the BDS and advances in the two last decades.

Keywords

Main Subjects

1.            Akbarzade S. Sequencing And Gene Mapping Of Indigenous Bacteria Rhodococcus FMF: Thesis, Tehran Azad University, Science and Research (1999).

2.            Pawelec B., Navarro R.M., Campos-Martin J.M., Fierro J.L.G. Towards Near Zero-Sulfur Liquid Fuels. A Perspective Review. Catal. Sci. Technol. 1: 23-42 (2011).

3.            Kulkarni PS. And Afonsoa CAM. Deep desulfurization of diesel fuel using ionic liquids: current status and future challenges. Green Chem. 12: 1139-1149 (2010).

4.            Chi Y., Li C., Jiao Q., Liu Q. and Yan P. Desulfurization by oxidation combined with extraction using acidic room-temperature ionic liquids. Green Chem.13: 1224-1229 (2011).

5.            Hasan Z., Jeon J. and Jhung SH. Oxidative desulfurization of benzothiophene and thiophene with WOx/ZrO2 catalysts: effect of calcination temperature of catalysts. J Hazard Mater. 205-206: 216-221 (2012).

6.            Atlas RM., Boron DJ., Deever WR., Johnson AR., McFarland BL. And Meyer JA. Method for removing organic sulfur from heterocyclic sulfur containing organic compounds. US patent number H1. p. 986 (2001).

7.            W.B. Group. Pollution prevention and abatement handbook: towards cleaner production. Washington DC. World Bank Group Publishers (1999).

8.            Kilbane J. J. Microbial biocatalyst developments to upgrade fossil fuels. Current Opinion in Biotechnology. 17: 305-314 (2006).

9.            König A., Herding G., Hupfeld B., Richter T. and Weidmann K. Current   tasks and challenges for exhaust after treatment research, a viewpoint from the automotive industry. Top. Catal. 16/17, 23-31 (2001). 

10.          Song C., Hsu C.S. and Mochida I. Chemistry of diesel fuels, Taylor and Francis,           New York, USA (2000).

11.          Kilbane. J. Desulfurization of coal: the microbial solution. Trends in Biotechnology. 7: 97-1 0 1 (1989).

12.          Chang J. H., Rhee S. K. and chang Y. K. Desulfurization of diesel oils by a newly isolated Dibenzothiophene–degrading Nocarida sp. strain CYKS2. Biotechnol. Prog. 14 (6) : 851-855 (1998).

13.          Chang JH1., Chang YK., Ryu HW. and Chang HN. Desulfurization of light gas oil in immobilized-cell systems of Gordona sp. CYKS1 and Nocardia sp. CYKS2. FEMS   Microbiol Lett. 15, 182(2): 309-12 (2000).

14.          Denome S. A., Oldfield C., Nash L. J. and Young K. D. Characterization of the desulfurization genes from Rhodococcus sp. strain IGTS8. J Bacteriol. 176: 707–6716 (1994).

15.          Grossman M. J., Lee M. K. and Prince R. C. Deep desulfurization of extensively hydrodesulfurized middle distillate oil by Rhodococcus sp. Strain ECRD –1.  Appl. Envir. Microbiol. 67: 1949-1952 (2001).

16.          Raheb J. and Hajipour M.J. The characterization of biosurfactant production related to energy consumption  of  biodesulfurization in Pseudomonas aeruginosa ATCC9027, Energy source part a, recovery utilization  and environmental effect. 34: 1381-1399 (2012).

17.          Aliebrahimi S., Raheb J., Ebrahimipour G ., Bardania H ., Nurollah M. and Aghajani Z. Designing New Recombinant Indigenous Klebsiella Oxytoca ISA4 by cloning of dsz Genes , Energy source part a, recovery utilization and  environmental effect, 37: 2056–2063(2015).  

18.          Kefayati M.E., Raheb J., Torabi Angazi M.,  Alizadeh S. And Bardania H. The effect of  magnetic Fe3O4 nanoparticles on the growth of genetically manipulated bacteria, Pesudomonas  aeroginosa (PTSOX4). Iran J Biotech, 11(1): 41-46 (2013).  

19.          Bardania H., Raheb J., Mohammad Beigi H., Rasekh B. and Arpanaei A. Desulfurization Activity and Reusibilityof Magnetic Nanoparticle-Coated Rhodococcus erytheropolis FMF and Rhodococcus Erytheropolis IGTS8 Bacterial cells, Biomedical and Applied Biochemistry. 60(3): 323-329(2013).  

20.          Bahrampour F., Raheb J. and Rabiei Z. Alteration in protein profile of  Pseudomonas aeruginosa (PTSOX4) coated with magnetic Fe3O4 nanoparticles, Journal of Nanostructure in Chemistry. 3: 58(2013).

