Document Type: Final File


Young Researchers and Elite Club, Shahreza Branch, university of Islamic Azad, Shahreza, Islamic Republic of Iran


A novel method for the preparation of α-zirconium phosphate (ZrP) nanoparticles as an eco-friendly and recyclable heterogeneous catalyst was studied. Polyethylene glycol (PEG) was used as the organic matrix which produced a better dispersion of ZrP nanoparticles. The catalyst was characterized by several physico-chemical techniques such as ICP-OES, XRD, TPD-NH3, pyridine-FTIR, BET, FTIR, TGA, SEM and TEM. The acidic property of ZrP was studied in the protection of aldehydes with acetic anhydride (AA) in the at room temperature. The deprotection of 1,1-diacetates has also been achieved using this catalyst in water. The procedure is operationally simple, environmentally benign and only a stoichiometric amount of AA is used. The catalyst was recovered easily from the reaction mixture, regenerated, and reused at least eight times without significant loss in catalytic activity.


1.            Sinhamahapatra A., Sutradhar N., Roy B., Tarafdar A., Bajaj H.C. and Panda A.B. Mesoporous zirconium phosphate catalyzed reactions: Synthesis of industrially important chemicals in solvent-free conditions. Appl. Catal., A 385: 22-30 (2010).

2.            Tarafdar A., Panda A.B., Pradhan N.C. and Pramanik P. Synthesis of spherical mesostructured zirconium phosphate with acidic properties Microporous Mesoporous Mater. 95: 360-365 (2006).

3.            Karimi H. An Efficient Selective Oxidation of Alcohols with Zinc Zirconium Phosphate under Solvent-free Conditions. J. Chin. Chem. Soc. 62: 604-613 (2015).

4.            Diaz A., Gonzalez M.L., Perez R.J., David A., Mukherjee A., Baez A., Clearfield A. and Colon J.L. Direct intercalation of cisplatin into zirconium phosphate nanoplatelets for potential cancer nanotherapy. Nanoscale 5: 11456-11463 (2013).

5.            Ziarelli F., Casciola M., Pica M., Donnadio A., Aussenac F., Sauvee C., Capitani D. and Viel S. Dynamic nuclear polarisation NMR of nanosized zirconium phosphate polymer fillers. Chem. Commun. 50: 10137-10139 (2014).

6.            Li D., Zhang Y. and Zhou B. pH-responsive drug delivery system based on AIE luminogen functionalized layered zirconium phosphate nano-platelets. J. Solid State Chem. 225: 427-430 (2015).

7.            Saxena V., Diaz A., Clearfield A., Batteas J.D. and Hussain M.D. Zirconium phosphate nanoplatelets: a biocompatible nanomaterial for drug delivery to cancer. Nanoscale, 5: 2328-2336 (2013).

8.            Tahara S., Takakura Y. and Sugahara Y. Preparation of alpha-Zirconium Phosphate from Fluorozirconate and Phosphoric Acid by Liquid-phase Deposition. Chem. Lett. 41: 555-557 (2012).

9.            Gan H., Zhao X., Song B., Guo L., Zhang R., Chen C., Chen J., Zhu W. and Hou Z. Gas phase dehydration of glycerol to acrolein catalyzed by zirconium phosphate. Chin. J. Catal. 35: 1148-1156 (2014).

10.          Shuai M., Mejia A.F., Chang Y.-W. and Cheng Z. Hydrothermal synthesis of layered α-zirconium phosphate disks: control of aspect ratio and polydispersity for nano-architecture. Cryst. Eng. Comm. 15: 1970-1977 (2013).

11.          Feng Y., He W., Zhang X., Jia X. and Zhao H. The preparation of nanoparticle zirconium phosphate, Mater. Lett. 61(14–15): 3258-3261 (2007).

12.          Hajipour A.R. and Karimi H. Synthesis and characterization of hexagonal zirconium phosphate nanoparticles. Mater. Lett. 116: 356-358 (2014).

13.          Díaz A., Saxena V., González J., David A., Casañas B., Carpenter C., Batteas J.D., Colón J.L., Clearfield A. and Hussain M.D. Zirconium phosphate nano-platelets: a novel platform for drug delivery in cancer therapy. Chem. Commun. 48: 1754-1756 (2012).

14.          Gupta V.K., Pathania D., Singh P., Rathore B.S. and Chauhan P. Cellulose acetate-zirconium (IV) phosphate nano-composite with enhanced photo-catalytic activity. Carbohydr. Polym. 95: 434-440 (2013).

