Document Type : Main File (First File)


1 1 Department of Mining Engineering, Higher Education Complex of Zarand, Zarand, Islamic Republic of Iran.

2 Department of Chemistry, Payam-e Noor University (PNU), 19395-4697 Tehran, Islamic Republic of Iran.


A new catalyst was prepared by promoting fly ash with hydrogen peroxide. The catalytic activity of H2O2 promoted fly ash (HPFA) was evaluated by synthesis 5(4H)-oxazolone and imidazolone derivatives under solvent free conditions. The possible mechanisms of synthesis reactions were also suggested. These proposed methods benefit in terms of low-cost catalyst, high yields, ease of workup, survival of different functional groups, reusability of the catalyst and short reaction time. These advantages render HPFA to be a promising catalyst for synthesis of organic materials.


Rani A., Khatri C., and Hada R. Fly ash supported scandium triflate as an active recyclable solid acid catalyst for Friedel-Crafts acylation reaction. Fuel Process. Technol. 116: 366–373 (2013).
2. Çiçek T., and Çinçin Y. Use of fly ash in production of light-weight building bricks. Consture. Buil. Mater. 94: 521–527 (2015).
3. Basu M., Pande M., Bhadoria P.B.S., and Mahapatra S.C. Potential fly-ash utilization in agriculture: A global review. Prog. Nat. Sci. 19: 1173–1186 (2009).
 4. Qi G., Lei X., Li L., Sun Y., Yuan C., Wang B., Yin L., Xu H., and Wang Y. Coal fly ash-derived mesoporous calcium-silicate material (MCSM) for the efficient removal of Cd(II), Cr(III), Ni(II) and Pb(II) from acidic solutions. P. Inviron. Sci. 31: 567–576 (2016).
 5. Ahmaruzzaman M. Role of fly ash in the removal of organic pollutants from wastewater. Energy Fuel. 23(3): 1494–1511 (2009).
6. Duta A., and Visa M. Simultaneous removal of two industrial dyes by adsorption and photocatalysis on a fly-ash–TiO2 composite. J. Photoch. Photobio. A. 306: 21–30 (2015).
7. Saputra E., Muhammad S., Sun H., Ang H.M., Tadé M.O., and Wang S. Red mud and fly ash supported Co catalysts for phenol oxidation. Catal. Today, 190: 68-72 (2012).
 8. Srivastava K., Devra V., and Rani A., Fly ash supported vanadia catalyst: An efficient catalyst for vapor phase partial oxidation of toluene in a micro-reactor. Fuel. Process. Technol. 121: 1-8 (2014).
9. Mazumder N.A., and Rano R. An efficient solid base catalyst from coal combustion fly ash for green synthesis of dibenzylideneacetone. J. Ind. Eng. Chem. 29: 359–365 (2015).
 10. Rani A., Khatri C., and Hada R. Fly ash supported scandium triflate as an active recyclable solid acid catalyst for Friedel–Crafts acylation reaction. Fuel. Process. Technol. 116: 366-373 (2013).
 11. Gopalakrishnan M., Sureshkumar P., Kanagarajan V., Thanusu J., and Govindaraju R.A. Simplified green chemistry approaches to organic synthesis in solid media. Activated fly ash, an industrial waste (pollutant) as an efficient and novel catalyst for some selected organic reactions in solvent-free conditions under microwave irradiation. ARKIVOC, Xiii: 130–141 (2006).
 12. Khatri C., Jain D., and Rani A. Fly ash-supported cerium triflate as an active recyclable solid acid catalyst for Friedel–Crafts acylation reaction. Fuel. 89(12): 3853–3859 (2010).
13. Jain D., Khatri C., and Rani A. Fly ash supported calcium oxide as recyclable solid base catalyst for Knoevenagel condensation reaction. Fuel Process. Technol. 91(9): 1015–1021 (2010).
 14. Jain D., Mishra M., and Rani A. Synthesis and characterization of novel aminopropylated fly ash catalyst and its beneficial application in base catalysed Knoevenagel condensation reaction. Fuel Process.Technol. 95: 119–126 (2012).