21.          Jafari A., Raheb J., Bardania H. and Rasekh B. Isolation, cloning and expression of rhamnolipid Operon from Pseudomonas aeroginosa ATCC 9027 in Logarithmic phase in E. coli BL2. American Journal of Life Sciences. 2(6-3): 22-30 (2014).

22.          Biodesulfurization of Gasoline. A Technology Road Map. Energy System Division. Argonne National Laboratory. United States Department of Energy (1998).

23.          Ketesz M. A., Schmidt – Larbig T. and Wust K. A novel reduced flavin mononucleotide – dependent methanesulfonate sulfonatase encoded by the sulfur – regulated msu operon of Pseudomonas aeruginosa. J.Bacteriol. 181: 1464-1473 (1999).

24.          Gray KA., Pogrebinsky OS., Mrachko GT., Xi L., Monticello D.J. and Squires C.H. Molecular mechanism of biocatalytic desulfurization of fossil fuels. Nat Biotechnol. 14: 1705–9 (1996).

25.          Edmonds P. and Cooney J. J. Lipids of Pseudomonas aeruginosa cells grown on hydrocarbons and on trypticase soybean broth. J. Bacteriol. 98: 16–22 (1969).

26.          Raheb J., Mohebali G., Hajipour M.J. and Memari B. A novel indigenous Gordonia RIPI species identified with reduction in energy consuming in desulfurization process. Energy source part A, recovery utilization and environmental effects. 33: 2125-2131 (2009).  

27.          Raheb J. and Yakhchali B. Genetic analysis of biodesulfurizing bacteria isolated in IRAN.  Journal of Sciences IslamicRepublic of Iran. 11(3 and 4): 1-12 (2002). 

28.          Bandyopadhyay S., Chowdhury R. and Bhattacharjee C. K. Study of Production of Biosurfactant and Biodesulfurisation of Spent Engine Oil using Rhodococcus sp. CHEMCON. NIT Jalandhar, Jalandhar, India. Dec 26–30. (2012).

29.          Ohshiro T. and Izumi Y. Microbial desulfurization of organic sulfur compounds in petroleum. Biosci. Biotechnol. Biochem. 63:1-9. (1999).

30.          Setti L., Farinelli P. and Di Martino S. Developments in destructive and non-destructive pathways for selective desulfurization in oil biorefining processes. Appl. Microbiol. Biotechnol. 52: 111-117. (1999).

31.          Soleimani M., Bassi A. and Margaritis A. Biodesulfurization of refractory organic sulfur compounds in fossil fuels. Biotechnology Advances. 25: 570-596. (2007).

32.          Laborde A.L. and Gibson D.T. Metabolism of Dibenzothiophene by a Beijerinkia species. Appl Environ Microbiol,  24: 783–90. (1977).

33.          Dyroff G.V. Manual on Significance of Tests for Petroleum Products. 5th ed. ASTM. Philadelphia.169 pp. (1989) .

34.          Folsom B.R., Schieche D.R., Digrazia P.M., Werner J. and Palmer S. Microbial desulfurization of alkylated Dibenzothiophenes from a hydrodesulfurIzed Middle distillate by Rhodococcus erythropolis I-19. Appl Environ Microbiol. 65: 4967–9972. (1999).

35.          Ohmori T., Monna L.,  Saiki Y. and Kodama T. Desulfurization of Dibenzothiophene by Corynebacteria sp. Strain SY1. Appl. Environ. Microbiol. 8: 911-915. (1992).

36.          AkbarzadehS., RahebJ., Aghaei A. and Karkhane A.A. Study of desulfurization rate in Rhodococcus FMF native bacteria. Iran. J. Biotechnol. 1(1): 36-40. (1992).

37.          Beatriz G., Eduado D. and Jose L.G. Enhancing desulfurization by engineering a flavin reductase- encoding gene cassette in recombinant biocatalysts. Environmental Microbiology, 2(6): 687-694. (2000).

38.          Gallardo M.E., Ferrandez A.,  De Lorenzo V., Garcı´a  J. L. and Dı´az E. Designing recombinant Pseudomonas strains to enhance biodesulfurization. J Bacteriol 179: 7156–7160. (1997).

39.          Oldfield C.,  Pogrebinsky O.,  Simmonds J.,  Olson E. S. and Kulpa C. F. Elucidation of the metabolic pathway for Dibenzothiophene desulfurization by Rhodococcus sp. strain IGTS8 (ATCC53968968). Microbiology. 143: 2961–2973. (1997). 

40.          Piddington C. S.,  Kovacevich  B. R. and Rambosek J. Sequence and molecular characterization of a DNA region encoding the Dibenzothiophene desulfurization operon of Rhodococcus sp. strain IGTS8. Appl Environ Microbiol. 61. 468–475. (1995).