15.          Yu S., Gao X., Baigude H., Hai X., Zhang R., Gao X., Shen B., Li Z., Tan Z. and Su H. Inorganic Nanovehicle for Potential Targeted Drug Delivery to Tumor Cells, Tumor Optical Imaging. ACS Appl. Mater. Interfaces 7: 5089-5096 (2015).

16.          Topkaya R., Kurtan U., Baykal A. and Toprak M.S. Polyvinylpyrrolidone (PVP)/MnFe2O4 nanocomposite: Sol–Gel autocombustion synthesis and its magnetic characterization. Ceram. Int. 39: 5651-5658 (2013).

17.          Tang M., Yang T. and Zhang Y. A brief review on α-zirconium phosphate intercalation compounds and nano-composites. Sci. Chin. Technol. Sci. 59: 436-441 (2015).

18.          Wuts P.G. and Greene T.W. Greene's protective groups in organic synthesis: John Wiley & Sons; (2006).

19.          Zareyee D., Mirzajanzadeh E. and Khalilzadeh M.A. Green procedures for the chemoselective synthesis of acylals and their cleavage promoted by recoverable sulfonic acid based nanoporous carbon (CMK-5-SO3H), J. Chem. Sci. 127: 1229-1234 (2015).

20.          Hoseinabadi Z., Pourmousavi S.A., Zamani M. Synthesis of sulfonated carbon-based solid acid as a novel and efficient nanocatalyst for the preparation of highly functionalized piperidines and acylals: a DFT study. Res. Chem. Intermed. 42: 6105-6124 (2016).

21.          Rezayati S., Hajinasiri R., Erfani Z. Microwave-assisted green synthesis of 1,1-diacetates (acylals) using selectfluor™ as an environmental-friendly catalyst under solvent-free conditions. Res. Chem. Intermed. 42: 2567-2576. (2016).

22.          Nabid M.R., Tabatabaei Rezaei S.J., Abedi M. Conjugate Polymer-Supported Acid Catalysts: An Efficient and Reusable Catalyst for the Synthesis of Geminal Diacetates (Acylals) Under Solvent-Free Conditions. Synth. Commun. 41: 191-199 (2010).

23.          Parshad M., Verma V., Kumar D., Narasimhan B., Kour S., Singh S. and Sangwan P. Iodobenzene diacetate-mediated isomerization of pyrazolyl chalcones and their cytotoxicity and anti-microbial activity. J. Chem. Sci. 127: 413-423 (2015).

24.          Nemati F., Afkham M.G., Elhampour A. Nano-Fe3O4-encapsulated silica particles bearing sulfonic acid groups as a magnetically separable catalyst for green synthesis of 1,1-diacetates. Green Chem. Lett. Rev. 7: 79-84 (2014).

25.          Shirini F. and Khaligh N.G. A succinimide-N-sulfonic acid catalyst for acetylation reactions in absence of a solvent. Chin. J. Catal. 34: 695-703 (2013).

26.          Zareyee D., Moosavi S.M. and Alaminezhad A. Chemoselective synthesis of geminal diacetates (acylals) using eco-friendly reusable propylsulfonic acid based nanosilica (SBA-15-Ph-PrSO3H) under solvent-free conditions. J. Mol. Catal. A: Chem. 378: 227-231 (2013).

27.          Zong Y.X., Wang J.K., Niu Y.Y., Li Z.L., Song Z.E., Quan Z.J., Wang X.C., Yue G.R. and Pan Y. PEG-SO3H as an efficient and reusable catalyst for chemoselective synthesis of 1,1-diacetates. Chin. Chem. Lett. 24: 140-142 (2013).

28.          Palacios-Grijalva L.N., Cruz-González D.Y., Lomas-Romero L., González-Zamora E., Ulibarri G. and Negrón-Silva G.E. Sulphated zirconia as an eco-friendly catalyst in acylal preparation under solvent-free conditions, acylal deprotection assisted by microwaves, and the synthesis of anhydro-dimers of o-hydroxybenzaldehydes. Molecules 14: 4065-4078 (2009).

29.          Yan-Jun, Z., Jiang, L., Jun-Jin, L., Yu-Cai, J., Bao-Lin, L. Chemoselective Synthesis of 1, 1-Diacetate from Aldehydes Catalyzed by Sulfonated Carbon Nanocage. Chem. J. Chin. Univ. 34: 2738-2744 (2013).