 15. Bazgir A., Seyyedhamzeh M., Yasaei Z., and Mirzaei P.A novel three- component method for the synthesis of triazolo[1,2-a]indazole-triones. Tetrahedron Lett. 48: 8790– 8794 (2007).
16. Jiang J., Luo S., and Castle S. L. Solid-phase synthesis of peptides containing bulky dehydroamino acids. Tetrahedron Lett. 56: 3311– 3313 (2015).
 17. Ruffoni A., Casoni A., Pellegrino S., Gelmi M. L., Soave R., and Clerici F. Sulfanyl-methylene-5(4H)-oxazolones and β-sulfanyl-α-nitroacrylates as appealing dienophiles for the synthesis of conformationally constrained cysteine analogues. Tetrahedron, 68(7): 1951–1962 (2012).
18. Kino K., Takao M., Miyazawa H., and Hanaoka F. A DNA oligomer containing 2,2,4-triamino-5(2H)-oxazolone is incised by human NEIL1 and NTH1. Mutat. Res-Fund. Mol. M. 734: 73-77 (2012).
19. Esmaeili A.A., Shahmansouri S., Habibi A., and Fakhari A.R. Diastereoselective synthesis of 5-iminooxazolines and their subsequent transformation to α,α-disubstituted dipeptide esters: a formal [4+1] cycloaddition reaction of cyclohexyl isocyanide and Z-alkyl-α-benzoyl amino-acrylates. Tetrahedron, 68: 8046–8051 (2012).
20. Takács E., Berente Z., Háda V., Mahó S., Kollár L., and Skoda-Földes R. Synthesis of new steroidal derivatives by the reaction of steroid–amino acid conjugates with N,N′-dicyclohexyl-carbodiimide. Unusual formation of steroidal imide derivatives. Tetrahedron, 65: 4659–4663 (2009).
21. Kim J.S., Shin M., Song J.S., An S., and Kim H. J. C-terminal de novo sequencing of peptides using oxazolone-based derivatization with bromine signature. Anal. Biochem. 419: 211–216 (2011).
22. Funding A.T., Johansen C., Gaestel M., Bibby B.M., Lilleholt L.L., Kragballe K., and Iversen L. Reduced oxazolone-induced skin inflammation in MAPKAP kinase 2 knockout mice. J. Invest. Dermatol. 129: 891-898 (2009).
23. Gelmi M.L., Clerici F., and Melis A. 5 (4H)-Oxazolones. part X. acid and base effects on the translactonization reaction of 4-(2-oxa-alkylidene)-5(4H)- oxazolones: new synthesis of 5-alkylidene-3-benzoylamino-2(5H)-furanones. Tetrahedron, 53(5): 1843–1854 (1997).
24. Ranjbaran E.S., Khosropour A.R., and Baltork I.M. A domino approach for the synthesis of naphtho[2,1-b]furan-2(1H)-ones from azlactones. Tetrahedron, 70(48): 9268–9273 (2014).
25. Zhou M.Q., Zuo J., Cui B.D., Zhao J.Q., You Y., Bai M., Chen Y.Z., Zhang X.M., and Yuan W.C. Organocatalytic asymmetric double Michael reaction of Nazarov reagents with alkylidene azlactones for the construction of spiro-fused cyclohexanone/5-oxazolone system. Tetrahedron, 70: 5787–5793 (2014).
 26. Dong H., Song S., Li J., Xu C., Zhang H., and Ouyang L. The discovery of oxazolones-grafted spirooxindoles via three-component diversity oriented synthesis and their preliminary biological evaluation. Bioorg. Med. Chem. Lett. 25: 3585-3591 (2015).
27. Cordaro M., Grassi G., Risitano F., and Scala A. N-Substituted and N-unsubstituted 1,3-Oxazolium-5-olates cycloaddition reactions with 3-substituted coumarins. Tetrahedron, 66: 2713–2717 (2010).
28. Kojima S., Ohkawa H., Hirano T., Maki S., Niwa H., Ohashi M., Inouye S., and Tsuji F.I. Fluorescent properties of model chromophores of tyrosine-66 substituted mutants of Aequorea green fluorescent protein (GFP). Tetrahedron Lett. 39(29): 5239–5242 (1998).
