Document Type : Final File
Author
Department of Applied Physics, Faculty of Physics, University of Shahid Beheshti, Evin, Tehran, Islamic Republic of Iran
Abstract
We investigate the electronic transport through a single-level quantum-dot which is capacitively coupled to a charge-qubit. By employing the method of nonequilibrium Green's functions, we calculate the electric current through quantum dot at finite bias voltages. The Green's functions and self-energies of the system are calculated perturbatively and self-consistently to the second order of interaction between the quantum-dot and the charge-qubit by employing the Majorana fermion representation for isospin operators of the qubit. Our results show that in the particle-hole symmetric situation, the electric current of the QD exhibits a unitary linear conductance at low bias voltage and at the higher bias voltage it has a nonlinear dependence on the bias voltage. Moreover, we find that at some appropriate parameter regimes, the current through the QD as a function of gate voltage, at a fixed bias voltage shows bistability.
Keywords
- Nonequilibrium green's function method
- Current bistability
- Perturbation theory
- Majorana fermion representation of spin operators
Main Subjects
- Schuler B, Persson M, Paavilainen S, Pavliček N, Gross L, Meyer G, Repp J. Effect of electron-phonon interaction on the formation of one-dimensional electronic states in coupled Cl vacancies. Phys. Rev. B, 91(23):235443 (2015).
- Zwanenburg FA, Dzurak AS, Morello A, Simmons MY, Hollenberg LC, Klimeck G, Rogge S, Coppersmith SN, Eriksson MA. Silicon quantum electronics. Rev. Mod. Phys., 85(3):961 (2013).
- Han JE. Nonequilibrium electron transport in strongly correlated molecular junctions. Phys. Rev. B, 81(11): 113106 (2010).
- Laird EA, Kuemmeth F, Steele GA, Grove-Rasmussen K, Nygård J, Flensberg K, Kouwenhoven LP. Quantum transport in carbon nanotubes. Rev. Mod. Phys., 87(3):703 (2015).
- Chen SH, Chen CL, Chang CR, Mahfouzi F. Spin-charge conversion in a multiterminal Aharonov-Casher ring coupled to precessing ferromagnets: A charge-conserving Floquet nonequilibrium Green function approach. Phys. Rev. B,87(4):045402 (2013).
- Bati M, Sakiroglu S, Sokmen I. Electron transport in electrically biased inverse parabolic double-barrier structure. Chinese Phys. B, 25(5):057307 (2016).
- Kornich V, Kloeffel C, Loss D. Phonon-mediated decay of singlet-triplet qubits in double quantum dots. Phys. Rev. B, 89(8):085410 (2014).
- Awschalom DD, Bassett LC, Dzurak AS, Hu EL, Petta JR. Quantum spintronics: engineering and manipulating atom-like spins in semiconductors. Science, 339(6124):1174-1179 (2013).
- Viennot JJ, Dartiailh MC, Cottet A, Kontos T. Coherent coupling of a single spin to microwave cavity photons. Science, 349(6246):408-411 (2015).
- Prabhakar S, Melnik R, Bonilla LL. Electrical control of phonon-mediated spin relaxation rate in semiconductor quantum dots: Rashba versus dresselhaus spin-orbit coupling. Phys. Rev. B, 87(23): 235202 (2013).
- Muhonen JT, Dehollain JP, Laucht A, Hudson FE, Kalra R, Sekiguchi T, Itoh KM, Jamieson DN, McCallum JC, Dzurak AS, Morello A. Storing quantum information for 30 seconds in a nanoelectronic device. Nat. Nanotechnol., 9(12):986-991 (2014).
- Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science, 281(5385):2013-2016 (1998).
- Li L, Wu G, Yang G, Peng J, Zhao J, Zhu JJ. Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale. 5(10):4015-4039 (2013).