41.          Beil S., Kehrli H. and James P. Purification and characterization of the arylsulfatase synthesized by Pseudomonas aeruginosa PAO during growth in sulfate-free medium and cloning of the arylsulfatase gene (atsA). Eur. J. Biochem. 229: 385-394. (1995).

42.          Banat I. M., Makkar R. S. and Cameotra S. S. Potential commerical applications of microbial surfactants. Appl. Microbiol. Biotechnol. 53: 495-508. (2000).

43.          Gray K.A.,  Squires C. H. and Monticello D. J. DszD utilization in desulfurization of DBT by Rhodococcus sp. IGTS8. US Patent no. 5: 846 813. (1998).

44.          Raheb J., Naghdi S. and Yakhchali B. Designing a new Recombinant strain with additional copy number to enhance biodesulfurization activity in Pseudomonas aeruginosa ATCC9027. Iranian Journal of Science & Technology. 29: 195-199. (2005).

45.          Raheb J. and Hajipour M.J. The stable rhamnolipid biosurfactant production in genetically engineered pseudomonas strain reduced energy consumption in biodesulfurization. Energy source part A, recovery utilization and environmental effects. 33: 2113-2121. (2009).

46.          Raheb J., Memari B. and Hajipour M.J. Gene manipulated desulfurizing strain Pseudomonas Putida reduced energy consuming in biodesulfurization process. Energy source part A, recovery utilization and environmental effects. 33: 2018-2026. (2009).   

47.          Monticello D. J., Bakker D. and Finnerty W. R. Plasmid-mediated degradation of dibenzothiphene by Pseudomonas species. Appl. Envir. Microbiol. 49(4):756-760. (1985).

48.          Raheb J ., Hajipour M.J. and Memari B. Increasing of Biodesulfurization activity of newly recombinant Pseudomonas aeruginosa ATCC 9027 by cloning the Flavin reductase gene. International Journal of Biotechnology and Biochemistry. 2(6): 217-227. (2009).

49.          Raheb J., Hajipour M.J. and Memari B. Evaluation of the Conserve flavin reductase gene from Three Rhodococcus sp. Strains Isolated in IRAN. African Journal of Biotechnology. 24 (5): 6745-6749. (2009). 

50.          Raheb J ., Ghaffari S., Hajipour  M.J., Memari B. and Kefayati M.S. The In Vitro Effects of Rhamnolipid Biosurfactant on Biodesulfurization Activity of the Resting Cells of Genetically Engineered Strain Pseudomonas aeroginosa ATCC9027. Energy source part a, recovery utilization and environmental effects.  34: 1318-1325. (2012). 

51.          Matsui T., Hirasawa K. and Koizumi K. Optimization of the copy number of Dibenzothiophene desulfurizing genes to increase the desulfurization activity of recombinant Rhodococcus sp. Biotechnology Letters. 23(20). 1715-1718. (2001).

52.          Li M. Z., Squires C. H. and Monticello D. J. Genetic analysis of the DSZ promoter and associated regulatory regions of Rhodococcus erythropolis IGTS8. J. Bacteriol. 178: 6409-6418. (1996).

53.          Duarte G. F., sado A. S. and  Seldin L. Analysis of bacterial community stucture in sulfurous – oil – contaIning soils and dection of species carrying  Dibenzothiophene desulfurization (dsz) genes. Appl. Envir. Microbiol. 67: 1052- 1062. (2001).

54.          Rasekh B. The Rhodococcus Eritropolis Desulfurization operon under the influence of expression of Oxidoreductase gene. M.S.C thesis. University of Imam Hussein (AS) Tehran. (2004).

55.          Solano-Serena F., Marchal R. and Ropars M. Biodegradation of gasoline: kinetics, mass balance and fate of individual hydrocarbons. J. Appl. Microbiol. 86: 1008-1016. (1999).

56.          Grossman M. J., Lee M. K. and Prince R. C. Microbial desulfurization of a crude oil middle-distillate fraction: analysis of the extent of sulfur removal and the effect of removal on remaining sulfur. Appl. Envir. Microbiol. 65: 181-188. (1999).

57.          Pim L.F. van den Bosch. Biological sulfide oxidation by natron-alkaliphilic bacteria. Application in Gas Desulfurization. Ph.D Thesis. Wageningen University. Wageningen. The Netherland. (2008).

58.          Syed M., Soreanu G., Falletta P. and Beland M. Removal of hydrogen sulfide from gas streams using biological process-A review. Canadian Biosystems Engineering. 48: 219-214. (2006).

59.          Weiland P. Biogas production: current state and perspectives. Appl. Microbiol.Biotechnol. 85: 849–860. (2010).