29. Beccalli E.M., Clerici F., and Gelmi M.L. 5(4H)-oxazolones. Part XIII. A new synthesis of 4-ylidene-5(4H)-oxazolonesby the Stille reaction. Tetrahedron, 55(3): 781–786 (1999).
30. Dhingra A.K., Chopra B., Dass R., and Mittal S.K. Synthesis, antimicrobial and anti-inflammatory activities of some novel 5-subs ituted imidazolone analogs. Chin. Chem. Lett. 27: 707–710 (2016).
31. Saravanan S., Selvan P.S., Gopal N., Gupta J.K., and De B. Synthesis and antibacterial activity of some imidazole‐5‐(4H) one derivatives. Arch. Pharm. Chem. Life Sci. 338: 488–492 (2005).
32. Li Y.W., Liu J., Liu N., Shi D., Zhou X.T., Lv J.G., Zhu J., Zheng C.H., and Zhou Y.J. Imidazolone–amide bridges and their effects on tubulin polymerization in cis-locked vinylogous combretastatin-A4 analogues: Synthesis and biological evaluation. Bioorg. Med. Chem. 19: 3579-3584 (2011).
33. Melha S.A. Synthesis, antimicrobial evaluation and spectroscopic characterization of novel imidazolone, triazole and triazinone derivatives. Spectrochim. Acta A. 96: 898-905 (2012).
34. Ahmadi S.J., Sadjadi S., and Hosseinpour M. A green protocol for Erlenmeyer–Plöchl reaction by using iron oxide nanoparticles under ultra sonic irradiation. Ultrason. Sonochem. 20: 408-412 (2013).
35. Anandgaonker P., Kulkarni G., Gaikwad S., and Rajbhoj A. Nanocrystalline titanium dioxide catalyst for the synthesis of azlactones. Chin. J. Catal. 35: 196-200 (2014).
36. Moghanian J., Shabanian M., and Jafari H. Microwave-assisted efficient synthesis of azlactone derivatives using TsCl/DMF under solvent-free conditions. C. R. Chimie. 15: 346-349 (2012).
37. Cleary T., Brice J., Kennedy N., and Chavez F. One-pot process to Z-a-benzoylamino-acrylic acid methyl esters via potassium phosphate-catalyzed Erlenmeyer reaction. Tetrahedron Lett. 51: 625-628 (2010).
38. Cleary T., Rawalpally T., Kennedy N., and Chavez F. Catalyzing the Erlenmeyer Plöchl reaction: organic bases versus sodium acetate. Tetrahedron Lett. 51: 1533-1536 (2010).
39. Hamidian H., Tagizadeh R., Fozooni S., Abbasalipour V., Taheri A., and Namjou M. Synthesis of novel azo compounds containing 5(4H)-oxazolone ring as potent tyrosinase inhibitors. Bioorg. Med. Chem. 21: 2088-2092 (2013).
40. Rostami M., Khosropour A.R., Mirkhani V., Mohammadpoor-Baltork I., Moghadam M., and Tangestaninejad S. [C6(MIm)2]2W10O32. 2H2O: A novel and powerful catalyst for the synthesis of 4-arylidene-2-phenyl-5(4)-oxazolones under ultrasonic condition. C. R. Chimie. 14: 869-877 (2011).
41. Romanelli G., Autino J.C., Vázquez P., Pizzio L., Blanco M., and Cáceres C. A suitable synthesis of azlactones (4-benzylidene-2-phenyloxazolin-5-ones and 4-alkylidene-2-phenyloxazolin-5-ones) catalyzed by silica–alumina supported heteropolyacids. Appl. Catal. A-Gen. 352: 208-213 (2009).
42. Pattarawarapan M., Jaita S., and Phakhodee W. A convenient synthesis of 4-arylidene-2-phenyl-5(4H)-oxazolones under solvent-assisted grinding. Tetrahedron Lett. 57: 3171-3174 (2016).
43. Verschave P., Vekemans J., and Hoornaert G. N-Acylated α-aminonitriles and their conversion into 5-amino oxazole, 5(4H)-oxazolone and 4(5H)-imidazolone derivatives. Tetrahedron, 40(12): 2395–2404 (1984).
