Document Type : Final File

Authors

1 1Research Institute for Earth Sciences, Geological Survey of Iran (GSI), Tehran, Islamic Republic of Iran

2 2 Deportment of Seismology, Institute of Geophysics, Faculty of Sciences, University of Tehran, Tehran, Islamic Republic of Iran

Abstract

Estimation of the fast polarization direction of shear seismic waves that deviate from horizontal axis is a valuable approach to investigate the characteristics of the lower crust and uppermost mantle structures. The lattice preferred orientation of crystals, which is generally parallel to the downward or upward flow of the mantle or crust, is an important reason for the occurrence of fast axis plunge in these structures. We introduce a new method to estimate the plunge and the true percent of anisotropy. To evaluate the accuracy of the method, we applied it to back azimuthal synthetic receiver functions produced by the Raysum code. The output resulted from this new method (including plunge and percent of anisotropy) were compared with inputs of Raysum code, and reveal that there is a very good coherence among the inputs and output values estimated by our method. This method has been applied to anisotropy analysis beneath two different stations of SHGR in Iran and MOX in Germany. The splitting parameters beneath the SHGR station, are estimated to be φ=60±1 degrees and δt=0.54±0.02 sec. The plunge value and percentage of anisotropy in SHGR are estimated to be 45±0.5 degrees and 4 percent, which can correspond to an old flow in a subduction zone within the area. The splitting parameters in the crust beneath the MOX station, are estimated as φ=98±2 degrees and δt=0.38±0.02 sec. The plunge value and percentage of anisotropy in the crust of the MOX are estimated 45±0.2 degrees and 5.5%.

Keywords

Main Subjects

1. Agard P., Omrani J., Jolivet L., Whitechurch H., Vrielynck B., Spakman W., Monié P., Meyer B., Wortel R. Zagros orogeny: a subduction-dominated process, Geological Magazine, 148. 692-725 (2011).
2. Audet P., Seismic anisotropy of subducting oceanic uppermost mantle from fossil spreading. Geophys. Res. Lett. 40: 173–177 (2013).
3.  Eckhardt C., Rabbel W. P receiver functions of anisotropic continental crust: A hierarchic catalogue of crustal models and azimuthal wave form patterns. Geophys. J. Int., 187 (1): 439-479 (2011).
4. Fox O.C., Sheehan A.F. Upper Mantle Anisotropy Beneath Precambrian Province Boundaries, Southern Rocky Mountains. American. Geophysical. Uni. 10: 1029, 1054GM26 (2005).
5. Frederiksen A.W., Bostock M.G. Modelling teleseismic waves in dipping anisotropic structures. Geophys. J. Int. 141: 401-412 (2000).
6.  Ito G., Dunn R, Li A, Wolfe C. J., Gallego A, and Fu Y. Seismic anisotropy and shear wave splitting associated with mantle plume-plate interaction, J. Geophys. Res. Solid Earth, 119, doi: 10.1002/2013JB010735 (2014).
7.  Kasch N., Naujoks M., Kley J., Jahr T. Combined geological and gravimetric mapping and modeling for an improved understanding of observed high-resolution gravity variations: a case study for the Global Geodynamics Project (GGP) station Moxa, Germany, Int J Earth Sci (Geol Rundsch), doi: 10.1007/s00531-012-0859-z (2013).
8.  Kaviani A., Hatzfeld D., Paul A, Tatar M., Priestley K. Shear-wave splitting, lithospheric anisotropy, and mantle deformation beneath the Arabia–Eurasia collision zone in Iran. Earth and Planetary Science Letters, 286 (3): 371-378 (2009).
9.  Knoll M., Tommasi A., Loge R.E., Signorelli J.W. A multiscale approach to model the anisotropic deformation of lithospheric plates. Geochem. Geophys. Geosyst., 10: Q08009, doi:10.1029/2009GC002423 (2009).
10.  Liu, H. & Niu, F. Estimating crustal seismic anisotropy with a joint analysis of radial and transverse receiver function data, Geophys. J. Int. 188: 144–164 (2012).
 
11. McCormack K., Wirth, E.A., Long, M.D. B-type olivine fabric and mantle wedge serpentinization beneath the Ryukyu arc. Geophys. Res. Lett. 40:1697-1702 (2013).
12. Nagaya M., Oda H., Akazawa H., Ishise M. Receiver functions of seismic waves in layered anisotropic media: application to the estimate of seismic anisotropy. Bull. Seism. Soc. Am. 98: 2990- 3006 (2008).
13. Naus-Thijssen F. M. J., Goupee A. J., Vel S.S and Johnson S.E. The influence of microstructure on seismic wave speed anisotropy in the crust: computational analysis of quartz-muscovite rocks. Geophys. J. Int. 185 (2): 609-621 (2011).
14. Omrani, J., Agard, P., Whitechurch, H., Benoit, M., Prouteau, G., Jolivet, L. Arcmagmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamic consequences. Lithos. 106: 380–398 (2008).
15. Paul A., Hatzfeld D., Kaviani A., Tatar M. & Pquegnat C. Seismic imaging of the   lithospheric structure of the Zagros mountain belt Iran. Geol. Soc. Lond. Special Publications. 330(1): 5–18 (2010).
16. Porter R., Zandt G., and McQuarrie N. Pervasive lower-crustal seismic anisotropy in   Southern California: Evidence for underplated schists and active tectonics. Geological Society of America, Lithosphere, published online. doi:10.1130/L126.1. (2011).
17.  Ribe N.M. Seismic anisotropy and mantle flow. J. Geophys. Res. 94: 4213-4223 (1989).
18. Rümpker G., Kaviani A., Latifi K. Ps-splitting analysis for multilayered anisotropic media by azimuthal stacking and layer stripping. Geophys, J. Int. 199(1):146-163 (2014).
19. Savage M.K. Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? Reviews of Geophysics. 37(1): 65–106, doi: 10.1029/98RG02075 (1999).
20. Shearer P.M. Introduction to seismology, This Book published in the United States of America by Cambridge University Press, New York (2009).
21. Stein S., Wysession, M. An Introduction to seismology, Earthquakes, and Earth Structure. Blackwell Publishing, Oxford (2003).
22. Wenk H.R.  Preferred Orientation in Deformed Metal and Rocks: An introduction to Modern Texture Analysis, This Book published in Department of Geology and Geophysics University of California Berkeley by ACADEMIC PRESS, INC. (1985).