Document Type: Final File


Department of Applied Physics, Faculty of Physics, University of Shahid Beheshti, Evin, Tehran, Islamic Republic of Iran


We investigate the electronic transport through a single-level quantum-dot which is capacitively coupled to a charge-qubit. By employing the method of nonequilibrium Green's functions, we calculate the electric current through quantum dot at finite bias voltages. The Green's functions and self-energies of the system are calculated perturbatively and self-consistently to the second order of interaction between the quantum-dot and the charge-qubit by employing the Majorana fermion representation for isospin operators of the qubit. Our results show that in the particle-hole symmetric situation, the electric current of the QD exhibits a unitary linear conductance at low bias voltage and at the higher bias voltage it has a nonlinear dependence on the bias voltage. Moreover, we find that at some appropriate parameter regimes, the current through the QD as a function of gate voltage, at a fixed bias voltage shows bistability.


Main Subjects

  1. Schuler B, Persson M, Paavilainen S, Pavliček N, Gross L, Meyer G, Repp J. Effect of electron-phonon interaction on the formation of one-dimensional electronic states in coupled Cl vacancies. Phys. Rev. B, 91(23):235443 (2015).
  2. Zwanenburg FA, Dzurak AS, Morello A, Simmons MY, Hollenberg LC, Klimeck G, Rogge S, Coppersmith SN, Eriksson MA. Silicon quantum electronics. Rev. Mod. Phys., 85(3):961 (2013).
  3. Han JE. Nonequilibrium electron transport in strongly correlated molecular junctions. Phys. Rev. B, 81(11): 113106 (2010).
  4. Laird EA, Kuemmeth F, Steele GA, Grove-Rasmussen K, Nygård J, Flensberg K, Kouwenhoven LP. Quantum transport in carbon nanotubes. Rev. Mod. Phys., 87(3):703 (2015).
  5. Chen SH, Chen CL, Chang CR, Mahfouzi F. Spin-charge conversion in a multiterminal Aharonov-Casher ring coupled to precessing ferromagnets: A charge-conserving Floquet nonequilibrium Green function approach. Phys. Rev. B,87(4):045402 (2013).
  6. Bati M, Sakiroglu S, Sokmen I. Electron transport in electrically biased inverse parabolic double-barrier structure. Chinese Phys. B, 25(5):057307 (2016).
  7. Kornich V, Kloeffel C, Loss D. Phonon-mediated decay of singlet-triplet qubits in double quantum dots. Phys. Rev. B, 89(8):085410 (2014).
  8. Awschalom DD, Bassett LC, Dzurak AS, Hu EL, Petta JR. Quantum spintronics: engineering and manipulating atom-like spins in semiconductors.  Science, 339(6124):1174-1179 (2013).
  9. Viennot JJ, Dartiailh MC, Cottet A, Kontos T. Coherent coupling of a single spin to microwave cavity photons. Science, 349(6246):408-411 (2015).
  10. Prabhakar S, Melnik R, Bonilla LL. Electrical control of phonon-mediated spin relaxation rate in semiconductor quantum dots: Rashba versus dresselhaus spin-orbit coupling. Phys. Rev. B, 87(23): 235202 (2013).
  11. Muhonen JT, Dehollain JP, Laucht A, Hudson FE, Kalra R, Sekiguchi T, Itoh KM, Jamieson DN, McCallum JC, Dzurak AS, Morello A. Storing quantum information for 30 seconds in a nanoelectronic device. Nat. Nanotechnol., 9(12):986-991 (2014).
  12. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science, 281(5385):2013-2016 (1998).
  13. Li L, Wu G, Yang G, Peng J, Zhao J, Zhu JJ. Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale. 5(10):4015-4039 (2013).