44. Cornforth J.W., and Huang H.T. The condensation of benzamidine with α-diketones. J. Chem. Soc. 731–735 (1948).
45. Bezenšek J., Grošelj U., Stare K., Svete J., and Stanovnik B. Transformations of enaminones. A simple one-pot synthesis of imidazolone derivatives. Tetrahedron, 68: 516-522 (2012).
46. Fozooni S., and Tikdari A.M. Microwave-assisted graphite-support synthesis of imidazolones. Catal. Lett. 120: 303–306 (2008).
 47. Lin J.X., Zhan S.L., Fang M.H., Qian X.Q., and Yang H. Adsorption of basic dye from aqueous solution onto fly ash. J. Environ. Manag. 87(1):193–200 (2008).
48. Zhang A., Wang N., Zhou J., Jiang P., and Liu G. Heterogeneous Fenton-like catalytic removal of p-nitrophenol in water using acid-activated fly ash. J. Hazard. Mater. 201–202: 68–73 (2012).
 49. Zhou L., Chen Y.L., Zhang X.H., Tian F.M., and Zu Z.N. Zeolites developed from mixed alkali modified coal fly ash for adsorption of volatile organic compounds. Mater. Lett. 119: 140–142 (2014).
 50. Malakootian M., Mesdaghinia A.R., and Rezaei Sh. Efficiency of ortho- chlorophenol removal from aqueous solutions using activated fly ash of Zarand fossil fuel power plant. Sci. J. Sch. Pub. Health Inst. Pub. Health Res. 12(2): 81–92 (2014).
51. Jackson L.M. Soil Chemical Analysis, 2nd ed. Adv. Course: New York, (1974).
52. Kantiranis N., Filippidisa A., Mouhtarisa Th., Paraskevopoulos K.M., Zorba T., Squires C., and Charistos D. EPI-type zeolite synthesis from Greek sulphocalcic fly ashes promoted by H2O2 solutions. Fuel. 85: 360–366 (2006).
53. Hosseini E. Crystals and Minerals. Ruykard-e Novin Publishing Cooperation, Tehran, (2000).
54. Rickwood P.C. The largest crystals. Am. Mineral. 66: 885–907 (1981).
55. Mouhtaris T., Christos D., Kantiraniset N., Filippidis A., Kassoli-Fournaraki A., and Tsirambidis A. GIS-type zeolite synthesis from Greek lignite sulphocalcic fly ashes promoted by NaOH solutions. Micropor. Mesopor. Mat. 61(1–3): 57–67 (2003).
56. Mohajerani B., and Sahafi S.M. Catalysis: Properties, Preparation, Evaluation, and Performance. Publication of Research Institute of Petroleum Industry, Tehran, (2012).
57. Crawford M., and Little W.T. The Erlenmeyer reaction with aliphatic aldehydes, 2- phenyloxazol-5-one being used instead of hippuric acid. J. Chem. Soc. 729–731 (1959).
58. Kumar P., Mishra H.D., and Mukherjee A.K. Condensation of 2-substituted 5-oxo-4, 5-dihydro-1, 3-oxazoles with imines and their corresponding carbonyl compounds. Synthesis, 836–839 (1980).
59. Kidwai A.R., and Devasia G.M. A new method for the synthesis of amino acids. synthesis of amino acids and their derivatives through 2,4-disubstituted 2-imidazolin-5-ones. J. Org. Chem. 27: 4527-4531 (1962).
60. Shi Feng., Zeng X.N., Wu F.Y., Yan S., Zheng W.F., and Tu S.J. Efficient microwave-assisted synthesis and antioxidant activity of 4-arylidene-2-phenyl-1H-imidazol-5(4H)-ones. J. Heterocyclic. Chem. 49(1): 59 – 63 (2012).
61. Jia R.,Yan S., Jiang B., Shi F., and Tub S.J. Extension of a cascade reaction: microwave-assisted synthesis of the GFP chromophore derivatives. J. Heterocyclic. Chem. 47(2): 354 – 357 (2010).
62. Chavez F., Pavy C., Williamson T., and Cleary T. A practical and efficient synthesis of 2,5-disubstituted-3,5-dihydro-imidazol-4-ones from oxazolones. Synthetic Commun. 42(22): 3321-3327 (2012).