Document Type : Final File


Department of Geology, Faculty of of Sciences , University of Shahid Bahonar, Kerman, Islamic Republic of Iran


Lherzolite is one of the main units in the Ab-Bid ultramafic complex from Esfandagheh-HadjiAbad coloured mélange (South of Iran). The complex contains harzburgite, dunite, lherzolite and pyroxenite dykes and the lherzolites mainly occur in the margins. In the field, lherzolites occur as weakly foliated coarse-grained peridotites with shiny pyroxene grains and cut by neumerous pyroxenitic veins. Textural features such as elongation and undoluse extinction of minerals and porphyroclastic grains indicate that the lherzolites were part of the upper mantle and experienced high P-T deformational events. Mineral chemistry data such as Cr# values in spinels (10/33-14/04) and fo contents of olivines (90/49-93/51)  from the Ab-Bid lherzolites suggest that these rocks belong to the mantle. Evidences such as CaO (1/18-3/23) and MgO (39/53-43/65) contents of whole rock compositions, Cr# (10/33-14/04) and Mg# (74/20-78) values of spinels, besides textural features and REE normalized patterns show that they have past a complex petrological history. At the first stage, they have partially melted (< 10%) in an abyssal environment, then, they refertilized by ascending melts and enriched in LREE. Tectonomagmatic discrimination diagrams indicate that Ab-Bid lherzolites  belong to the abyssal peridotites and their petrogenetic evolutions are similar to those from MOR type peridotites. Our data document the dependence of Esfandagheh-HadjiAbad coloured mélange to the Neotethyan oceanic lithosphere in the south of Iran.