  14. Karwacki Ł, Trocha P, Barnaś J. Magnon transport through a quantum dot: Conversion to electronic spin and charge currents. Phys. Rev. B, 92(23):235449 (2015).
  15. Eskandari-asl A. Bi-stability in single impurity Anderson model with strong electron–phonon interaction (polaron regime). Physica B, 497:11-13 (2016).
  16. Makhlin Y, Schön G, Shnirman A. Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys., 73(2): 357 (2001).
  17. Sprinzak D, Buks E, Heiblum M, Shtrikman H. Controlled dephasing of electrons via a phase sensitive detector. Phys. Rev. Lett., 84(25): 5820 (2000).
  18. Makhlin Y, Schön G, Shnirman A. Statistics and noise in a quantum measurement process. Phys. Rev. Lett., 85(21): 4578 (2000).
  19. Korotkov AN. Selective quantum evolution of a qubit state due to continuous measurement. Phys. Rev. B, 63(11): 115403 (2001).
  20. Gurvitz SA, Berman GP. Single qubit measurements with an asymmetric single-electron transistor. Phys. Rev. B, 72(7): 073303 (2005).
  21. Gurvitz SA, Mozyrsky D. Quantum mechanical approach to decoherence and relaxation generated by fluctuating environment. Phys. Rev. B, 77(7): 075325 (2008).
  22. Shnirman A, Schoen G. Quantum measurements performed with a single-electron transistor. Phys. Rev. B, 57(24): 15400 (1998).
  23. Mozyrsky D, Martin I, Hastings MB. Quantum-limited sensitivity of single-electron-transistor-based displacement detectors. Phys. Rev. Lett., 92(1): 018303 (2004).
  24. Oxtoby NP, Wiseman HM, Sun HB. Sensitivity and back action in charge qubit measurements by a strongly coupled single-electron transistor. Phys. Rev. B, 74(4): 045328 (2006).
  25. Schulenborg J, Splettstoesser J, Governale M, Contreras-Pulido LD. Detection of the relaxation rates of an interacting quantum dot by a capacitively coupled sensor dot. Phys. Rev. B, 89(19): 195305 (2014).
  26. Hell M, Wegewijs MR, DiVincenzo DP. Coherent backaction of quantum dot detectors: Qubit isospin precession. Phys. Rev. B, 89(19): 195405 (2014).
  27. Hell M, Wegewijs MR, DiVincenzo DP. Qubit quantum-dot sensors: Noise cancellation by coherent backaction, initial slips, and elliptical precession. Phys. Rev. B, 93(4): 045418 (2016).
  28. Tabatabaei SM. Perturbative approach to the capacitive interaction between a sensor quantum dot and a charge qubit. Phys. Rev. B, 95(15): 155113 (2017).
  29. Simine L, Segal D. Electron transport in nanoscale junctions with local anharmonic modes. J. Chem. Phys., 141(1): 014704 (2014).
  30. Hamo A, Benyamini A, Shapir I, Khivrich I, Waissman J, Kaasbjerg K, Oreg Y, von Oppen F, Ilani S. Electron attraction mediated by coulomb repulsion. Nature, 535(7612):395-400 (2016).
  31. Bulla R., Costi T. and Pruschke T. Numerical renormalization group method for quantum impurity systems. Rev. Mod. Phys., 80(2): 395 (2008).
  32. Liu YY, Petersson KD, Stehlik J, Taylor JM, Petta JR. Photon emission from a cavity-coupled double quantum dot. Phys. Rev. Lett., 113(3): 036801 (2014).
  33. Schad P, Shnirman A, Makhlin Y. Using Majorana spin-1/2 representation for the spin-boson model. Phys. Rev. B, 93(17): 174420 (2016).
  34. Schad P, Makhlin Y, Narozhny BN, Schön G, Shnirman A. Majorana representation for dissipative spin systems. Ann. Phys., 361: 401-422 (2015).
  35. Stefanucci G. and van Leeuwen R. Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction, Camb. Univ. Press (2013).
  36. Zitko R. The package is available at http://nrgljubljana.