30.          Rahmatpour A. and Mohammadian S., Polystyrene-supported TiCl4 as a novel, efficient and reusable polymeric Lewis acid catalyst for the chemoselective synthesis and deprotection of 1,1-diacetates under eco-friendly conditions. C. R. Chim. 16: 912-919 (2013).

31.          Esmaeilpour M., Sardarian A.R. and Javidi J. Schiff base complex of metal ions supported on superparamagnetic Fe3O4@SiO2 nanoparticles: An efficient, selective and recyclable catalyst for synthesis of 1,1-diacetates from aldehydes under solvent-free conditions. Appl. Catal., A 445-446: 359-367 (2012).

32.          Brojeni S.P., Baghernejad M., Saberi D. and Niknam K., Silica immobilized sulfuric acid ([3-(propyl)sulfanyl]propyl]ester and N-propylsulfamic acid as recyclable catalysts for chemoselective synthesis of 1,1-diacetates. Green Chem. Lett. Rev. 6: 69-75 (2013).

33.          Kannasani R.K., Peruri V.V.S., Battula S.R. NaHSO4-SiO2 as an efficient and chemoselective catalyst, for the synthesis of acylal from aldehydes under, solvent-free conditions. Chem. Cent. J. 6: 136. (2012).

34.          Moosavifar M., Tangestaninejad S., Moghadam M., Mirkhani V., Mohammadpoor-Baltork I. Host (nanocavity of zeolite-Y)–guest (molybdophosphoric acid) nanocomposite materials: An efficient catalyst for solvent-free synthesis and deprotection of 1,l-diacetates. C. R. Chim. 14: 953-956. (2011).

35.          Esmaeilpour M. and Sardarian A.Z., 4-dodecylbenzenesulfonic acid (DBSA): An efficient, eco-friendly and chemoselective catalyst for the synthesis of 1, 1- diacetates under solvent-free conditions at room temperature. Iran. J. Sci. Technol., Trans. A: Sci. 37: 277-284 (2013).

36.          Borikar S.P. and Daniel T., A convenient and efficient protocol for the synthesis of acylals catalyzed by Brønsted acidic ionic liquids under ultrasonic irradiation. Ultrason. Sonochem. 18: 928-931 (2011).

37.          Nouri Sefat M., Deris A. and Niknam K., Preparation of Silica-bonded Propyl-diethylene-triamine-N-sulfamic Acid as a Recyclable Catalyst for Chemoselective Synthesis of 1,1-Diacetates. Chin. J. Chem. 29: 2361-2367 (2011).

38.          Kalla R.M.N., Park H., Hoang T.T.K. and Kim I., Phospho sulfonic acid as an efficient and recyclable solid acid catalyst for the solvent-free preparation of acylals. Tetrahedron Lett. 55: 5373-5376 (2014).

39.          Khaligh N.G. Poly(4-vinylpyridinium) perchlorate as an efficient solid acid catalyst for the chemoselective preparation of 1, 1-diacetates from aldehydes under solvent-free conditions. Chin. J. Catal. 35: 329-334 (2014).

40.          Ghorbani-Vaghei R., Amiri M., Moshfeghifar N., Veisi H. and Akbari Dadamahaleh S., Poly(N,N'-dibromo-N-ethyl-benzene-1,3-disulfonamide) and N,N,N',N'-tetrabromobenzene-1,3-disulfonamide as effective catalysts for conversion of aldehydes to 1,1-diacetates and acetals. J. Iran. Chem. Soc. 6: 754-760 (2009).

41.          Xu R., Zhang J., Tian Y. and Zhou J., Microwave-assisted solvent-free synthesis of 1,1-diacetates catalyzed by SbCl3 from aldehydes and acetic anhydride. J. Iran. Chem. Soc. 6: 443-447 (2009).

42.          Kang L., Cai Y. and Cheng L., Solvent-free catalytic preparation of 1,1-diacetates using a silica-supported functional ionic liquid as catalyst. Monatsh. Chem. 144: 247-249 (2013).

43.          Asl P.A. and Setamdideh D., NaBH4/Ac2O/DOWEX(R)50WX4: A Convenient System for Fast Preparation of gem-Diacetates from Aldehydes. J. Chin. Chem. Soc. 61: 940-944 (2014).