- Karwacki Ł, Trocha P, Barnaś J. Magnon transport through a quantum dot: Conversion to electronic spin and charge currents. Phys. Rev. B, 92(23):235449 (2015).
- Eskandari-asl A. Bi-stability in single impurity Anderson model with strong electron–phonon interaction (polaron regime). Physica B, 497:11-13 (2016).
- Makhlin Y, Schön G, Shnirman A. Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys., 73(2): 357 (2001).
- Sprinzak D, Buks E, Heiblum M, Shtrikman H. Controlled dephasing of electrons via a phase sensitive detector. Phys. Rev. Lett., 84(25): 5820 (2000).
- Makhlin Y, Schön G, Shnirman A. Statistics and noise in a quantum measurement process. Phys. Rev. Lett., 85(21): 4578 (2000).
- Korotkov AN. Selective quantum evolution of a qubit state due to continuous measurement. Phys. Rev. B, 63(11): 115403 (2001).
- Gurvitz SA, Berman GP. Single qubit measurements with an asymmetric single-electron transistor. Phys. Rev. B, 72(7): 073303 (2005).
- Gurvitz SA, Mozyrsky D. Quantum mechanical approach to decoherence and relaxation generated by fluctuating environment. Phys. Rev. B, 77(7): 075325 (2008).
- Shnirman A, Schoen G. Quantum measurements performed with a single-electron transistor. Phys. Rev. B, 57(24): 15400 (1998).
- Mozyrsky D, Martin I, Hastings MB. Quantum-limited sensitivity of single-electron-transistor-based displacement detectors. Phys. Rev. Lett., 92(1): 018303 (2004).
- Oxtoby NP, Wiseman HM, Sun HB. Sensitivity and back action in charge qubit measurements by a strongly coupled single-electron transistor. Phys. Rev. B, 74(4): 045328 (2006).
- Schulenborg J, Splettstoesser J, Governale M, Contreras-Pulido LD. Detection of the relaxation rates of an interacting quantum dot by a capacitively coupled sensor dot. Phys. Rev. B, 89(19): 195305 (2014).
- Hell M, Wegewijs MR, DiVincenzo DP. Coherent backaction of quantum dot detectors: Qubit isospin precession. Phys. Rev. B, 89(19): 195405 (2014).
- Hell M, Wegewijs MR, DiVincenzo DP. Qubit quantum-dot sensors: Noise cancellation by coherent backaction, initial slips, and elliptical precession. Phys. Rev. B, 93(4): 045418 (2016).
- Tabatabaei SM. Perturbative approach to the capacitive interaction between a sensor quantum dot and a charge qubit. Phys. Rev. B, 95(15): 155113 (2017).
- Simine L, Segal D. Electron transport in nanoscale junctions with local anharmonic modes. J. Chem. Phys., 141(1): 014704 (2014).
- Hamo A, Benyamini A, Shapir I, Khivrich I, Waissman J, Kaasbjerg K, Oreg Y, von Oppen F, Ilani S. Electron attraction mediated by coulomb repulsion. Nature, 535(7612):395-400 (2016).
- Bulla R., Costi T. and Pruschke T. Numerical renormalization group method for quantum impurity systems. Rev. Mod. Phys., 80(2): 395 (2008).
- Liu YY, Petersson KD, Stehlik J, Taylor JM, Petta JR. Photon emission from a cavity-coupled double quantum dot. Phys. Rev. Lett., 113(3): 036801 (2014).
- Schad P, Shnirman A, Makhlin Y. Using Majorana spin-1/2 representation for the spin-boson model. Phys. Rev. B, 93(17): 174420 (2016).
- Schad P, Makhlin Y, Narozhny BN, Schön G, Shnirman A. Majorana representation for dissipative spin systems. Ann. Phys., 361: 401-422 (2015).
- Stefanucci G. and van Leeuwen R. Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction, Camb. Univ. Press (2013).
- Zitko R. The package is available at http://nrgljubljana. ijs.si.