Main Subjects

1. Alavi N.M. Tectonic of the Zagros, orognic belt of Iran, new data and interpretation. Tectonophysics 299: 211-238(1984).
2. Azizian H., Naderi N., Navazi M., Posht Kohii M., Rashidi H. 1/100000 level Dolat – Abad Geological map Geol. Sur. & Mineral. explor. Iran. Ser. 346 (2007).
3. Bedard E., Hebert R., Guilmetta C., Lesage G., Wang C.S., Dostal J. Petrology and geochemistry of the sega and sangsang ophiolitic massifs, Yarlung Zangbo Suture Zone, Southern Tibet: Evidence for an arc-back-arc origin. Lithos 113:48-67 (2009).
4. Beyer E.E., Griffin W.L., O/Reilly S.Y. Transformation of Archean lithospheric mantle by refertilization: evidence from exposed peridotites in the Western Gneiss Region, Norway. J. petrol 47: 1611-1636(2006).
5. Bodinier J.L., Godard M. Orogenic, Ophiolitic and Abyssal Peridotites. In: Carlson, R.W. (Ed.), Treatise. Geochem. Els. Sci. Ltd 2: 103-170 (2003).
6. Canil D. Mildly incompatible elemant in peridotite and the origins of mantle lithosphere. Lithos 77: 375-393(2004).
7. Canil D., Johnston S.T., Mihalynuk M. Mantle redox in Cordilleran ophiolites as a record of oxygen fugacity during partial melting and the lifetime of mantle lithosphere. Earth. Planet. Sci. let 248: 41-102(2006).
8. Carswell D.A. Picritic magma-residul dunite relationship in garnet peridotite at Kalskaret near Tafjord, south Norway. Contrib. Mineral. Petrol 19: 97-124(1968).
9. Dawson J.B. A fertile harzburgite-garnet lherzolite transition: possible inferences for the roles of strain and metasomatism in upper mantle peridotites. Lithos 77: 553-569(2004).
10. Dick H.J.B., Bullen T. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib. Mineral. Petrol 86: 54–76(1984).
11. Dilek Y. & Thy P. Island arc tholeiite to boninitic melt evolution of the Cretaceous Kızıldağ (Turkey) ophiolite model for multistage early arc–forearc magmatism in Tethyan subduction factories. Lithos113: 68–87(2009).
12. Hawkins J.W. and Allen J.F. Petrologic evolution of the Lau Basin, site 834-839, in proc. ODP.Sci. Results 135:.J.W(1994).
13. Herzberg C. Geodynamic information in peridotite petrology. J. Petrol 45: 2507–2530(2004).
14. Hirose K., Kawamoto T. Hydrous partial melting of lherzolite at 1GPa: the effect of H2O on the genesis of basaltic magmas. Earth. Planet. Sci. Lett 133: 463–473(1995).
15. Kamenetsky V.S., Crawford A.J., Meffre S. Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J. Petrol 42: 655–671(2001).
 16. Kepezhinskas P.K., Defant M.J., Drummond M.S. Na metasomatism in the island-arc mantle by slab melt-peridotite interaction: evidence from mantle xenoliths in the North Kamchatka arc. J. Petrol 36: 1505–1527(1995).
17. Lenoir X., Garrido C.J., Bodinier J.L., Dautria J.M., Gervilla F. The recrystallization front of the Ronda peridotite: evidence for melting and thermal erosion of subcontinental lithospheric mantle beneath the Alboran Basin. J. Petrol 42: 141–158(2001).
 18. McDonough W.F., Sun S.S. The composition of the Earth. Chem. Geol 12: 223–253(1995).
 19. Medaris L.G. High-pressure peridotites in south-western Oregon. Bull.Geologic. Soc.Am 83: 41– 58(1972).
20. Mohajjel M., Fergusson C.I. and Shahandi M.R. Cretaceous Tertiary convergence and continental collision. Sanandaj-Sirjan zone, westeren Iran: J. Asian. Earth. Sci 21: 397-412(2003).
21. Müntener O., Pettke T., Desmurs L., Meier M., Schaltegger U. Trace element and Nd-isotopic evidence and implications for crust-mantle relationships. Earth. Planet. Sci. Lett 221: 293–308(2004).
 22. Orberger B., Lorand J.P., Girardeau J., Mercier J.C.C. and Pitragool S. Petrogenesis of ultramafic rocks and associated chromitites in the Nan Uttardit ophiolite, Northern Thailand. Lithos 35: 153-182(1995).
23. Pagé P., Bédard J.H., Tremblay A. Geochemical variations in a depleted fore-arc mantle: The Ordovician Thetford Mines Ophiolite. Lithos 113: 21–47(2009).
24. Parlak O., Rızaoğlu T., Bağcı U., Karaoğlan F. & Hock V. Tectonic significance of the geochemistry and petrology of ophiolites in southeast Anatolia Turkey. Tectonophysic473:173–187(2009).
25. Parkinson I.J., Pearce J.A. Peridotites from the Izu–Bonin–Mariana forearc (ODP leg 125): evidence for mantle melting and melt–mantle interaction in the supra-subduction zone setting. J. Petrol 39: 1577–1618(1998).
26. Pearce J.A., Barker P.F., Edwards S.J., Parkinson I.J., Leat P.T. Geochemistry and tectonic significance of peridotites from the South Sandwich arc–basin system, South Atlantic. Contrib. Mineral. Petrol 139: 36–53(2000).
27. Peighambari S., Ahmadipour H., Stosch H.G., Daliran F. Evidence for multi–stage mantle metasomatism at the Dehsheikh peridotite massif and chromite deposits of the Orzuieh coloured mélange belt, Southeasten Iran. Ore. Geol. Rev 39: 245-264(2011).
28. Piccardo G.B., Muntener O., Zanetti A., Romarione A., Bruzzone S., Poggi E. & Spagnolo G. The Lenzo South Peridotite: melt/peridotite interaction in the mantle lithosphere of the Jurassic Ligurian Tethys. Ofioliti 29: 37-62(2004).
29.Santos J.F., Scharer U., Ibarguchi J.I.G. and Girardeau J. Genesis of pyroxenite-rich peridotite at Cabo Ortegal (NW Spain):geochemical and Pb-Sr-Nd isotope data. J. Petrol 43: 17-43(2002).
30. Seyler M., Lorand J.–P., Dick H.J.B., Drouin M. Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15_ 20N: ODP Hole 1274. Contrib. Mineral. Petrol 153(3): 303–319(2007).
31. Shahabpour J. Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz. J. Asian. Earth. Sci 24: 405–417 (2005). 32. Shafaii Moghadam H., Stern R.J., Rahgoshay M. The Dehshir ophiolite (Central Iran): Geochemical constraints on the origin and evolution of the Inner–Zagros ophiolite belt. Bull. Geologic. Soc. AM 122: 1516-1547(2010).
33. Shafaii Moghadam H., Stern R.J., Chiaradia M. Geochemistry and tectonic evolution of the Late Cretaceous Gogher- Bft ophiolite, central Iran. Lithos 168-169:33-47(2013).
34. Sobolev A.V. & Danyushevsky L.V. Petrology and geochemistry of boninites from the north termination of the Tonga trench: constraints on the generation conditions of primary high – Ca boninite magmas. J. Petrol 35: 1183-1211(1994).
35. Stewart E., Lamb W., Newman J. and Tikoff. B. The petrological and geochemical evolution of early forearc mantle lithosphere: an example from the Red Hills ultramafic massif, New Zealand. J. Petrol 57:751-776(2016).
 36. Sun S.S., McDonough W.F. Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes. In: Saunders A.D., Norry M.J.(eds) Magmatism in the Ocean Basins. Geol. Soc. Lon. Spec. Public 42: 313-345(1989).
37. Tamura A., Arai S., Andel E.S. Petrology and geochemistry of peridotites from TODP site U1309 at Atlantis massif. MAR 30N: micro- and macro- scale melt penetrations into peridotites. Contrib. mineral. Petrol 155(4): 491-509 (2008).
38. Uysal İ., Zaccarini F., Garuti G., Meisel T., Tarkian M., Bernhardt H.J. & Sadıklar M.B. Ophiolitic chromitites from the Kahramanmaraş area, southeastern Turkey: their platinum group elements (PGE) geochemistry, mineralogy and Os-isotope signature. Ofioliti 32: 151–161 (2007).
39. Xiao W., Han C., Chao Y., Sun M., Zhao G., Shan Y. Transitions among Mariana, -Japan-, Cordillera-, and Alaska-type systems and their final luxtapositions leading to accretionary and collisional orogenesis. In kusky, T.M., Zhai, M.G., Xiao, W. (Eds). The evolving continents under – standing processes of continental Grawth. Geol. Soc. Lond 338: 35-53(2010).
40. Zheng J.D., Griffin W.L., O Reilly S.Y., Yu C.M., Zhang H.F., Pearson N., Zhang M. Mechanism and timing of lithospheric modification and replacement beneath the eastern North Chaina Craton: Peridotitic xenoliths from the 100 Ma fuxin basalts and a regional synthesis. Geochim. Cosmachim. Ac 71: 5203-5225(2007).