44.          Wang D.-S., Li G.-Y. and Peng Y.-Q., Chloroferrate(III) Ionic Liquid as Recyclable Catalyst for the Acetylation of Alcohols and Phenols and for 1,1-Diacylation of Aldehydes. J. Chin. Chem. Soc. 56: 834-838 (2009).

45.          Khazaei A., Manesh A.A., Rostami A., Alavi-Nik H.A., Roosta Z.T. "Conversion of aldehydes to acylals using acetic anhydride in presence of catalytic amount of Fe(NO3)3.9H2O under solvent-free conditions at room temperature" Asian J. Chem. 23: 614-616 (2011).

46.          Fan D.H., Wang H., Mao X.X., Shen Y.M. An efficient and chemoselective procedure for acylal synthesis. Mol. 15: 6493-6501 (2010).

47.          Romanelli G., Ruiz D., Vázquez P., Thomas H., Autino J.C. Preyssler heteropolyacid H14[NaP5W29MoO110]: A heterogeneous, green and recyclable catalyst used for the protection of functional groups in organic synthesis. Chem. Eng. J. 161: 355-362. (2010).

48.          Pourmousavi S. and Kazemi S., Highly efficient and chemoselective method for the thioacetalization of aldehydes and transthioacetalization of acetals and acylals catalyzed by H2SO4-silica under solvent-free conditions. Monatsh. Chem. 143: 917-923 (2012).

49.          Eshghi H. and Hassankhani A., Phosphorus pentoxide supported on silica gel and alumina (P2O5/SiO2, P2O5/Al2O3) as useful catalysts in organic synthesis. J. Iran. Chem. Soc. 9: 467-482 (2012).

50.          Bamoniri A., Ghorbani-Choghamarani A. and Mirjalili B.B.F., A New and Efficient Procedure for the Production of 1,1-Diacetate from Corresponding Aldehydes Promoted by Silica Chromate (SiO2-O-CrO2-O-SiO2). Phosphorus Sulfur Silicon Relat. Elem. 186: 381-388 (2011).

51.          Rezaee Nezhad E., Sajjadifar S., Abbasi Z., and Rezayati S., Chemoselective Synthesis of 1,1-diacetate Using Ni2+@ Hydroxyapatite-core@shell γ-Fe2O3 Nanoparticles as an Efficient and Reusable Lewis Acid Catalyst under Solvent Free Conditions. J. Sci. I. R. Iran 25: 125-132 (2014).

52.          Mirjalili B.F., Bamoniri A. and Kalantari F., [B(OH)3]0.78[B(OH)2(OSO3H)]0.22 as a new, cheap and eco-friendly catalyst for synthesis of acylals at room temperature under solvent free conditions. Iran. J. Catal. 4: 273-279 (2014).

53.          Kumar R., Kumar D., Chakraborti A.K., Perchloric Acid Adsorbed on Silica Gel (HClO4–SiO2) as an Inexpensive, Extremely Efficient, and Reusable Dual Catalyst System for Acetal/Ketal Formation and Their Deprotection to Aldehydes/Ketones. Synthesis. 2:299-303 (2007).

54.          Palacios-Grijalva L.N., Cruz-González D.Y., Lomas-Romero L., González-Zamora E., Ulibarri G., Negrón-Silva G.E. Sulphated zirconia as an eco-friendly catalyst in acylal preparation under solvent-free conditions, acylal deprotection assisted by microwaves, and the synthesis of anhydro-dimers of o-hydroxybenzaldehydes. Mol. 14: 4065-4078. (2009).

55.          Sajjadifar S. and Rezayati S., Synthesis of 1,1-diacetates catalysed by silica-supported boron sulfonic acid under solvent-free conditions and ambient temperature. Chem. Pap. 68: 531-539 (2014).

56.          Donnadio A., Pica M., Capitani D., Bianchi V. and Casciola M., Layered zirconium alkylphosphates: Suitable materials for novel PFSA composite membranes with improved proton conductivity and mechanical stability. J. Membr. Sci. 462: 42-49 (2014).

57.          Shi X., Lian H., Yan X., Qi R., Yao N., Li T. Fabrication and properties of polyimide composites filled with zirconium tungsten phosphate of negative thermal expansion. Mater. Chem. Phys. 179: 72-79. (2016).

58.          Meshram G.A., Patil V.D. Chemoselective Synthesis of 1,1-Diacetates from Aldehydes Using Anhydrous Cobalt(II) Bromide Under Solvent-Free Conditions. Synth. Commun. 40: 442-449. (2010).