60.          Ramírez M., Almenglo F., Fernández M., Gómez G.M. and Cantero D. Bio-desulphurisation of H2S – bearing industrial gas streams, in Biohydrometallurgical Processes: A practicalapproach, CETEM/MCTI. Rio de Janerio. pp. 271–290. (2011).

61.          Li G., Zhang Z., Sun H., Chen J., An T. and Li B. Pollution profiles, health risk ofVOCs and biohazards emitted from municipal solid waste transfer station andelimination by an integrated biological-photocatalytic flow system: a pilot-scale investigation. J. Hazard. Mater. 250–251: 147–154. (2013).

62.          Jiang R., Huang S., Chow A.T. and Yang J. Nitric oxide removal from flue gas witha biotrickling filter using Pseudomonas putida, J. Hazard. Mater. 164: 432–441. (2009).

63.          Ramírez-Sáenz D.,  Zarate-Segura P.B., Guerrero-Barajas C. and  García-Pe˜na E.I.  H2S and volatile fatty acids elimination by biofiltration: clean-up process for biogaspotential use, J. Hazard. Mater. 163: 1272–1281. (2009).

64.          Chaiprapat S., Mardthing R., Kantachote D. and Karnchanawong S. Removal ofhydrogen sulfide by complete aerobic oxidation in acidic biofiltration. Process Biochem. 46: 344–352. (2011).

65.          Xingbiao W., Yanfen X., Sanqing Y., Zhiyong H. and Yanhe M. Influences of microbial community structures and diversity changes by nutrients injection in Shengli oilfield. China. J. Petrol. Sci. Eng. 133: 421–430. (2015). 

66.          Rossi G. Biodepyritization of coal: achievements and problems. Fuel. 72(12): 1581–1592. (1993).

67.          Loi G., Mura A., Rossi G., Trois P. and Torres T.P. biodepyritization pilot plant: lightand shade of one year operation. Fuel Process Technol. 40: 261–268. (1994).

68.          Xiao M., Zhang Z.Z., Wang J.X., Zhang G.Q. and Luo Y.J. Bacterial community diversity in a low-permeability oil reservoir and its potential  for enhancing oil recovery. Bioresour. Technol., 147: 110-116 (2013).

69.          Xingbiao W., Yanfen X., Sanqing Y., Zhiyong H. and Yanhe M. Influences of microbial community structures and diversity changes by nutrients injection in Shengli oilfield, China.  J. Petrol. Sci. Eng., 133: 421–430 (2015).

70.          Gao P.K. Dynamic processes of indigenous microorganisms from a low-temperature petroleum reservoir during nutrient stimulation. J. Biosci. Bioeng., 117: 215–221 (2014).

71.          Li G. Microbial abundance and community composition influence production performance in a low-temperature petroleum reservoir. Environ. Sci. Technol., 48: 336–5344 (2014).

72.          Al-Bader D., Kansour M., Rayan R. and Radwan S. Biofilm comprising phototrophic, diazotrophic, and hydrocarbon-utilizing bacteria: A promising consortium in the bioremediation of aquatic hydrocarbon pollutants. Environ. Sci. Pollut. R., 20: 3252–3262 (2013).

73.          Teramoto M., Ohuchi M., Hatmanti A., Darmayati Y. and Widyastuti Y. Oleibacter marinus gen. nov., sp. nov., a bacteria that degrades petroleum aliphatic hydrocarbons in a tropical marine environment. Int. J. Syst. Evol. Microbiol., 61: 375–380 (2011).

74.          Martínez I., Mohamed M.E., Rozas D., García J.L. and Díaz E. Engineering synthetic bacterial consortia for enhanced desulfurization and revalorization of oil sulfur compounds. Metab. Eng., 35: 46–54 (2016).

75.          Mohamed M.E.S., Al-Yacoub Z.H. and Vedakumar J.V. Biocatalytic desulfurization of thiophenic compounds and crude oil by newly isolated bacteria. Front. Microbiol. 6: 112 (2015).

76.          Li W. and Jiang X. Enhancement of bunker oil biodesulfurization by adding surfactant. World. J. Microbiol. Biotechnol, 29: 103-108 (2013).

77.          Jiang X., Yang S. and Li W. Biodesulfurization of model compounds and de-asphalted bunker oil by mixed culture. Appl. Biochem. Biotechnol. 172: 62-72 (2014).

78.          Aggarwal S., Karimi I.A. and Ivan G.R. In silico modeling and evaluation of Gordonia alkanivorans for biodesulfurization. Mol. Biosyst., 9: 2530-2540 (2013).

79.          Abin-Fuentes A., Mohamed Mel-S., Wang D.I. and Prather K.L. Exploring. The mechanism of biocatalyst inhibition in microbial desulfurization. Appl. Environ. Microbiol. 79: 7807-7817 (2013).